
Abstract 
Confusion has been found to hinder user 
experience with visualizations. If confusion could 
be predicted and resolved in real time, user 
experience and satisfaction would greatly improve. 
In this paper, we focus on predicting occurrences 
of confusion during the interaction with a 
visualization using eye tracking and mouse data. 
The data was collected during a user study with 
ValueChart, an interactive visualization to support 
preferential choices. We report very promising 
results based on Random Forest classifiers. 

1 Introduction 
Confusion has been found to hinder user experience and 
satisfaction with user interfaces [e.g., Nadkarni and Gupta 
2007] and Information Visualization (InfoVis) [e.g., Lee et 
al. 2016; Yi 2008]. To date, most work on developing 
methods to detect and prevent or resolve confusion in real-
time during interaction has been in the field of Intelligent 
Tutoring Systems (ITS), [Bosch et al. 2015; Baker et al. 
2012; D’Mello and Graesser 2007]. Building on this work, 
we investigate how to predict confusion during the 
interaction with a visualization-based interface, with the 
long-term goal of devising intelligent user-adaptive 
visualizations that can provide personalized interventions to 
help confused users. Such user-adaptive visualizations 
would be especially beneficial as complex visualizations are 
becoming increasingly used by broad audiences, not only in 
professional settings, but also for personal usage (e.g., for 
monitoring health and fitness, interactions in social media, 
and home resources consumption) [Huang et al. 2015].  

In this paper, we investigate machine learning models to 
predict occurrences of confusion during the interaction with 
ValueChart, an interactive visualization to support multi-
criteria preferential choice. To make such predictions in 
real-time, we leverage both interaction data as well as eye 
tracking capturing users’ gaze patterns, pupil size and head 
distance to the screen. Interaction data have been used 
before to predict confusion in computer games [Pentel 
2015] and ITS [Baker et al. 2012]. However, we are the first 
to study how eye tracking can be used to predict confusion, 
with the rationale that eye tracking should be particularly 

informative in predicting confusion during visualization 
processing, as visual scanning is a fundamental component 
of working with a visualization. Furthermore, eye tracking 
has been shown to be a good predictor of affective states in 
educational systems [Jaques et al. 2014; Muldner et al. 
2010] as well as user characteristics in InfoVis, [e.g., 
Steichen et al. 2014; Jang et al. 2014]. 

This work has two main contributions. The first is a proof 
of concept that confusion can be predicted in real-time in 
InfoVis, with 61% accuracy (significantly better than 
chance) for occurrences of confusion and a false positive 
rate of only 7.4%. The second contribution is evidence of 
the importance of eye tracking for building predictors of 
confusion in InfoVis, with the most informative sources of 
information being differences in the user’s attention to the 
labels of the InfoVis, as well as variations in user pupil size 
and head distance to the screen.  

2 Related Work 
Previous work suggests that confusion can negatively 
impact user experience or satisfaction with an interface, e.g., 
[Rickenberg and Reeves 2000; Nadkarni and Gupta 2007]. 
In InfoVis, confusion has been linked to lower user 
performance and satisfaction in completing decision making 
tasks [Yi 2008], and was shown to affect novice users when 
they process an unfamiliar visualization [Lee et al. 2016].  

In the field of Intelligent Tutoring Systems, predictors   of 
confusion have been built by leveraging facial expressions 
[Bosch et al. 2015; D’Mello and Graesser 2007], posture 
[D’Mello and Graesser 2007], or students’ interface actions 
and studying behavior [Baker et al. 2012]. In HCI, Pentel 
[Pentel 2015] leveraged mouse usage information to predict 
occurrences of confusion in a simple computer game. We 
extend this work by showing the feasibility of predicting 
confusion in real time in InfoVis, and we extend previous 
work on confusion prediction in general by using a new 
sensor, eye tracking. 

