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Abstract
Phenotyping with electronic health records (EHR)
has received much attention in recent years because
the phenotyping opens a new way to discover clini-
cally meaningful insights, such as disease progres-
sion and disease subtypes without human supervi-
sions. In spite of its potential benefits, the com-
plex nature of EHR often requires more sophis-
ticated methodologies compared with traditional
methods. Previous works on EHR-based pheno-
typing utilized unsupervised and supervised learn-
ing methods separately by independently detect-
ing phenotypes and predicting medical risk scores.
To improve EHR-based phenotyping by bridging
the separated methods, we present Bayesian non-
parametric collaborative topic Poisson factorization
(BN-CTPF) that is the first nonparametric content-
based Poisson factorization and first application of
jointly analyzing the phenotye topics and estimat-
ing the individual risk scores. BN-CTPF shows
better performances in predicting the risk scores
when we compared the model with previous matrix
factorization and topic modeling methods includ-
ing a Poisson factorization and its collaborative ex-
tensions. Also, BN-CTPF provides faceted views
on the phenotype topics by patients’ demographics.
Finally, we demonstrate a scalable stochastic vari-
ational inference algorithm by applying BN-CTPF
to a national-scale EHR dataset.

1 Introduction
Discovering phenotypes, or clinical attributes, of each indi-
vidual can be a solid foundation for understanding the latent
pathology of complex diseases and preventing patients from
potential risk of the diseases. This paper presents a phe-
notyping method to predict a human’s medical status with
electronic medical records, or EHR. The EHR phenotyping
requires the estimation of the latent background on individ-
ual patients [Pathak et al., 2013], and the EHR phenotyping
predicts observable medical status with the estimated latent
variables to verify the validity of the estimated phenotypes.
Therefore, this paper proposes a model 1) to discover latent
phenotype patterns, or phenotype topics, which this paper

refers to them as topics, and 2) to predict a patient’s critical
medical risk score, such as comorbidity and polypharmacy.

EHR phenotyping is difficult from three aspects. The first
aspect is the combination of the unsupervised and the su-
pervised learning tasks. The EHR phenotyping needs to ex-
tract the critical latent information from the collected EHRs,
which falls under the unsupervised domain [Bellazzi and Zu-
pan, 2008]. Then, the EHR phenotyping uses the latent
information to predict the medical risks, which is a super-
vised learning task. Often, the difference of the two tasks
made researchers to combine two different analysis models
to pipeline, or batch-process, one analysis output to another
in the step-wise manner. This pipelining of two separate mod-
els would limit the accuracy of the combined model because
of two different learning objectives. Hence, an ideal model
would combine two separate models into a single model by
representing the unique structure of EHR for phenotyping.
The second challenge is reflecting the medical domain char-
acteristics in the learning model. The model should incor-
porate the medical data structure, and the model should an-
ticipate and design potential noises and mixtures from the
medical practices. The third difficulty is the scalability of
the learning process. The phenotyping fields have noticed
the importance of the subject sizes to retrieve the meaningful
phenotyping results [Hripcsak and Albers, 2013].

This paper introduces a new statistical model, Bayesian
Nonparametric Collaborative Topic Poisson Factorization, or
BN-CTPF, for EHR phenotyping. BN-CTPF extracts the de-
mographic latent information by relating it to the prediction
of medical risks. Specifically, BN-CTPF extracts phenotype
topics, which are combinations of diagnosis and medication,
then BN-CTPF infers the correlations, named as topic as-
sociations, between two topics. BN-CTPF models that the
topic associations are indirectly linked to the patient demo-
graphic information, and we name these indirect links as
topic-covariate associations. These topic-covariate associa-
tions provide multiple views on the phenotype topics with
faceted demographics. Finally, BN-CTPF predicts the medi-
cal risks by combining the topic associations and the topic-
covariate associations conditioned upon a patient’s demo-
graphic background. These inferences are unified and scal-
able to optimize a single objective function unlike the previ-
ous pipelined approaches. The entire procedures and analyses
of BN-CTPF is summarized by Figure 1. BN-CTPF is a con-
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solidated statistical model that provides more statistically ac-
curate predictions and more statistically coherent latent infor-
mation. Also, BN-CTPF is able to analyze over one-million
EHRs gathered at the national level by stochastic variational
inference. Moreover, this is the first nonparametric model of
the collaborative topic Poisson factorization, which utilizes a
normalized gamma construction of hierarchical Dirichlet pro-
cesses.

