
Abstract 
Recent years have seen a growing interest in player 
modeling for digital games. Goal recognition, 
which aims to accurately recognize players’ goals 
from observations of low-level player actions, is a 
key problem in player modeling. However, player 
goal recognition poses significant challenges 
because of the inherent complexity and uncertainty 
pervading gameplay. In this paper, we formulate 
player goal recognition as a sequence labeling task 
and introduce a goal recognition framework based 
on long short-term memory (LSTM) networks. 
Results show that LSTM-based goal recognition is 
significantly more accurate than previous 
state-of-the-art methods, including n-gram encoded 
feedforward neural networks pre-trained with 
stacked denoising autoencoders, as well as Markov 
logic network-based models. Because of increased 
goal recognition accuracy and the elimination of 
labor-intensive feature engineering, LSTM-based 
goal recognition provides an effective solution to a 
central problem in player modeling for open-world 
digital games. 

1 Introduction 
Open-world digital games enable players to explore and 
pursue gameplay objectives within expansive virtual worlds 
[Squire, 2008]. In contrast to linear games, which prescribe 
a particular sequence of gameplay objectives for players to 
accomplish, open-world games support vast numbers of 
possible paths through game environments. Players select or 
formulate their next objectives and devise plans to 
accomplish them. Open-world games provide an ideal 
laboratory for investigating computational techniques for 
plan, activity, and intent recognition because they can 
support a broad range of goal-directed player behavior, and 
they can be fully instrumented via telemetry functionalities 
[Harrison et al., 2015; Kabanza et al., 2013; Yannakakis et 
al., 2013]. However, open-world digital games pose 
significant challenges for game designers. Open-world 
games’ emphasis on player autonomy is at odds with game 
designers’ focus on crafting coherent storylines and 

well-paced gameplay; it is difficult for game designers to 
craft compelling stories if they do not know, in advance, 
what actions the player is going to take next [Riedl and 
Bulitko, 2013; Min et al., 2014]. 

Previous work has investigated these challenges in the 
context of player modeling, often with the goal of creating 
computational models for dynamically adapting gameplay 
to players’ cognitive, behavioral, and affective states 
[Yannakakis et al., 2013]. Such player-adaptive games have 
incorporated computational techniques for interactive 
narrative [Riedl and Bulitko, 2013], procedural content 
generation [Shaker et al., 2015], game balancing [Lopes and 
Bidarra, 2011] and personalized learning in educational 
games [Ha et al., 2011; Min et al., 2014].  

A central problem in player modeling is goal recognition, 
which is a restricted form of plan recognition. Goal 
recognition focuses on identifying a player’s high-level 
objectives in a game world, given a series of low-level 
gameplay actions [Ha et al., 2011; Harrison et al., 2015; 
Min et al., 2014]. Goal recognition models compute 
predictions of players’ dynamically changing goals and 
inform run-time adaptation of gameplay to enhance players’ 
experience [Kabanza et al., 2013].  

Prior work on plan, activity, and intent recognition has 
largely focused on observation sequences in which agents’ 
actions are rationally motivated by well-defined objectives. 
For instance, smart space activity monitoring [Duong et al., 
2009], network security [Geib and Goldman, 2009], and 
natural language story understanding [Singla and Mooney, 
2011] have served as testbed applications for plan, activity, 
and intent recognition. These tasks are influenced by several 
sources of uncertainty such as noisy sensors, sub-optimal 
plans, and actions with stochastic effects, but they assume 
that agents’ actions are directly driven by concrete goals 
held by the agents.  

In contrast to these environments, open-world digital 
games, which often do not explicitly present goals to 
players, are marked by highly idiosyncratic sequences of 
player actions [Ha et al., 2011; Min et al., 2014]. In cases 
where players have little or no prior experience with a game, 
players are likely to explore the game world (e.g., 
conversing with non-player characters, triggering game 
world events) in order to identify goals, rather than perform 
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actions in order to achieve a specific gameplay objective. It 
is also possible that players unintentionally achieve goals 
through exploratory actions, abandon goals with little 
warning, or adopt new goals based upon recent or prior 
events. Thus, goal recognition in open-world digital games 
is characterized by considerable uncertainty, and goal 
recognition models must be able to operate robustly even in 
the face of highly noisy sequences of low-level player 
actions.  