Eye tracking has been shown to be a good predictor of 
other emotional or attentional states such as mind wandering 
while reading [Bixler and D’Mello 2015], as well as 
boredom, curiosity and excitement, while learning with 
educational software [Jaques et al. 2014; Muldner et al. 
2010]. In InfoVis, gaze and pupil data have been 

Predicting Confusion in Information Visualization 
from Eye Tracking and Interaction Data

�

 
Sébastien Lallé, Cristina Conati, Giuseppe Carenini 

The University of British Columbia, Vancouver B.C., Canada 
{lalles, conati, carenini}@cs.ubc.ca 

 

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2529



investigated to predict long-term user traits (e.g., perceptual 
speed, visual and verbal working memory), as well as short-
term properties such as task completion time, learning 
curve, or intention for visual search [Steichen et al. 2014; 
Lallé et al. 2015; Jang et al. 2014]. Still in InfoVis, 
[Yelizarov and Gamayunov 2014] tracked mouse and 
keyboard events to predict users’ level of cognitive load and 
adjust the amount of information to be displayed 
accordingly. Their results showed that their adaptations 
positively impacted users’ performance. 

3 User Study 
ValueCharts. Complex decisions can often be framed as 
preferential choices, i.e., the process of selecting the best 
option out of a set of alternatives characterized by a variety 
of attributes (e.g., select a car to buy, a university to attend, 
etc.). The dataset1 used in this paper was collected from a 
user study using ValueChart, an interactive visualization for 
preferential choice [Conati et al. 2014]. Figure 1 shows an 
example of ValueChart for selecting rental properties among 
ten available alternatives (listed in the leftmost column), 
based on a set of relevant attributes (e.g., location, 
appliances, etc.). These attributes are arranged hierarchically 
in the top part of the ValueChart, with a column for each 
attribute in the central part of the display. The width of each 
column indicates the relative weight assigned to the 
corresponding attribute. The available alternatives (i.e., 
rental homes) are represented as the rows in the display. 
Each cell specifies how the alternative in that row fares with 
respect to the attribute in that column, indicated by the 
amount of filled cell color. In the rightmost part of the 
ValueChart, all values for each alternative are accumulated 
and presented as stacked bars, displaying the overall value 
of each alternative (e.g., home4 is the best home in the 
example in terms of overall value).  

The interactive functionalities available to support the 
decision process include: (i) inspecting the specific domain 
value of each attribute (e.g., the rent of home1 being equal 
to $500), by left clicking on the related alternative; (ii) 
sorting the alternatives with respect to a specific attribute 
(by double-clicking on the attribute name); (iii) swapping 
attribute columns (initiated via a left click on one of the 
attributes); and (iv) resizing the width of an attribute's 
column to see how that would impact the decision outcome 
(initiated via a left click on the column edge).  

ValueChart has been extensively evaluated for usability 
and adopted in several applications (e.g., [Yi 2008; 
Wongsuphasawat et al. 2012]). It has, however, inherent 
complexity due to the nature of the task, which can still 
generate confusion in some users [Yi 2008; Conati 2013]. 

Procedure. 136 participants (age range 16 to 40, 75 female) 
were recruited from various departments at our university to 
perform 5 different types of tasks with ValueChart (e.g., 
retrieve the cheapest home or select the best home based on 
the aggregation of price and size). After 10 min of training 

                                                
1 Data available at http://www.cs.ubc.ca/~lalles/IJCAI16.html 

with ValueChart, each participant repeated each task type 8 
times in a randomized fashion to account for within-user 
variability, for a total of 40 tasks. This results in a total of 
5440 trials (136 users × 40 trials). 

While performing the tasks, the user’s gaze was tracked 
with a Tobii T120, a non-intrusive eye-tracker embedded in 
the study computer monitor. In order to avoid possible 
confounds on pupil size due to lighting changes, the study 
was administered in a windowless room with uniform 
lighting. To compensate for physiological differences in 
pupil size among users, pupil diameter baselines were 
collected for each user by having them stare at a blank 
screen for ten seconds at the beginning of the study. 

 
Figure 1: An example of the main elements of ValueChart. 

Collecting data on user confusion. Collecting ground truth 
labels is one of the main challenges for building user models 
that can predict transient user states in an adaptive interface 
(e.g., [Porayska-Pomsta et al. 2013]), and a variety of meth-
ods have been proposed in the literature to address this chal-
lenge (see [Conati et al. 2013] for an overview).  