2 Related Work
The first subsection of the related work is on the automated
phenotyping on EHR with the machine learning methodolo-
gies. The second subsection enumerates the previous content-
based recommendation studies, which BN-CTPF conceptu-
ally belongs to.

2.1 Automated EHR Phenotyping
While earlier works used knowledge-based approaches [Mc-
Carty et al., 2011], probabilistic topic models have been re-
cently applied to the unsupervised EHR phenotyping. For
example, latent Dirichlet allocation [Blei et al., 2003], or
LDA, generates medial coherent concepts, or topics, which
could be used for prediction tasks in the subsequent model.
[Saria et al., 2010] suggested a nonparametric topic model
with temporal aspects, and this model was applied to track
physiological signals of premature infants from the topical
perspective. They also used a separate supervised learning
model to predict risks of infants. [Lehman et al., 2012] used
hierarchical Dirichlet processes, or HDP [Teh et al., 2012],
to learn topics from unstructured clinical notes, and they per-
formed risk stratification for intensive care unit (ICU) patients
with the topics. [Ghassemi et al., 2015] adopted multi-task
Gaussian processes (GPs) along with topic models to sum-
marize multivariate patients’ physiological signals as well as
topic proportions, and the extracted topic proportions are fed
into the multi-task GPs to learn the kernel hyperparameters.
They found that the inferred hyperparameters were useful in
predicting the mortality with a separate logistic regression
model. [Ghassemi et al., 2014] also used both topic modeling
and SVM to predict patient mortality in a dynamic setting.

Some used other approaches besides of the probabilistic
topic models. For instance, [Lasko et al., 2013] adopted a
deep learning auto-encoder and GPs to extract representa-
tive features of 4,368 patients having either gout or acute
leukemia. [Tran et al., 2015] utilized restricted Boltzmann
machines (RBM) to derive a new representation of medi-
cal objects, such as diseases and procedures by mapping
high-dimensional observations into a low-dimensional vector
space. [Zhou et al., 2014] proposed a matrix imputation ap-
proach to remedy the noisy EHRs for the better phenotyping
result. Recently, a tensor factorization-based approach [Ho
et al., 2014], which decomposes multi-dimensional EHR ob-
servations into clinically meaningful tensors, or phenotypes,
performed a separate prediction on heart failure by utilizing
obtained phenotypes.

BN-CTPF improves the previous works by two aspects.
The step-wise fashion of the previous works have limits in
finding clinically meaningful phenotypes because the overall

performance can be dominated by the chosen classifier. Fur-
thermore, some classifiers involve onerous parameter tuning
procedures that could be limited to a fixed phenotype. In con-
trast, BN-CTPF integrates two models to jointly optimize the
phenotype discovery and the subsequent prediction. Addi-
tionally, BN-CTPF estimates the associations between envi-
ronmental factors and phenotypes, yet the associations have
not been inferred by most of the unsupervised approaches in-
cluding the tensor factorization. The associations are keys in
finding applicable research insights [Saria and Goldenberg,
2015]. For example, the existing models would not infer the
relations between the patient’s demographic background and
the phenotypes, while this could be a useful source of infor-
mation in the medical practices.

2.2 Content-Based Recommendation
In the machine learning field, there is much literature de-
voted to studies on collaborative filtering by matrix factor-
ization for recommender systems. Under the assumption
that users with similar records of events would share simi-
lar traits, the matrix factorization methods discover the low-
dimensional latent factors which capture essential informa-
tion for representing present records and predicting unob-
served outcomes. Matrix factorization has been applied to
a wide range of applications, i.e. recommender systems [Ko-
ren et al., 2009], document modeling [Canny, 2004], and dis-
ease risk prediction [Davis et al., 2010]. [Wang and Blei,
2011] developed collaborative topic regression, or CTR, to
recommend scientific articles. CTR combines the matrix fac-
torization with the topic modeling to collaboratively predict
ratings and to learn topics. However, a matrix factorization
of CTR assumes a rating following the Gaussian distribution
which could be other distributions in some factors, partic-
ularly when observations are sparse with implicit feedback
[Gopalan et al., 2013]. Therefore, [Gopalan et al., 2014]
presented collaborative topic Poisson factorization, or CTPF,
that replaces the Gaussian assumption in the rating prediction
and the multinomial-Dirichlet distributions in the topic mod-
eling with the Poisson and the Poisson-gamma distributions,
respectively.

