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Abstract

Researchers have used from 30 days to several
years of daily returns as source data for cluster-
ing financial time series based on their correlations.
This paper sets up a statistical framework to study
the validity of such practices. We first show that
clustering correlated random variables from their
observed values is statistically consistent. Then,
we also give a first empirical answer to the much
debated question: How long should the time series
be? If too short, the clusters found can be spurious;
if too long, dynamics can be smoothed out.

1 Introduction

Clustering can be informally described as the task of group-
ing objects in subsets (also named clusters) in such a way
that objects in the same cluster are more similar to each other
than those in different clusters. Since the clustering task is no-
tably hard to formalize [Kleinberg, 2003], designing a clus-
tering algorithm that solves it perfectly in any cases seems
farfetched. However, under strong mathematical assump-
tions made on the data, desirable properties such as statis-
tical consistency, i.e. more data means more accuracy and
in the limit a perfect solution, have been shown: Starting
from Hartigan’s proof of Single Linkage [Hartigan, 1981] and
Pollard’s proof of k-means consistency [Pollard and others,
19811 to recent work such as the consistency of spectral clus-
tering [Von Luxburg et al., 2008], or modified k-means [Ter-
ada, 2013; 2014]. These research papers assume that N data
points are independently sampled from an underlying proba-
bility distribution in dimension 7" fixed. Clusters can be seen
as regions of high density. They show that in the large sam-
ple limit, N — oo, the clustering sequence constructed by
the given algorithm converges to a clustering of the whole
underlying space. When we consider the clustering of time
series, another asymptotics matter: N fixed and T" — oo.
Clusters gather objects that behave similarly through time.
To the best of our knowledge, much fewer researchers have
dealt with this asymptotics: [Borysov et al., 2014] show the
consistency of three hierarchical clustering algorithms when
dimension 7" is growing to correctly gather N = n+m obser-
vations from a mixture of two 7" dimensional Gaussian dis-
tributions N (u1,0317) and N (uz,031r). [Ryabko, 2010;
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Khaleghi er al., 2012] prove the consistency of k-means for
clustering processes according to their distribution. In this
work, motivated by the clustering of financial time series,
we will instead consider the consistency of clustering NV ran-
dom variables from their 7" observations according to their
observed correlations.

For financial applications, clustering is usually used as a
building block before further processing such as portfolio se-
lection [Tola et al., 2008]. Before becoming a mainstream
methodology among practitioners, one has to provide theo-
retical guarantees that the approach is sound. In this work,
we first show that the clustering methodology is theoretically
valid, but when working with finite length time series extra
care should be taken: Convergence rates depend on many
factors (underlying correlation structure, separation between
clusters, underlying distribution of returns) and implemen-
tation choice (correlation coefficient, clustering algorithm).
Since financial time series are thought to be approximately
stationary for short periods only, a clustering methodology
that requires a large sample to recover the underlying clusters
is unlikely to be useful in practice and can be misleading. In
section 5, we illustrate on simulated time series the empirical
convergence rates achieved by several clustering approaches.

Notations

e X1,..., Xy univariate random variables
X! is the t'! observation of variable X;

Xi(t) is the t* sorted observation of X;

Fx is the cumulative distribution function of X

pij = p(X;, X;) correlation between X;, X;

d;; = d(X;, X;) distance between X;, X

D,; = D(C;, C;) distance between clusters C;, C;

P, = {C’{k), ol Cl(f)} is a partition of X1,..., Xy
c®) (X;) denotes the cluster of X; in partition P
[1Eloo = max; X

X = Op(k) means X/k is stochastically bounded, i.e.
Ve > 0,dM > 0, P(|X/k| > M) < e.

2 The Hierarchical Correlation Block Model

2.1 Stylized facts about financial time series

Since the seminal work in [Mantegna, 19991, it has been ver-
ified several times for different markets (e.g. stocks, forex,



credit default swaps [Marti et al., 2015]) that price time se-
ries of traded assets have a hierarchical correlation structure.
Another well-known stylized fact is the non-Gaussianity of
daily asset returns [Cont, 2001]. These empirical properties
motivate both the use of alternative correlation coefficients
described in section 2.2 and the definition of the Hierarchical
Correlation Block Model (HCBM) presented in section 2.3.