After careful consideration of various options, we chose 
to have users self-report their confusion by clicking on a 
button labeled “I am confused” (see Fig. 1, top right). Users 
were instructed to use the button as follows (rephrased for 
brevity): “[you should click the confusion button] if you feel 
that you want to ask the experimenter a question about 
something; if you are confused about the interface; if you 
are confused about the wording of a question. …These are 
just a few examples, to show that confusion can occur in 
many unforeseeable ways, [which are all] OK reasons to 
click the confusion button.” Participants were told that 
clicking on the button would have no effect on the 
interaction, it was just included for data collection. At the 
end of the study, each participant was shown replays of 
interaction segments centered around their reports of 
confusion, to verify that the report was intended and elicit 
the reason of the confusion. This collection method was 
evaluated via pilot studies before being deployed in the 
main experiment [Conati et al. 2013].  

Confusion was reported in 112 trials (2% of all trials), 
with 80 users (59%) reporting confusion at least once during 
the study, with an average of 1.4 clicks (SD=1.9). There was 
never more than one click per trial. Reasons for confusion 
reported by participants include not understanding the tasks, 
perceived ambiguity in the textual or visual components of 
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the interface, interactive functionalities not working as 
expected, alleged missing functionalities to solve the task.  

To investigate the impact of confusion on users’ 
performance, we ran an MANOVA with task accuracy and 
task completion time as the dependant variables, and the 
occurrence of confusion (2 levels: YES or NO) and types of 
task (5 levels) as factors. The MANOVA revealed a 
significant main effect of confusion on both accuracy 
(F1,2159=108, p < .001, η2

p=.02) and completion time 
(F1,2159=125, p < .001, η2

p=.02), with confusion trials having 
a lower accuracy and being longer than no-confusion trials. 
These results confirm the negative impact of confusion on 
performance reported in [Yi 2008] for a visualization based 
on a variation of ValueChart. It is notable that the impact 
exists even with the relatively low number of confusion 
reports in our dataset. 

4 Predicting Confusion in ValueChart 
We label trials as “confusion” when the user pressed the 
confusion button at least once during the trial, or “no-
confusion” otherwise. Thus, predicting confusion in our 
dataset is a binary classification task: classify each trial as 
one in which the user might be experiencing confusion, or 
not. We compare a variety of features sets for this 
classification task (Section 4.2). In Section 4.1, we describe 
the datasets we generated to compute these feature sets. 

4.1 Data Windows 
To simulate the real-time prediction of confusion episodes, 
we use only users’ data prior to the click on the confusion 
button. As there is no such click in no-confusion trials, we 
randomly generate a “pivot point” in each of those trials. In 
order to ascertain how much data leading up to an episode 
of confusion is needed to predict it, we built our feature sets 
(described below) by using two different windows of data: a 
short window captures data 5 seconds immediately before a 
confusion click2 (or pivot point); a full window captures the 
whole episode of confusion by including data from a click 
(or pivot point) back to the beginning of the trial3. Full 
windows were on average 13.7s in length (SD=11.3s). 

5.2 Predictive features 
The eye tracking data collected during the study provide 
information on user gaze patterns (Gaze, from now), on 
changes in a user’s pupil width (Pupil), and on the distance 
of the user’s head from the screen (Head Distance, defined 
as the averaged distance of each eye to the screen), which 
are all good candidates to explore as predictors of 
confusion. Confusion is likely to impact how a user attends 
to elements of the visualization (Gaze), which has already 
been successfully used to predict user performance and 
                                                

2 Windows actually end 1 second before a confusion click to 
avoid confounds associated with the specific intent to report 
confusion (e.g., fast straight saccades toward the button). 

3 Note that this window cannot include another confusion click 
because there is only one per trial in our dataset. Otherwise, full 
windows would go back only to the last episode of confusion. 

other abilities with visualizations [Steichen et al. 2014; 
Lallé et al. 2015; Nazemi et al. 2014]. Pupil size has been 
associated to cognitive load [e.g., Granholm and Steinhauer 
2004], which might be affected when the user experiences 
confusion. Pupil has also been shown to be a predictor of 
other mental states, such as mind wandering [e.g., Bixler 
and D’Mello 2015]. Head distance provides a rough 
indication of user posture, which has been shown to be a 
predictor of user engagement with a task [D’Mello and 
Graesser 2007]. Since ValueChart is interactive, we also 
leverage data on mouse events, which have been shown to 
predict user confusion during interaction with a computer 
game [Pentel 2015]. From all these measures (Gaze, Pupil, 
Head Distance, and Mouse Events) we derive four groups of 
features (listed in Table 1) that we evaluate in terms of their 
ability to predict user confusion with ValueChart. 