While the content-based recommendation models intro-
duced above are useful in both recommending tailored items
for users and providing interpretable reasons, there are three
points that should be considered when applying those models
to the EHR phenotyping. First, the models should be tailored
to incorporate the EHR structure. For example, the relation-
ship between diagnoses and medications should be treated
by multiple types of observations, not a single type of ob-
servations (words) as in the topic models. Thus, we use the
two different types of observations, diagnoses and medica-
tions, to learn the phenotypes with both distinct observations
in EHRs. In addition, we use another type of observation, a
patient medical risk score as a prediction target variable with
Poisson factorization. Second, the model needs to consider
that different medications are feasible for a single diagnosis
in the medical practices. To enable this modeling, we design
BN-CTPF to have a mixed-membership representation in the
medications as well as another mixed-memberships in the di-
agnosis. The two mixed memberships are joined by the topic
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Figure 1: The entire procedure and analysis flow of BN-CTPF. Used notations in this figure are the same as the plate notation
of the generative process of BN-CTPF in Figure 2. We omit ✏ in the above Poisson matrix factorization for simplicity.
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Figure 2: Plate notation for Bayesian Nonparametric-
Collaborative Topic Poisson Factorization, or BN-CTPF.

intensities at the patient dimension. Third, the EHR pheno-
typing for medical risk scores needs to optimize continuous
measures, i.e. mean absolute error (MAE) and root mean
squared error (RMSE), because the scores are inherently con-
tinuous. However, the surveyed models were evaluated under
measures for categorical results, i.e. recall and precision.

3 Methodology

In this section, we present a detailed model description of
BN-CTPF which is a Bayesian nonparametric extension of
parametric CTPF. To compute posterior probabilities, we de-
rive a mean-field stochastic variational inference algorithm to
approximate it. We also provide a prediction procedure for
unseen risk scores.

3.1 Model Description

BN-CTPF builds on the parametric CTPF that models both
user-ratings and document-word counts by Poisson distribu-
tions. Unlike CTPF, BN-CTPF adopts a mixed-membserhip
representation to describe medical contents, which are pa-
tients’ diagnoses and medications. Each patient is realized
from a mixture with components shared by all patients. This
mixed-membership assumption allows the model to encode
the heterogeneity of patients. In the perspective of topic mod-
eling, BN-CTPF can be viewed as a collaborative extension of
mixed-membership models built on HDP [Teh et al., 2012].
HDP have been widely used to model grouped data in the
Bayesian nonparametrics literature. When it comes to mod-
eling a mixture, the model with HDP allows the data to de-
termine how many components are needed, which means that
it can adaptively determine the model complexity as data be-
come available.

Suppose that we have EHR containing three types of obser-
vations: VD unique diagnoses, VN unique medications, and
clinical risk scores of M individual patients for P timesteps.
We assume that each patient has records containing N med-
ications and D diagnoses, but this assumption can be easily
relaxed to indicate Nm and Dm by a patient m. Additionally,
all patients have covariates rmj , where j = 1, ..., J is the
dimension of covariates. These covariates reflect the patient
demographics, such age, gender, and region. For modeling
convenience, we use medication words and diagnosis words

to refer to medication and diagnosis records from each pa-
tient, respectively.

Let X(1)

md denote which diagnosis is encoded in d-th record
out of total D observed diagnoses for a patient m. X(2)

mn de-
fines the same meaning to indicate a medication record. BN-
CTPF infers phenotype topics from co-occurrence patterns
from both diagnoses and medications. Figure 1 represents
the inferred topics by two distincnt, yet coupled distributions
over diagnoses and medications: a diagnosis topic ⌘k and a
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medication topic �k, where k = 1, ...,1. Clinical risk scores
are subject to the prediction by the matrix factorization.