2.2 Dependence and correlation coefficients

The most common correlation coefficient is the Pearson cor-
relation coefficient defined by

B E[XY] - E[X]E[Y]
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where X = % thl X" is the empirical mean of X. This
coefficient suffers from several drawbacks: it only measures
linear relationship between two variables; it is not robust to
noise and may be undefined if the distribution of one of these
variables have infinite second moment. More robust correla-
tion coefficients are copula-based dependence measures such

as Spearman’s rho
ps(X,Y) 12/ / (u,v)dudv — 3 3)

= 12E[Fx(X),Fy(Y)] -3 “)
= p(Fx(X), Fy(Y)) Q)
and its statistical estimate
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These correlation coefficients are robust to noise (since rank
statistics normalize outliers) and invariant to monotonous
transformations of the random variables (since copula-based
measures benefit from the probability integral transform
Fy(X) ~ U0, 1))

2.3 The HCBM model

We assume that the N univariate random variables
X1,..., Xy follow a Hierarchical Correlation Block Model
(HCBM). This model consists in correlation matrices having
a hierarchical block structure [Balakrishnan et al., 20111, [Kr-
ishnamurthy er al., 2012]. Each block corresponds to a cor-
relation cluster that we want to recover with a clustering al-
gorithm. In Fig. 1, we display a correlation matrix from the
HCBM. Notice that in practice one does not observe the hier-
archical block diagonal structure displayed in the left picture,
but a correlation matrix similar to the one displayed in the
right picture which is identical to the left one up to a permuta-
tion of the data. The HCBM defines a set of nested partitions
P={Ph2 P, D...2 Py} forsome h € [1, N], where Py

is the trivial partition, the partitions P, = {C{k), e C’l(f)},
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and | |, C® = {Xy,...,Xy}. Forall 1 < k < h,
we define Py and p;, such that forall 1 < 7,5 < N, we
have p, < pi; < P when CW(X;) = CW(X;) and
C+(X ( i) # CHHD(X)), e, p,, and 7y, are the minimum
and maximum correlation respectively within all the clusters
CZ-(k) in the partition P}, at depth k. In order to have a proper
nested correlation hierarchy, we must have p;, < Pt for all

k. Depending on the context, it can be a Spearman or Pearson
correlation matrix.

Figure 1: (left) hierarchical correlation block model; (right)
observed correlation matrix (following the HCBM) identical
to the left one up to a permutation of the data

Without loss of generality and for ease of demonstration
we will consider the one-level HCBM with K blocks of size
ni,...,ng such that ZZK: n; = N. We explain later how to
extend the results to the general HCBM. We also consider the
associated distance matrix d, where d;; = 1=pii practice,
clustering methods are applied on statistical estimates of the
distance matrix d, i.e. on cfij = d;; +€;;, where €;; are noises
resulting from the statistical estimation of correlations.

3 Clustering methods
3.1 Algorithms of interest

Many paradigms exist in the literature for clustering data. We
consider in this work only hard (in opposition to soft) cluster-
ing methods, i.e. algorithms producing partitions of the data
(in opposition to methods assigning several clusters to a given
data point). Within the hard clustering family, we can classify
for instance these algorithms in hierarchical clustering meth-
ods (yielding nested partitions of the data) and flat clustering
methods (yielding a single partition) such as k-means.

We will consider the infinite Lance-Williams family which
further subdivides the hierarchical clustering since many of
the popular algorithms such as Single Linkage, Complete
Linkage, Average Linkage (UPGMA), McQuitty’s Linkage
(WPGMA), Median Linkage (WPGMC), Centroid Linkage
(UPGMC), and Ward’s method are members of this family
(cf. Table 1 [Murtagh and Contreras, 2012]). It will allow us a
more concise and unified treatment of the consistency proofs
for these algorithms. Interesting and recently designed hierar-
chical agglomerative clustering algorithms such as Hausdorff
Linkage [Basalto et al., 2007] and Minimax Linkage [Ao et
al., 2005] do not belong to this family [Bien and Tibshirani,
2011], but their linkage functions share a convenient property
for cluster separability.