This paper presents a computational framework for player 
goal recognition based on long short-term memory networks 
(LSTMs) [Hochreiter and Schmidhuber, 1997], a variant of 
recurrent neural networks. We formalize goal recognition as 
the task of predicting the player’s next gameplay objective 
in service of completing the overarching game. Our goal 
recognition framework is evaluated with game interaction 
logs from over 100 players interacting with CRYSTAL 
ISLAND, an open-world educational game for middle school 
science. Findings from the evaluation suggest that 
LSTM-based goal recognition significantly outperforms the 
previous state-of-the-art method based on n-gram encoded 
feedforward neural networks pre-trained with stacked 
denoising autoencoders [Min et al., 2014]. Further, we find 
that LSTM-based goal recognition outperforms non-deep 
learning methods, including a discovery event-based 
Markov logic network model [Baikadi et al., 2014], with 
respect to predictive accuracy and convergence rate. 
Notably, the LSTM-based goal recognition models 
automatically extract predictive features, specifically 
leveraging a distributed representation learning technique 
that represents discrete actions in a continuous vector space 
as well as representation learning provided by LSTMs. 

2 Related Work 
Plan, activity, and intent recognition is a modeling task that 
predicts an agent’s high-level plans, objectives, and 
activities based on a sequence of low-level observations 
[Baker et al., 2009; Kautz and Allen, 1986; Sukthankar et 
al., 2014]. It has been actively investigated with a variety of 
machine learning techniques such as Bayesian inference 
models [Geib and Goldman, 2009], dynamic Bayesian 
networks [Duong et al., 2009], and Markov logic networks 
[Baikadi et al., 2014; Ha et al., 2011; Singla and Mooney, 
2011].  

Digital games have proven to be a valuable testbed for 
investigating plan, activity, and intent recognition. [Kabanza 
et al., 2013] presented a heuristic weighted model counting 
algorithm that enables recognition of upper and lower 
bounds of posterior probabilities of goals in real-time 
strategy games. Closely related to this work, [Ha et al., 
2011] used Markov logic networks (MLNs) to recognize 
player goals in an educational game, yielding significant 
improvements in goal recognition accuracy relative to 
previous n-gram and Bayesian network approaches [Mott et 
al., 2006]. MLN-based goal recognition has been further 
explored by [Baikadi et al., 2014]. Their work investigated 
narrative discovery events, domain-specific representations 
of player progress through the game, in MLNs, and 

demonstrated improved performance relative to the models 
reported in [Ha et al., 2011]. 

Recent years have witnessed an explosion of interest in 
deep learning, which has contributed to significant advances 
in computer vision, speech recognition and natural language 
processing [LeCun et al., 2015]. Deep learning has also 
been investigated in goal and plan recognition. [Bisson et 
al., 2015] presented recursive neural network-based 
decision models and evaluated the approach on three plan 
recognition benchmark domains including StarCraft, a 
real-time strategy game. Recursive neural networks [Socher 
et al., 2010] have demonstrated potential as a computational 
plan recognizer by outperforming a probabilistic 
plan-library based approach and an inverse planning 
approach. [Min et al., 2014] investigated stacked denoising 
autoencoder pre-trained feedforward neural networks for 
goal recognition in an educational game, which significantly 
outperformed the previous state-of-the-art MLN models in 
[Ha et al., 2011]. Compared to the MLN-based approaches 
[Baikadi et al., 2014; Ha et al., 2011], which used a 
combination of hand-authored logic formulae and 
machine-learned weights, this deep learning approach 
eliminated labor-intensive feature engineering efforts by 
utilizing multi-level feature abstraction techniques. The 
approach presented in this paper is the first to examine goal 
recognition with long short-term memory networks 
leveraging distributed action representations, which 
effectively model temporal information characterized in 
observation sequences of player behavior.   

Figure 1. CRYSTAL ISLAND virtual environment. 

3 Goal Recognition Corpus  
CRYSTAL ISLAND (Figure 1) is an open-world educational 
game for middle school science. In the game players are 
tasked with identifying the cause of an illness afflicting a 
team of scientists on a remote island research camp. 
Implemented as a Half-Life 2 mod, CRYSTAL ISLAND’s 
gameplay is similar to many exploration-centric games in 
which players experience the world from a first-person 
viewpoint and perform actions such as navigating from one 
location to another, discovering important items, picking up 
objects, and talking with non-player characters. CRYSTAL 
ISLAND’s non-linear narrative consists of seven key goals 
that players must accomplish to complete the game. Five of 
these goals involve speaking with non-player characters 
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about the spreading illness, while the remaining two involve 
testing contaminated food in the camp’s laboratory and 
submitting a completed diagnosis to the camp nurse. 
CRYSTAL ISLAND has been shown to provide substantial 
increases in both learning and motivation [Rowe et al., 
2011] through a series of empirical studies. 