Table 1: Sets of feature considered for classification. 

Gaze features (Table 1a) describe user’s gaze patterns in 
terms of fixations (gaze maintained at one point on the 
screen), and saccades (quick movement of gaze from one 
fixation point to another). From this raw gaze data, we 
generated features that capture overall gaze activity on the 
screen, as well as activity over specific Areas of Interest 
(AOI), shown in Figure 2. We selected these features 
because they have been extensively used in HCI to capture 
differences in users’ attention patterns over an interface 
[e.g., Holmqvist et al. 2015].  

Pupil and Head Distance features (Table 1b) are 
generated by averaging the corresponding measures for each 
eye. Pupil size is adjusted using the pupil baseline collected 
during the study to get the percentage change in pupil size 
(PCPS), as defined in [Iqbal et al. 2005]. Features like the 
mean, min, max and std.dev are standard ways to measure 
fluctuations in a measure of interest, and have been used 
with pupil size to reveal individual differences while users 
work with an interface [Holmqvist et al. 2015] and with 
head distance to predict user boredom [Jaques et al. 2014]. 
We also included pupil size & head distance of the first and 

a) Gaze Features (149) 
 Overall Gaze Features (9) 
   Fixation rate 
   Mean & Std. deviation of fixation durations 
   Mean & Std. deviation of saccade length 
   Mean & Std. deviation of relative saccade angles 
   Mean & Std. deviation of absolute saccade angles 
 AOI Gaze Features for each AOI (140) 
   Fixation rate in AOI 
   Longest fixation in AOI, Time to first & last fixation in AOI 
   Proportion of time, Proportion of fixations in AOI 
   Number & Prop. of transitions from this AOI to every AOI  
b) Pupil Features (6) and Head Distance Features (6)  
  Mean, Std. deviation, Max., Min. of pupil width/head distance 
  Pupil width/head distance at the first and last fixation in the 
data window 
c) Mouse Event Features (Overall and for each AOI) (32) 
  Left click rate, Double click rate 
  Time to first left click, Time to first double click 
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last fixation in the data window (see Section 4.1) as a way to 
capture variations of the measures between the closest and 
farthest data-points to the confusion click in that window. 

Mouse Event features (Table 1c) are built upon 
summary statistics on left and double mouse clicks (the only 
two with associated functionalities), measured both over the 
whole screen and for the 7 specific AOIs defined in Figure 
2. Mouse click rate has been shown to be effective at 
predicting cognitive states in other interactive tasks [Lim et 
al. 2015]. The time to first click has been used for early 
prediction of user failure with an interface [Liu et al. 2010], 
thus it might also be relevant to predict confusion because 
confused users are likely to make more errors. 

From all the features described above, we derive a total of 8 
feature sets that we will compare to predict confusion: 
x One feature set for each of Gaze (G), Pupil (P), Head 

Distance (HD), and Mouse Events (ME) features. 
x All features together (ALL). 
x Only features derived from eye tracking data (G+P+HD), 

as these can be used in non-interactive InfoVis as well. 
x Head distance and Pupil (P+HD) as these features are 

entirely independent from the layout of the visualization. 
x Head Distance+MouseEvent (HD+ME), as the expensive 

eye tracker is not needed to collect these features (a 
webcam can reliably infer the distance to the screen). 

We used each of the two data windows described in Section 
4.1 to generate each of the 8 features sets above, for a total 
of 16 combinations. 

 
Figure 2: Areas of Interest (AOI) defined for ValueChart. 