Here, we jointly model the latent phenotype topics and the
risk scores. Let Y be an M by P matrix describing the longi-
tudinal risk scores of each patient, where Ymp 2 {1, 2, 3, ..}
is the integer risk score of a patient m at a timestep p. BN-
CTPF assumes that Ymp follows a Poisson distribution with
the inner product of (⇡m + ✏m) and ✓p; where ⇡m is topic in-
tensities of a patient m, ✏m is topic offsets, ✓p is topic intensi-
ties of the timestep p, and all of these are infinite dimensional
nonnegative vectors. Topic offests ✏m are introduced to cap-
ture the inherent heterogeneity of individual patients, which
is not fully explained by the topic intensities ⇡m.

We now describe a hierarchical Dirichlet process construc-
tion of BN-CTPF. For the top-level Dirichlet process (DP) we
use stick-breaking processes [Sethuraman, 1994]:

⌘k ⇠ G
0

, �k ⇠ H
0

, lk ⇠ L
0

, wk ⇠ W
0

,

Vk ⇠ Beta(1,↵), pk = Vk

k�1

Y

l=1

(1� Vl),

G =

1
X

k=1

pk�
(⌘k,�k,lk,wk)

where G
0

, H
0

, L
0

, and W
0

are base measures of correspond-
ing atoms. Also, lk is a d-dimensional latent location vector
of topic k introducing topic associations, and wk is a weight
parameter of topic k. For EHR with J demographic factors of
each patient, wk becomes a J-dimensional parameter. Lastly,
Vk is a top-level stick length, and ↵ is a top-level concentra-
tion parameter. Components of an atom G are as follows:

⌘k ⇠ DirichletVD (⌘0), �k ⇠ DirichletVN (�
0

),

lk ⇠ Normal(0,�2

l Id), wkj ⇠ Normal(0,�2

w).

For the second-level construction, we utilize a normalized
gamma construction [Paisley et al., 2012] to introduce topic
assocations. We also combine the original construction with
different one [Kim and Oh, 2014] to introduce topic-covariate
associations. The second-level construction for describing
patient-wise heterogeneity is as follows:

um ⇠ Normal(0,�2

uId),

Fm(wk, lk) = lTkum +

J
X

j=1

wkjrmj ,

⇡mk ⇠ Gamma(�pk, exp{�Fm(wk, lk)}),

Gm =

1
X

k=1

⇡mk
P1

l=1

⇡ml
�
(⌘k,�k)

,

where � is a concentration parameter.
There is a recently published work [Ranganath and Blei,

2015], correlated random measures (CorrRM), which intro-
duces a unified framework to generalize the construction pro-
cesses of previous correlated random measures. BN-CTPF
differs from CorrRM in that we consider additional depen-
dency structures, named topic-covariate associations, which
are not fully discussed in CorrRM. In order to model topic-
covariate associations, we assume a Gaussian processe (GP)

with mean
PJ

j=1

wkjrmj , a weighted average of observed
covariates. Unlike our model, CorrRM considers a GP with
a random mean vector, and it can be viewed as a funciton of
latent covariates. While the GP framework is not introduced
in our notation, the generative processes can be easily trans-
formed into a GP notation as shown in [Paisley et al., 2012].

The d-dimensional vector um is a latent location vector of
a patient m, and F controls the degree of latent topic intensi-
ties. For example, as the distance between two location vec-
tors lk and um is getting closer or a weight parameter wkj

grows, the topic intensity ⇡mk increases. From the two-level
construction, we can ensure that all atoms (⌘k,�k, lk, wk)

1
k=1

are shared across the entire patients with different degrees of
exhibition.

Finally, we describe a generative process for 1) observed
diagnoses and medications in patients; and 2) observed indi-
vidual risk scores under BN-CTPF:

1. For each topic k = 1, ...,1 and timestep p = 1, ..., P :

(a) Draw ✓pk ⇠ Gamma(a, b).