During gameplay, CRYSTAL ISLAND logs all player 
actions, which can be retrieved for offline data analysis. The 
data used in the evaluation of our goal recognition model 
was collected during a study involving 153 eighth grade 
students from a middle school. Due to incomplete data or 
prior experience playing the game, data from 16 participants 
was removed. Our goal recognition corpus is composed of 
data from the remaining 137 participants.  

It should be noted that players’ action sequences do not 
necessarily represent optimal paths for achieving goals in 
CRYSTAL ISLAND. Rather, action sequences are often 
sub-optimal or noisy; players explore the virtual 
environment in order to familiarize themselves with the 
gameworld and often do not utilize the most efficient 
problem-solving strategies available. For example, in 
pursuit of a goal, Test the Contaminated Food, one player in 
our dataset performed 86 actions. These actions began with 
six actions encoded as Talk with the Camp Nurse, each 
corresponding to a dialogue turn during a branching 
conversation with one of the game’s non-player characters. 
After several more actions in the infirmary, the player 
embarked on an exploration of the gameworld using 
multiple Move actions to different locations. The player 
actions continued in this manner: the player made gradual 
but circuitous progress toward the next objective, eventually 
culminating with the final action that achieved the goal. 

4 Long Short-Term Memory Network-Based 
Goal Recognition 

Due to the exploratory nature of player behavior in 
open-world digital games, goal recognition models should 
robustly handle cyclical relationships between player goals 
and actions [Ha et al., 2011]. Players’ previously achieved 
goals may inform their subsequent actions, and their current 
actions may influence their upcoming goals. Consequently, 
extracting patterns from sequences of player actions and 
goals is likely to provide strong evidence to predict the next 
high-level objective that a player will achieve. These 
characteristics of open-world digital games inspire our 
investigation of long short-term memory networks (LSTMs) 
[Hochreiter and Schmidhuber, 1997] for goal recognition. In 
this work, players’ sequential interaction data is encoded 
using distributed action representations, which serve as the 
input to LSTMs. We present a brief overview of LSTMs, 
the input data encoding method, the distributed 
representation learning procedure for the action-based input 
data, and the LSTM-based goal recognition framework. 

4.1 LSTM Background 
LSTMs are a variant of recurrent neural networks (RNNs) 
that are specifically designed for sequence labeling of 

temporal data. LSTMs have achieved high predictive 
performance in various sequence labeling tasks, often 
outperforming standard recurrent neural networks by 
leveraging a longer-term memory than standard RNNs, 
preserving short-term lag capabilities, and effectivly 
addressing the vanishing gradient problem [Graves, 2012].  

LSTMs (Figure 2A) feature a sequence of memory blocks 
that include one or more self-connected memory cells along 
with three gating units: an input gate, a forget gate, and an 
output gate [Graves, 2012]. In LSTMs, the input and output 
gates modulate the incoming and outgoing signals to the 
memory cell, and the forget gate controls whether the 
previous state of the memory cell is remembered or 
forgotten.  

In this LSTM implementation, the input gate (!!), forget 
gate (!!), and candidate memory cell state (!!) at time t are 
computed by Equations (1) – (3), respectively, in which W 
and U are weight matrices for the input (!!) at time t and the 
cell output (ℎ!!!) at time t-1, b is the bias vector of each 
unit, and σ and tanh are the logistic sigmoid and hyperbolic 
tangent function, respectively. 