Table 1: Many well-known hierarchical agglomerative clus-
tering algorithms are members of the Lance-Williams family,
i.e. the distance between clusters can be written:

D(C;UCy, Cy) = a; Dig. + oy Dy + BDyj + | Dig, — Dy

Q B Y
Single 172 0 -1/2
Complete 172 0 172
[Ci]
Average [eAESten 0 0
McQuitty 172 0 0
Median 1/2 -1/4 0
; |C:] —__1GIC]
Centroid 708}1"83" (ICillglc“Jj\)Q 0
i k k
Ward [CiFlcie] | ol | 0

3.2 Separability conditions for clustering

In our context the distances between the points we want to
cluster are random and defined by the estimated correlations.
However by definition of the HCBM, each point X; belongs
to exactly one cluster C*)(X;) at a given depth &, and we
want to know under which condition on the distance matrix
we will find the correct clusters defined by Py. We call these
conditions the separability conditions. A separability condi-
tion for the points X7, ..., X is a condition on the distance
matrix of these points such that if we apply a clustering pro-
cedure whose input is the distance matrix, then the algorithm
yields the correct clustering P, = {C’{k), cey C’l(f)}, . For
example, for { X1, Xo, X3} if we have C(X;) = C(X3) #
C(X3) in the one-level two-block HCBM, then a separability
conditionis dy 2 < di 3 and dy 2 < da 3.

Separability conditions are deterministic and depend on the
algorithm used for clustering. They are generic in the sense
that for any sets of points that satisfy the condition the algo-
rithm will separate them in the correct clusters. In the Lance-
Williams algorithm framework [Chen and Van Ness, 1996],
they are closely related to “space conserving” properties of
the algorithm and in particular on the way the distances be-
tween clusters change during the clustering process.

Space-conserving algorithms
In [Chen and Van Ness, 1996], the authors define what they
call a semi-space-conserving algorithm.

Definition 1 (Semi-space-conserving algorithms). An algo-
rithm is semi-space-conserving if for all clusters C;, C;, and
Ck,

D(CZ U Cj, Ck) € [min(Dik, Djk), max(Dik, Djk)]

Among the Lance-Williams algorithms we study here, Sin-
gle, Complete, Average and McQuitty algorithms are semi-
space-conserving. Although Chen and Van Ness only con-
sidered Lance-Williams algorithms the definition of a space
conserving algorithm is useful for any agglomerative hier-
archical algorithm. An alternative formulation of the semi-
space-conserving property is:
Definition 2 (Space-conserving algorithms). A linkage ag-
glomerative hierarchical algorithm is space-conserving if

D;; i :
i € | in  d(z,y), max d@f»yﬂ
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Such an algorithm does not “distort” the space when points
are clustered which makes the sufficient separability condi-
tion easier to get. For these algorithms the separability con-
dition does not depend on the size of the clusters.

The following two propositions are easy to verify.

Proposition 1. The semi-space-conserving Lance-Williams
algorithms are space-conserving.
Proposition 2. Minimax linkage and Hausdorff linkage are
space-conserving.

For space-conserving algorithms we can now state a suffi-
cient separability condition on the distance matrix.

Proposition 3. The following condition is a separability con-
dition for space-conserving algorithms:

max d(X;, X;) < min  d(X;, X;) (S1)
1<i,j<N 1<ij<N
C(H)=C3) CH#C )

The maximum distance is taken over any two points in a same
cluster (intra) and the minimum over any two points in differ-
ent clusters (inter).

Proof. Consider the set {d;;} of distances between clusters
after s steps of the clustering algorithm (therefore {dgj} is the

initial set of distances between the points). Denote {d?,...}
(resp. {d,,;-o }) the sets of distances between subclusters be-
longing to different clusters (resp. the same cluster) at step
s. If the separability condition is satisfied then we have the

following inequalities:

. 0 0
min dintra S max dintra

< mind),;,, <maxdy,., (S2)

inter

Then the separability condition implies that the separability
condition S2 is verified for all step s because after each step
the updated intra distances are in the convex hull of the intra
distances of the previous step and the same is true for the inter
distances. Moreover since S2 is verified after each step, the
algorithm never links points from different clusters and the
proposition entails. |

Ward algorithm

The Ward algorithm is a space-dilating Lance-Williams algo-
rithm: D(C; U C}, Cy) > max(D;i, D;). This is a more
complicated situation because the structure

min dinter < max dinter < min dintra < max dintra

is not necessarily preserved under the condition max dy, ;. <
mind ;... Points which are not clustered move away from
the clustered points. Outliers, which will only be clustered at
the very end, will end up close to each other and far from the
clustered points. This can lead to wrong clusters. Therefore a
generic separability condition for Ward needs to be stronger
and account for the distortion of the space. Since the distor-
tion depends on the number of steps the algorithm needs, the
separability condition depends on the size of the clusters.