4.3 Addressing data imbalance 
Our dataset is highly imbalanced, with only 2% of 
confusion trials. Building meaningful classifiers on 
imbalanced dataset is challenging: a majority class classifier 
that always predicts no confusion would have a very high 
accuracy, but would be useless. Thus, to train our predictors 
of confusion, we balanced training data by using the well-
known SMOTE algorithm for data over-sampling [Chawla 
et al. 2002]. Specifically, using SMOTE we generated 
“synthetic” confusion trials based on k nearest neighbors in 
the minority class (we used the default value k=5). To do 
so, SMOTE randomly duplicates a confusion trial (ct) and 
modifies it by sampling for each feature a new value along 
the line between ct and its k nearest neighbors. Next, no-
confusion trials are randomly discarded (down-sampled) 
until the dataset is balanced. In our study, we over-sampled 
confusion trials by 200% (i.e., number of confusion trials is 

doubled) and 500%. These percentages appeared to be 
among the best ones when applied to similar imbalanced 
datasets in [Chawla et al. 2002], where they also show that 
more over-sampling is pointless. 

4.4 Machine learning set up 
To build our classifiers, we use Random Forest tuned with 
100 trees using the Caret package in R [Kuhn 2008]. We 
chose Random Forest because previous work has shown that 
this learning algorithm performed well on similar prediction 
tasks [e.g., Pentel 2015; Wu 2015]. The classifiers are 
trained for all combinations of features sets (8), data 
window lengths (2) and SMOTE configurations (2) for a 
total of 32 classifiers. These classifiers are trained and 
evaluated with a process of 20-runs-10-folds nested cross-
validation, which includes two levels (inner and outer) of 
cross-validation.  

At the outer level the following process is repeated 20 
times (runs) to strengthen the stability and reproducibility of 
the results. Data is randomly partitioned in 10 folds; in turn, 
each of the 10 folds is selected as a test set; the remaining 9 
folds are SMOTE-balanced and used to train a classifier 
which is then tested on the test fold. The performance of 
each classifier is averaged across the outer test sets, and then 
again over the 20 runs. It should be noted that test sets at the 
outer level are not altered by SMOTE in any way. 

We performed cross-validation over users, meaning that 
in each cross-validation fold, all trials of a given users are 
either in the training or in the test set. We kept in the folds a 
distribution of confusion data points similar to that in the 
whole dataset. As the outer test folds are strongly 
imbalanced, model performance is measured via sensitivity 
and specificity, two suitable measures when data are skewed 
[Kotsiantis et al. 2006], defined as follow: 
x Sensitivity (or true positive rate): proportion of confusion 

trials that are correctly identified as such. It indicates the 
ability of the model to predict occurrences of confusion. 

x Specificity (or true negative rate): proportion of no-
confusion trials that are correctly identified as such. It 
indicates the ability of the model to avoid false positives 
(as 1 − Specificity is the proportion of false positives). 

At the inner level of the nested cross-validation, Correlation 
Feature Selection [Kuhn 2008] is applied to remove highly 
correlated features. Next, the best decision threshold is 
selected for each Random forest classifier using ROC 
curves plotted on inner train data only. The threshold 
selected is the one that gives the best trade-off between 
sensitivity and (1 – specificity) by taking the closest point of 
the ROC curve to the point (0, 1) representing perfect 
classification [Fawcett 2006]. 

5 Results 
We analyze the performance of the 32 classifiers defined in 
Section 4.4 by running a 3-way MANOVA with: 
x sensitivity and specificity of the classifiers as the two 

dependent variables, 
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x feature set (8 levels), window length (2 levels) and 
SMOTE configuration (2 levels) as the factors.  

The MANOVA reveals a main effect of both feature set 
(F8,67=18.65, p < .001, η2

p=.59) and SMOTE configuration 
(F1,26=9.58, p = .005, η2

p=.17). No main effect of data 
window length, nor any interaction effects were found. To 
investigate further the two main effects, we run univariate 
pairwise comparisons using the Holm-Bonferroni 
adjustment for family-wise error4. 

Table 2: Effect of feature set on model performance, with G=Gaze, 
P=Pupil, HD=Head Distance, ME=Mouse Event. 

Effects of Feature set. Table 2 summarizes the results of 
the pairwise comparisons by ordering feature sets according 
to their mean sensitivity and specificity over data windows 
and SMOTE configurations. Bold underlining indicates 
models for which there are no statistically significant 
differences. For example, for sensitivity, these is no 
difference between G+P+HD and HD+P, they are both 
better than P but worse than ALL. 