2. For each patient m = 1, ...,M :

(a) For each diagnosis word d = 1, ..., D:

i. Draw C
(1)

md ⇠
P1

k=1

⇡mkP1
l=1 ⇡ml

�
(⌘k).

ii. Draw X
(1)

md ⇠ Discrete(⌘
C(1)

md
).

(b) For each medication word n = 1, ..., N :

i. Draw C
(2)

mn ⇠
P1

k=1

⇡mkP1
l=1 ⇡ml

�
(�k)

.

ii. Draw X
(2)

mn ⇠ Discrete(�
C(2)

mn
).

(a) For each topic k = 1, ...,1:

i. Draw ✏mk ⇠ Gamma(c, d).
(b) For each timestep p = 1, ..., P :

i. Draw Ymp ⇠ Poisson(
P1

k=1

(⇡mk + ✏mk)✓pk),

where C
(1)

md and C
(2)

mn are a per-diagnosis and a per-
medication topic indicators, respectively. Figure 2 shows the
plate notation of BN-CTPF. We omit several base measures
and priors such as G

0

, G, and Gm for simplicity.

3.2 Stochastic Variational Inference of BN-CTPF

In many hierarchical Baysian models incluing nonparametric
models, computing an exact posteior is intractable. There-
fore, we derive a stochastic variational inference (SVI) algo-
rithm based on mean-field variational families [Hoffman et

al., 2013]. To faciliate the posterior inference of BN-CTPF
like the inference of CTPF [Gopalan et al., 2014], we should
incorporate two kinds of auxiliary latent variables for risk
scores Ymp. The first auxiliary latent variable is K latent
variables Za

mp,k ⇠ Poisson(⇡mk✓pk), and the second one is
K latent variables Zb

mp,k ⇠ Poisson(✏mk✓pk).
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Next, we posit the fully factorized variational families.

Q :

=

T
Y

k=1

q(Vk)q(⌘k)q(�k)q(lk)
J
Y

j=1

q(wkj)

P
Y

p=1

q(✓pk)

M
Y

m=1

q(um)q(⇡mk)q(✏mk)q(Zmp)

D
Y

d=1

q(C
(1)

md)

N
Y

n=1

q(C(2)

mn),

where T is the truncation level and Zmp = (Za
mp, Z

b
mp).

We assume that the following variational distribution for each
variable,

q(Vk)q(lk)q(wkj)q(um) = �
ˆVk
�
ˆlk
�ŵkj�ûm

q(⌘k) = Dirichlet(⌘k|�⌘k,1, ..., �
⌘
k,D)

q(�k) = Dirichlet(�k|��k,1, ..., ��k,N )

q(✓pk) = Gamma(a✓pk, b
✓
pk)

q(⇡mk) = Gamma(a⇡mk, b
⇡
mk)

q(✏mk) = Gamma(a✏mk, b
✏
mk)

q(C
(1)

md) = Multinomial(C(1)

md|�
(1)

md,1, ...,�
(1)

md,T )

q(C(2)

mn) = Multinomial(C(2)

mn|�
(2)

mn,1, ...,�
(2)

mn,T )

q(Zmp) = Multinomial(Zmp|�(3)mp,1, ...,�
(3)

mp,2T ),

where the set of these distributions are parameterized by their
own variational parameters, denoted by  . At each iteration
t, we select 1) a set of observations, ⌦Bt , from the subset pa-
tients, Bt ⇢ {1, ...M}; 2) a set of given batch-specific varia-
toinal parameters  Bt ; and 3) a set of global variational pa-
rameters  0. With these three sets of information, BN-CTPF
stochastically optimizes the following objective function:

Lt
(⌦Bt , Bt , 

0
) =

M

|Bt|
X

i2Bt

EQ[log p(⌦i,⇥i|⇥0
)]

+

M

|Bt|
X

i2Bt

H[Q(⇥i)] + EQ[log p(⇥
0
)] +H[Q(⇥

0
)],

where ⌦, ⇥, and H[Q] denote all observations, hidden vari-
ables, and an entropy of Q distribution, respectively. Ad-
ditionally, ⇥m and ⇥0 denote a set of batch-specific hidden
variables and a set of global hidden variables, respectively.