Proposition 4 (Separability condition for Ward). The sepa-
rability condition for Ward reads:

0 : 0 . 0 . 0
n[max dintra — min dintra] < [mln dinter — min dintra]

where n = max; n; is the size of the largest cluster.



Proof. Let A and B be two subsets of the /N points of size a
and b respectively. Then

ab 2 1 1
DAB) = = | D di = g3 D dw =55 D day
i€A €A jEB
jeB i'eA j'eB

is a linkage function for the Ward algorithm. To ensure that

the Ward algorithm will never merge the wrong subsets it is
sufficient that for any sets A and B in a same cluster, and A’,
B’ in different clusters, we have:

D(A,B) < D(A', B").

Since

D(A7 B) S n(max d'(i)ntra — min dzontra) + min dzontra -1

D(A/7 Bl) 2 (mln d?nter — max d?ntra) + max d'?ntra -1
we obtain the condition:

0 : 0 . 0 . 0
n(max dintra — min dintra) < min dintcr — min dintra'
O

k-means

The k-means algorithm is not a linkage algorithm. For the
k-means algorithm we need a separability condition that en-
sures that the initialization will be good enough for the al-
gorithm to find the partition. In [Ryabko, 2010] (Theorem
1), the author proves the consistency of the one-step farthest-
point initialization k-means [Katsavounidis et al., 1994] with
a distributional distance for clustering processes. The separa-
bility condition S1 of Proposition 3 is sufficient for k-means.

4 Consistency of well-known clustering
algorithms

In the previous section we have determined configurations of
points such that the clustering algorithm will find the right
partition. The proof of the consistency now relies on showing
that these configurations are likely. In fact the probability that
our points fall in these configurations goes to 1 as 7' — oo.

The precise definition of what we mean by consistency of
an algorithm is the following:

Definition 3 (Consistency of a clustering algorithm). Let
(Xt,...,X4), t=1,...,T, be N univariate random vari-
ables observed T times. A clustering algorithm A is consis-
tent with respect to the Hierarchical Correlation Block Model
(HCBM) defining a set of nested partitions P if the proba-
bility that the algorithm A recovers all the partitions in P
converges to 1 when T' — oc.

As we have seen in the previous section the correct cluster-
ing can be ensured if the estimated correlation matrix verifies
some separability condition. This condition can be guaran-

teed by requiring the error on each entry of the matrix R

to be smaller than the contrast, i.e. ;po , on the theoreti-

cal matrix R. There are classical results on the concentration
properties of estimated correlation matrices such as:

2
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Theorem 1 (Concentration properties of the estimated corre-
lation matrices [Liu ef al., 2012al). If X and X are the pop-
ulation and empirical Spearman correlation matrix respec-

tively, then with probability at least 1 — % for N > IOA +2,

g T
we have
log N
T

The concentration bounds entails that if 7' > log(V) then
the clustering will find the correct partition because the clus-
ters will be sufficiently separated with high probability. In
financial applications of clustering, we need the error on the
estimated correlation matrix to be small enough for relatively
short time-windows. However there is a dimensional depen-
dency of these bounds [Tropp, 2015] that make them unin-
formative for realistic values of N and 7" in financial appli-
cations, but there is hope to improve the bounds using the
special structure of HCBM correlation matrices.

4.1 From the one-level to the general HCBM

To go from the one-level HCBM to the general case we need
to get a separability condition on the nested partition model.
For both space-conserving algorithms and the Ward algo-
rithm, this is done by requiring the corresponding separability
condition for each level of the hierarchy.

Forall1 < k < h, we define d;, and dj; such that for all
1 <4,j < N, wehave d, < d;; < d when CF)(X;) =
C®)(X;) and C*+D(X;) £ C*+D(X;). Notice that d;, =

(1 —7p,)/2and dp = (1 —p,)/2
Proposition 5. [Separability condition for space-conserving

algorithms in the case of nested partitions| The separability
condition reads:

dp <dj 1 <...<dpy1 <d, <...<di.

This condition can be guaranteed by requiring the error on

each entry of the matrix 3 to be smaller than the lowest con-
trast. Therefore the maximum error we can have for space-
conserving algorithms on the correlation matrix is

. Py~ Pr
12— Y]l < mkin ’k%

Proposition 6. [Separability condition for the Ward algo-
rithm in the case of nested partitions] Let ny be the size of
the largest cluster at the level k of the hierarchy.