Results in Table 2 show that combining various data 
sources works usually better than using a single data source, 
for both sensitivity and specificity. In particular, the best 
feature set for both performance measures includes all the 
features (ALL). This indicates that eye tracking features 
work well together to predict confusion, and that adding 
mouse events can lead to significantly better accuracy. It is 
interesting to note that G+P+HD (the second best model) is 
not significantly better than P+HD, meaning that adding 
Gaze data to Pupil and Head Distance features sets does not 
lead to a significant improvement. 

Effects of SMOTE configuration. The pairwise 
comparisons show that: 
x Sensitivity is better with SMOTE-200% than with 

SMOTE-500%, (t(198)=3.19, p = .002, η2
p=.15). 

x Specificity is better with SMOTE-500% than with 
SMOTE-200%, (t(198)=2.41, p = .017, η2

p=.04). 
These results show that there is a trade-off between 
SMOTE-200% and SMOTE-500% in terms of sensitivity 
and specificity. In particular, generating more synthetic data 
with SMOTE has a substantial negative effect on the 
sensitivity (see medium effect size η2

p=.15). This is likely 
due to the fact that synthetic data start to dilute the 
information captured in the real confusion data points. This 
effect is inverted for specificity, although the effect size is 
small (η2

p=.04), indicating limited implications in practice. 

5.1 Model performance 
In this section, we analyze in more detail the performance 
(in terms of sensitivity and specificity) of the classifiers 
using the ALL and P+HD feature sets and trained over “Full 
                                                

4 Actual values for average sensitivity and specificity will be 
discussed later for specific models. 

Window”5 data. We focus on these two feature sets because 
ALL showed the best overall performance (Table 2) and 
P+HD is the second best model along with G+P+HD, but it 
has the advantage to be fully independent from the layout of 
the visualization. For each of these feature sets and Full 
window, we report results for both SMOTE-200% and 
SMOTE-500% (Table 3), since Section 5.1 showed that 
there is a trade-off between these two configurations.  

Overall, results in Table 3 indicate that SMOTE models 
have very similar specificities, with variations of only about 
.02 for both ALL and P+HD, whereas SMOTE-200 achieved 
by far the highest sensitivity6, reaching .61 for ALL. Thus 
SMOTE-200 used with all features together appears to be 
the most promising model to predict user confusion during 
interaction with ValueCharts. However, layout independent 
information captured only by pupil and head distance 
features appears to successfully predict 57% of confusion 
trials on unseen data, a very encouraging result in terms of 
building visualization-independent classifiers. 

Table 3: Performance of ALL and P+HD with Full window. 

5.2 Feature importance 
Our results show that multiple data sources together (i.e., 
ALL Features) can better predict confusion, than any single 
source. To ascertain which features best predict confusion, 
we use the method described in [Liaw and Wiener 2002] to 
measure feature importance in Random forest classifiers. 
Table 4 shows the top 10 selected features for our best 
performing classifier (using the ALL feature set and SMOTE 
-200%), with relative importance normalized between 0 and 
100. In the table, a positive (negative) direction of the effect 
column (D) indicates that the value of the feature is higher 
(lower) in confusion than in no-confusion trials.  

Pupil features. Table 4 shows that overall pupil size 
features are the most important predictors of confusion, as 
the top three best features belong to this set. Generally, 
increase in pupil size is correlated with higher cognitive 
load [Granholm and Steinhauer 2004]. Consistently with 
this result, end, max, and mean pupil size are higher in 
confusion trials, where confused users might be 
experiencing a higher cognitive load. Also, users in the 
confusion trails have higher std.dev pupil size, which might 
be an indication of a higher variability in their cognitive 
load compared to more stable non-confused users. The 
prominence of pupil-based features as predictors of 
confusion is especially promising for the generalization of 
                                                

5 Windows length had no effect on performance, so either 
length could be used here. 

6 When differences in specificity is higher, measures such as 
the practical utility could be used to investigate the trade-off 
between sensitivity and specificity [Gena 2005]. 

 SMOTE 200% SMOTE 500% Baseline 

SENSI ALL .61 .54 0 
P+HD .57 .55 0 

SPECIF ALL .926 .942 1 
P+HD .905 .921 1 

SENSI ALL > G+P+HD > P+HD > P > HD+MV > G > ME > HD  

SPECIF ALL > G+P+HD > P+HD > P > HD+ME > G > ME > HD 
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our work, since these features are independent from the 
layout of the visualization, and thus may be used to predict 
confusion in other InfoVis.  