In the local updates of SVI, at each iteration t, we update
the variational distributions over ⇥m for m 2 Bt until they
converge by using closed-form equations while holding fixed
 

0. In the global updates of SVI, we update the variational
distributions over ⇥0 by taking a gradient step, multiplied by
a precondition matrix G

 

0 . We use the inverse Fisher infor-
mation or inverse negative Hessian as a precondition matrix:

 (t+1)

=  (t)
+ ⇢t ˜r L,

where ˜r L :

= G r L is a natural gradient of  2  0, and
⇢t > 0 is a step size satisfying the convergence condition.
The overall update information is summarized in Table 1.

3.3 Prediction
After the entire variational parameters  are learned, BN-
CTPF predicts individual risk scores Y . Specifically, given
patients excluded from a training set, we predict the risk
scores Ymp of a patient m at the timestep p, by their posterior
expected Poisson parameters.

ˆYmp = E
h

(⇡m + ✏m)

T
✓p

i

. (1)

We can approximate the posterior distributions of ⇡m and ✏m
by the SVI for BN-CTPF from Section 3.2.

4 Results
We demonstrate the applicability of BN-CTPF on EHR phe-
notyping with three experimental results. First, we provide
error metrics to evaluate the performance of risk score predic-
tions by Poisson factorization. Second, we performed a quan-
titative evaluation of phenotypes through the computation of
heldout predictive perplexity (PPX). Finally, we analyze the
various inter-dependency patterns which are represented by
topic associations and topic-covariate associations by explor-
ing the differences on intensities of a certain phenotypes as
demographic factors vary.

4.1 Data Description and Experimental Design
We used a National Patient Sample (NPS) that is provided
from Health Insurance Review and Assessment (HIRA),
which is a public institution of Republic of Korea. We use
2011 NPS dataset, which is accessible after registrations, of
both inpatients and outpatients. The dataset includes the
entire prescription records of approximately 1.1 million pa-
tients. All diagnoses and medications are encoded in the pre-
scription records. We select the subset of patients who are
older than or equal to 65 years.

Although the large amount of data promises myriad ways
of healthcare applications, the dataset lacks detailed informa-
tion in some aspects. For instance, the NPS dataset has no
physiolocal signals and lab test results. Thus, we calculate
Charlson’s comorbidity index (CMB) [Sundararajan et al.,
2004] and polypharmacy (PP) scores [Hajjar et al., 2007] to
use these values as potential medical risk scores. The po-
tential risk of CMB and PP has been a traditional subject
matter of research in medicine [Evans et al., 2012]. The
selected subset for experiments includes 158,630 patients,
3,156,234 prescription records, 9,138 unique diagnoses, and
2,256 unique medications. The average number of unique
medications and diagnoses per patient are 82.022 and 39.790,
respectively.

We set hyperparameters as follows: ↵ = 20,� = 5, T =

200, d = 20,�2

. =

1

250

, ⇢t = (25 + t)
�0.9, and |Bt| =

1, 024. All topic Dirichlet hyperparameters are fixed by 0.1.
We set training and heldout ratio by 80:20. The algorithm
terminates when the fractional change in the validation prob-
ability falls below 10

�3, where we set aside 1% of training
data as a validations set for convergence checking.

We introduce the following alternative models to com-
pare performances. Specifically, to compare the error met-
rics, we adopt the following models: Poisson factorization,
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Table 1: A summary of update information for all variational parameters. We provide not only closed-form update equations
for local variational parameters, except for um, which needs a gradient to update the parameters, but also graidents and hessians
to compute natural gradients for global variational parameters at iteration t and for a random subset Bt ⇢ {1, ...,M}, where
ˆFmk =

ˆlTk ûm +

PJ
j=1

ŵkjrmj . Natural gradients are directly provided for several variables (✓pk, ⌘k, and �k), which turn out
to be closed-form solutions. We set a truncation level as T , thus VT :

= 1 and updates for Vk are defined for k = 1, ..., T � 1.