The separability condition reads:

Vk € {1,...,}1}, nk(ﬁkfdh) <dk—1 7dh

Therefore the maximum error we can have for space-
conserving algorithms on the correlation matrix is

Pr = Pe—1 — (Pr — p,)
1 +2nk

12— 2l0e < min ,
where ny, is the size of the largest cluster at the level k of the
hierarchy.

We finally obtain consistency for the presented algorithms
with respect to the HCBM from the previous concentration
results.



5 Empirical rates of convergence

We have shown in the previous sections that clustering cor-
related random variables is consistent under the hierarchical
correlation block model. This model is supported by many
empirical studies [Mantegna, 1999] where the authors scruti-
nize time series of returns for several asset classes. However,
it was also noticed that the correlation structure is not fixed
and tends to evolve through time. This is why, besides being
consistent, the convergence of the methodology needs to be
fast enough for the underlying clustering to be accurate. For
now, theoretical bounds such as the ones obtained in Theo-
rem 1 are uninformative for realistic values of N and T'. For
example, for N = 265 and T" = 2500 (roughly 10 years
of historical daily returns) with a separation between clusters
of d = 0.2, we are confident with probability greater than

1—2N2e~Td*/24 ~ _2176 that the clustering algorithm has
recovered the correct clusters. These bounds will eventually
converge to 0 with rate Op(y/Iog N/+/T). In addition, the
convergence rates also depend on many factors, e.g. the num-
ber of clusters, their relative sizes, their separations, whose
influence is very specific to a given clustering algorithm, and
thus difficult to consider in a theoretical analysis.

To get an idea of the minimal amount of data one should
use in applications to be confident with the clustering results,
we suggest to design realistic simulations of financial time
series and determine the sample critical size from which the
clustering approach “always” recovers the underlying model.
We illustrate such an empirical study in the following section.

5.1 Financial time series models

For the simulations, implementation and tutorial available at
www.datagrapple.com/Tech, we will consider two models:

e The standard but debated model of quantitative finance,
the Gaussian random walk model whose increments are
realizations from a N-variate Gaussian: X ~ A/(0, ).

The Gaussian model does not generate heavy-tailed behavior
(strong unexpected variations in the price of an asset) which
can be found in many asset returns [Cont, 2001] nor does it
generate tail-dependence (strong variations tend to occur at
the same time for several assets). This oversimplified model
provides an empirical convergence rate for clustering that is
unlikely to be exceeded on real data.

e The increments are realizations from a N-variate Stu-
dent’s t-distribution, with degree of freedom v = 3:
X ~1,(0,2%).

The N-variate Student’s ¢-distribution (v = 3) captures both
the heavy-tailed behavior (since marginals are univariate Stu-
dent’s t-distribution with the same parameter v 3) and
the tail-dependence. It has been shown that this distribution
yields a much better fit to real returns than the Gaussian dis-
tribution [Hu and Kercheval, 2010].

The Gaussian and ¢-distribution are parameterized by a co-
variance matrix . We define X such that the underlying cor-
relation matrix has the structure depicted in Figure 2. This
correlation structure is inspired by the real correlations be-
tween credit default swap assets in the European “investment
grade”, European “high-yield” and Japanese markets. More
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Figure 2: Illustration of the correlation structure used for sim-
ulations: European assets (numbered 0, ..., 214) are subdi-
vided into 2 clusters which are themselves subdivided into
7 clusters each; Japanese assets (numbered 215. . .,264) are
weakly correlated to the European markets: p = 0.15 with
“investment grade” assets, p = 0.00 with “high-yield” assets

precisely, this correlation matrix allows us to simulate the re-
turns time series for N = 265 assets divided into

e a “European investment grade” cluster composed of 115
assets, subdivided into

— 7 industry-specific clusters of sizes 10, 20, 20, 5,
30, 15, 15; the pairwise correlation inside these 7
clusters is 0.7;

e a “European high-yield” cluster composed of 100 assets,
subdivided into

— 7 industry-specific clusters of sizes 10, 20, 25, 15,
5, 10, 15; the pairwise correlation inside these 7
clusters is 0.7;

e a “Japanese” cluster composed of 50 assets whose pair-
wise correlation is 0.6.