Head distance. There is one head distance feature among 
the top 10, namely std.dev head distance. Confused users 
have a higher value for this feature, suggesting that 
confusion generates more fluctuations in the user’s position. 
Distance to the screen has been shown to be correlated with 
user engagement [D’Mello and Graesser 2007], thus more 
fluctuations in the position of confused users might indicate 
that these users get closer to the screen to better attend to the 
unclear information before eventually disengaging. As with 
pupil size, head distance to the screen does not depend on 
the visualization layout and thus may be a good predictor of 
confusion using other InfoVis. Also as noted before, head 
distance may be inferred with a cheaper webcam. 

Gaze features. Five of the 10 most important features in 
Table 4 are Gaze features related to attention to the AOI that 
includes the name of the attributes (Labels_attr) in the 
decision problem (see Fig. 2). These features are time to last 
fixation in the AOI, longest fixation, proportion of time 
spent, as well as transitions from and to the AOI that 
encloses the name of the problem alternatives (Labels alter). 
Confused users have higher values for all these features, 
suggesting that they need to process the names of the 
attributes more extensively. One possible explanation for 
this trend is that labels are a source of confusion (e.g., due to 
ambiguous wording). Another is that looking at names of 
attributes and alternatives is a way to reduce confusion as 
text in visualization is meant to support data 
comprehension. It should be noticed that all Gaze features 
here relate to a particular AOI, thus are layout dependent. 
This indicates that although many independent features 
(e.g., pupil and head distance) are important predictors of 
confusion, additional information about specific 
components of the visualizations can improve prediction. 

Features Set Score D 
End pupil size  Pupil 100 + 
Max pupil size  Pupil 88 + 
Stddev pupil size  Pupil 67 + 
Labels_attr: proportional time spent Gaze 45 + 
Stddev distance Head  39 + 
Mean pupil size Pupil 37 + 
Labels_vis: time to last fixation  Gaze 36 + 
Labels_attr: time to last fixation Gaze 33 + 
Labels_attr: num of transitions to 
Labels_alter Gaze 29 + 

Labels_alter: number of transitions to 
Labels_attr Gaze 26 + 

Table 4: Top 10 features for predicting confusion. 

Conclusion 
If confusion could be predicted and resolved in real time, 
user experience and satisfaction with InfoVis would be 
greatly improved. In this paper, we focused on predicting 
occurrences of confusion during the interaction with 
ValueChart, an interactive visualization to support multi-

criteria preferential choice. To this end, we leveraged a user 
study that collected ground truth labels for confusion, along 
with eye tacking and interaction data. Then, we compared 
various combinations of these data sources to train Random 
forest classifiers for confusion, and technically had to deal 
with data imbalance.  

Our results show that eye tracking is valuable to predict 
confusion in real time. Remarkably, we found that 61% of 
the occurrences of confusion can be predicted, while getting 
a false positive rate of only 7.4%. More tellingly, when we 
examine the most important features used by the classifiers, 
it appears that our models are able to capture aspects of the 
interaction that are very plausibly related to confusion. 
Furthermore, some of these features may well generalize to 
other visualizations. For instance, we found that features of 
pupil size (which are independent of the layout of the 
current visualization) are strong predictors of confusion, 
consistently with the fact that pupil size is correlated to 
cognitive load, which plausibly correlates with confusion. 
Another strong visualization-independent predictor was a 
feature related to head distance. Again this makes sense, 
because confusion can affect engagement with a task, which 
has been shown to be predictable by head distance. 
Additionally, prominent gaze features reveal differences in 
user’s attention to the labels of the visualization among 
confused and non-confused users; however, these features 
may not generalize so easily to other visualizations.  

To increase the performance of our models, future work 
includes improving our features and models selection via 
ensemble modeling, leveraging additional features such as 
facial expressions, and using past observed data to optimize 
prediction for each individual user. Another thread of future 
work relates to further investigating the generalizability of 
our findings to other visualizations, as well as researching 
how confusion can be addressed once predicted. 
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