Variable Type Udpate Information
C

(1)

md Closed-form �
(1)

md,k / exp

n

Eq[log ⌘k,X(1)
md

] + Eq[log ⇡mk]

o

C
(2)

mn Closed-form �
(2)

mn,k / exp

n

Eq[log �k,X(2)
mn

] + Eq[log ⇡mk]

o

Zmp Closed-form �
(3)

mp,k /
⇢

exp {Eq[log ⇡mk] + Eq [log ✓pk]} for k = 1, ..., T

exp {Eq[log ✏mk] + Eq [log ✓pk]} for k = T + 1, ..., 2T

⇡mk Closed-form a⇡mk = �pk +

P

d �
(1)

md,k +

P

n �
(2)

mn,k +

PT
t=1

Ymt�
(3)

mt,k

b⇡mk =

Nm+DmP
k Eq [⇡mk]

+

P

t Eq [✓pk] + exp

⇣

� ˆFmk

⌘

✏mk Closed-form a✏mk = c+
P

2T
t=T+1

Ymt�
(3)

mt,k
b✏mk = d+

P

t Eq [✓pk]

um Gradient @L
@ûm
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�2
w

+

M
|Bt|

P

m rmj

✓

��pk +

Eq [⇡mk]

exp

(

ˆFmk)

◆

@2L
@ŵkj@ŵ0

kj
= �1 [j = j0] 1

�2
w
�
P

m2|Bt| r
0
mjrmj

✓

Eq [⇡mk]

exp

(

ˆFmk)

◆

lk Gradient, Hessian
@L
@ˆlk

= � ˆlk
�2
l
+

M
|Bt|

P

m2|Bt| ûm
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or PF, CTPF, and CTR. Also, we use a variations of BN-
CTPF by limiting some of modeled features, so we can mea-
sure the effect of topic associations and topic-covariate asso-
ciations. All parametric models have a latent dimension of
K = 200. For the hyperparameter selection, we use vali-
dation datasets to tune to the optimal setting. Accordingly,
the shape and the rate parameters of gamma distributions
for Poisson factorization-based models are fixed as 0.3 like
CTPF. Content-based recommendation models are initialized
by the learned parameters from LDA [Blei et al., 2003].

PF [Gopalan et al., 2013]. PF is a simple model that fac-

torizes risk scores without contents information.
CTPF [Gopalan et al., 2014]. That is one of the main com-

ponents of BN-CTPF. CTPF is a parametric model and factor-
izes risk scores with a single source of information, so CTPF
only utilizes either medications or diagnoses.

CTR [Wang and Blei, 2011]. Original CTR does not scale
to massive datasets. Thus, we fix topics and patient-topic pro-
portions to their LDA values, and it is known that the perfor-
mance resembles an original CTR. CTR also suffers from the
problem of the single source information.

HDP-PF, DILN-PF and HDSP-PF. A variation of BN-
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(a) CMB Prediction Errors. (b) PP Prediction Errors.

Figure 3: MAE and RMSE on CMB and PP predictions.

(a) PPX of models on CMB. (b) PPX of models on PP.

Figure 4: Comparisons of Predictive Perplexity for phenotyp-
ing quality.

CTPF which excludes the corresponding part of topic assoca-
tions and topic-covariate associations. HDP-PF can be seen
as a combination of HDP and PF. DILN-PF and HDSP-PF
correspond to a Poisson factorization extension from [Paisley
et al., 2012] and [Kim and Oh, 2014], respectively.

4.2 Performances on Medical Risk Predictions

The joint modeling of BN-CTPF can evaluate the validity of
phenotypes by calculating MAE and RMSE, while extracting
phenotypes simultaneously. We calculate MAE and RMSE
on two target medical risks: comorbidity and polypharmacy.
Following [Asuncion et al., 2009], we randomly partition
each patient from the heldout data into two halves; and we
evaluate the conditional distribution of the second half given
the first half and the training data. The first half data is used
to estimate the local variational parameters for each patient.
Given global variational parameters learned in a training pro-
cedure, the predicted risk is given by the conditional expecta-
tion in Eq. (1).

From the Figure 3, we show that BN-CTPF outperforms
other models on MAE and RMSE, except for MAE in the
CMB risk score. It should be noted that BN-CTPF ourper-
formes every other model in RMSE. The result illustrates the
following statements: 1) reflecting the heteregeneous char-
acteristics of EHR is useful in predicting medical risks and
2) utilizing learned various associations can potentially boost
the performance of EHR phenotyping. Additionally, a non-
parametric model might provide the capability for adapting a
model complexity which leads to better performances.