We can then sample time series from these two models.

5.2 Experiment: Recovering the initial clusters

For each model, for every T ranging from 10 to 500, we sam-
ple L = 103 datasets of N = 265 time series with length
T from the model. We count how many times the clustering
methodology (here, the choice of an algorithm and a corre-
lation coefficient) is able to recover the underlying clusters
defined by the correlation matrix. In Figure 3, we display the
results obtained using Single Linkage (motivated in Mantegna
et al.’s research [Mantegna and Stanley, 1999] by the ultra-
metric space hypothesis and the related subdominant ultra-
metric given by the minimum spanning tree), Average Link-
age (which is used to palliate against the unbalanced effect of
Single Linkage, yet unlike Single Linkage, it is sensitive to
monotone transformations of the distances d;;) and the Ward
method leveraging either the Pearson correlation coefficient
or the Spearman one.



Empirical rates of convergence for Single Linkage

Empirical rates of convergence for Average Linkage
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Figure 3: Single Linkage (left), Average Linkage (mid), Ward method (right) are used for clustering the simulated time series;
Dashed lines represent the ratio of correct clustering over the number of trials when using Pearson coefficient, solid lines for
the Spearman one; Magenta lines are used when the underlying model is Gaussian, blue lines for the ¢-distribution

5.3 Conclusions from the empirical study

As expected, the Pearson coefficient yields the best results
when the underlying distribution is Gaussian and the worst
when the underlying distribution is heavy-tailed. For such
elliptical distributions, rank-based correlation estimators are
more relevant [Liu et al., 2012b; Han and Liu, 2013]. Con-
cerning clustering algorithm convergence rates, we find that
Average Linkage outperforms Single Linkage for 7" < N
and T ~ N. One can also notice that both Single Linkage
and Average Linkage have not yet converged after 500 real-
izations (roughly 2 years of daily returns) whereas the Ward
method, which is not mainstream in the econophysics liter-
ature, has converged after 250 realizations (about a year of
daily returns). Its variance is also much smaller. Based on
this empirical study, a practitioner working with N = 265
assets whose underlying correlation matrix may be similar to
the one depicted in Figure 2 should use the Ward + Spearman
methodology on a sliding window of length 7" = 250.

6 Discussion

In this contribution, we only show consistency with respect
to a model motivated by empirical evidence. All models are
wrong and this one is no exception to the rule: random walk
hypothesis, real correlation matrices are not that “blocky”.
We identified several theoretical directions for the future:

e The theoretical concentration bounds are not sharp
enough for usual values of N,T. Since the intrinsic
dimension of the correlation matrices in the HCBM is
low, there might be some possible improvements [Tropp,
2015].

e “Space-conserving”, “space-dilating” is a coarse classi-
fication that does not allow to distinguish between sev-
eral algorithms with different behaviors. Though Single
Linkage (which is nearly “space-contracting”) and Aver-
age Linkage have different convergence rates as shown
by the empirical study, they share the same theoretical
bounds.

And also directions for experimental studies:

e It would be interesting to study spectral clustering tech-
niques which are less greedy than the hierarchical clus-
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Figure 4: Heatmap encoding the ratio of correct clustering
over the number of trials for the Ward + Spearman method-
ology as a function of p and T'; underlying model is a Gaus-
sian distribution parameterized by a 2-block-uniform-p cor-
relation matrix; red color represents a perfect and systematic
recovering of the underlying two clusters, deep blue encodes
0 correct clustering; notice the clear-cut isoquants

tering algorithms. In [Tumminello er al., 2007], authors
show that they are less stable with respect to statistical
uncertainty than hierarchical clustering. Less stability
may imply a slower convergence rate.

e We notice that there are isoquants of clustering accuracy
for many sets of parameters, e.g. (N,T), (p,T). Such
isoquants are displayed in Figure 4. Further work may
aim at characterizing these curves. We can also observe
in Figure 4 that for p < 0.08, the critical value for T" ex-
plodes. It would be interesting to determine this asymp-
totics as p tends to 0.

Finally, we have provided a guideline to help the prac-
titioner set the critical window-size T' for a given cluster-
ing methodology. One can also investigate which consistent
methodology provides the correct clustering the fastest. How-
ever, much work remains to understand the convergence be-
haviors of clustering algorithms on financial time series.
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