4.3 Quantitative Evaluation of Phenotypes
We utilize PPX to evaluate the phenotyping quality. Al-
though PPX is widely used to evalute topic models and ma-
trix factorization, most previous work on unsupervised EHR
phenotyping did not utilize the metric to evaluate a qual-
ity of phenotypes. We compute PPX with the same man-
ner as in Section 4.2. More formally, we denote the train-
ing data D and a heldout data X . Formally, we divide the
heldout data into two havles X 0 and X 00. The per-word per-
plexity on the second half of the heldout data is given by
exp{� log p(X 00|X 0

)/N}, where N is the number of obser-
vations constituting X 00. Since it is intractble to compute the
exact value of the marginal probability p (X 00|X 0

), we ap-
proximate the marginal probability by the variational infer-
ence algorithm that we described in Section 3.2. The lower
perplexity indicates the better generalization performance,
and it does not rely on the KL divergence between a vari-
ational distribution and a true posterior which is relevant to
our objective function.

Figure 4 provides the PPX of several baseline models.
Since each phenotype consists of diagnoses and medications,
two PPX values can be calculated from diagnoses and med-
ications, respectively. BN-CTPF achieved the best perfor-
mance in diagnosis phenotype modeling, but it was less gen-
eralizable in the medication phenotype modeling. We con-
jecture that there might exist the distributional difference be-
tween the medication and the diagnoses, and the Poisson dis-
tribution is more proper in modeling the medication pheno-
types, rather than the multinomial distribution used in BN-
CTPF. We note that the PPX value of a three-way Poisson
tensor factorization which is similar to early studies [Ho et

al., 2014] is about 4,000. While the value of PPX is greatly
larger than other models, it should not be compared at the
same level since the Poisson tensor factorization has to con-
sider the combinatorial space of diagnoses and medications,
which is larger than other models.

4.4 Phenotypes and Demographics
Analyzing the relationship between phenotypes and pa-
tient demograhpics reveals a deeper understanding on the
demographic-specfic diseases and medications, and this en-
ables setting a better healthcare policy and medical risk man-
agement. Figure 5(a) illustrates the phenotype-age and -
gender associations by enumerating the expected top ten
phenotype probabilities conditioned upon the demographics,
where the topics are sorted by their posterior word counts. We
found a strong relationship between the comorbidity status
with hypertension and type-II diabetes (T2DM) (phenotype
6) and the aged 65-75 elderly. An older group with age � 85

is strongly related to the respiratory diseases (phenotype 2). It
should be noted that there exists different medication patterns
of similar diagnosis phenotypes. For example, phenotype 1,
6, 7, and 9 indicate the complications of hypertension and
T2DM, but their medication patterns are different. The cor-
relations between topics, or phenotypes, in Figure 5(b) state
which phenotypes are similar when jointly considering med-
ications and diagnoses. The correlation coefficients are cal-
culated by taking the dot product of the topic locations, lTk lk0 .
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(a) Topic (phenotype)-covariate associations given demograph-
ics. Diagnosis topics at the top, and medication topics at the
bottom.

(b) Topic assocations
among the top ten phe-
notype topics.

>80th percentile >60th percentile >40th percentile
>20th percentile less than or equal to 20th percentile

No label Age: 65-75 Gender: Female Age: 85-
Gender: Male

(c) Expected distribution of the diagnosis
topic 6: (hypertension, T2DM, gonarthro-
sis, Gastritis and Glucoma) over regions.

Figure 5: Phenotype representations and correlations.

Lastly, we explore the regional difference of phenotype prob-
abilities. Figure 5(c) illustrates the clear difference among
regions in exhibiting phenotypes with or without demograph-
ics.

5 Conclusion
This paper introduces BN-CTPF to extract phenotypes from
EHR and to predict medical risks. BN-CTPF outperforms
models that are either general-purposes or pipelined by ana-
lytic steps. BN-CTPF analyzes EHR with over three million
prescriptions, and the result provides more accurate medical
risks per demographics and why.
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