!! = !(!!!! + !!ℎ!!! + !!)      (1) 
!! = !(!!!! + !!ℎ!!! + !!)       (2) 

!! = !"#ℎ(!!!! + !!ℎ!!! + !!)      (3) 

Once these three vectors are computed, the current 
memory cell’s state is updated to a new state (!! ) by 
modulating the current memory candidate value (!!) via the 
input gate (!!) and the previous memory cell state (!!!!) via 
the forget gate (!!). Through this process, a memory block 
decides whether to keep or forget the previous memory cell 
state via the forget gate and regulates the candidate of the 
current memory cell state via the input gate. This step is 
described in Equation (4): 

!! = !!!! + !!!!!!                       (4) 

In Equation (5), the output gate (!!), similarly calculated 
as in Equations (1) – (3), is utilized to compute the memory 
cell output (ℎ!) of the LSTM memory block at time t, based 
on the updated cell state (!!) as in Equation (6): 

!! = !(!!!! + !!ℎ!!! + !!)           (5) 
ℎ! = !! !"#ℎ(!!)                   (6) 

Once the cell output (ℎ!) is calculated at time t, the next 
step is to use the computed cell output vector to predict the 
label of the current training example. For player goal 
recognition, we use the final cell output vector, assuming 
that ℎ! captures long-term dependencies from the previous 
time steps.  

4.2 Data Encoding for Goal Recognition 
We cast goal recognition as a multiclass classification 
problem in which a trained classifier predicts the most likely 
goal associated with the currently observed sequence of 
actions after the previously observed goal. We assume that a 
given sequence of actions maps to a single goal, and no 
interleaving occurs between actions associated with 
different goals, since the goal recognition corpus does not  
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Figure 2. (A) An illustration of LSTMs [Graves, 2012] for goal recognition. The cell output vector, ℎ!, is utilized to predict the goal 
associated with xt at time t using a softmax layer. (B) A distributed action representation (xt) generated from a discrete action representation 
(inputt). An action-property embedding matrix linearly maps each action property (i.e., action type, action location, narrative state, 
previously achieved goals) in a discrete vector space onto a continuous vector space, and all N+3 continuous vectors are concatenated to 
generate a single distributed action representation, xt (N=7 in this work). The induced xt is fed into the LSTM memory block at time t. 

 
lend itself to this type of analysis. In this setting, all actions 
that precede the current goal, but follow the previous goal, 
are labeled with the current goal, and all actions taken after 
achievement of the last goal are ignored, since these actions 
might not be directly related to gameplay goal pursuit. 

A player action is encoded with four properties: action 
type, action location, narrative state (the player’s progress 
in solving the game’s narrative), and previously achieved 
goals [Min et al., 2014]. In CRYSTAL ISLAND, a player 
action can be “Talk (action type) with the Camp Nurse at the 
Camp Infirmary (action location), after having achieved 
Speak with the Camp Cook about Recently Eaten Food 
(previously achieved goal) while having just completed the 
narrative milestone of Submit a Diagnosis to the Camp 
Nurse (narrative state).” In our work, action types include 
19 distinct types of player actions, action location includes 
39 non-overlapping sub-locations within the gameworld, 
narrative states contain 8 possible values based on the 
interactive storyline’s plot structure, and there are 8 possible 
goals that could be previously achieved, which includes 
‘None’ in case the player has not yet achieved any goals. 
Note that the set of these four action properties was initially 
devised to be scalable to general digital games [Ha et al., 
2011] and can be adjusted according to characteristics of the 
game being investigated by adding specific properties that 
are expected to contribute to goal recognition or removing 
properties that are not applicable to the game. 

To represent an action input in our work, we utilize a 
10-dimensional discrete vector (Figure 2B). The first three 

dimensions of the vector are allocated to represent the action 
type, action location, and current narrative state with 
integer-based indices, while the following seven dimensions 
represent a sequence of previously achieved goals (seven 
goals in total in this work) also with integer-based indices. 
Note that since (1) the goals are often achieved after many 
time steps (the average number of player actions per goal is 
86.4 according to [Ha et al., 2011]), and (2) action 
sequences longer than a threshold (k) are cut to utilize the 
last k actions for the training efficiency in this work, we 
explicitly encode the previously achieved goals in the input. 

4.3 Distributed Action Representations 
Inspired by advances in distributed vector representations of 
text (e.g., words, sentences) [Bengio et al., 2003; Le and 
Mikolov, 2014], this work investigates distributed 
representations of actions for goal recognition. Distributed 
representations of words have been examined with a range 
of neural networks [Bengio et al., 2003; Le and Mikolov, 
2014], and they have been investigated in a wide range of 
natural language processing tasks, such as language 
modeling [Bengio et al., 2003], language parsing [Socher et 
al., 2010] and sentiment analysis [Le and Mikolov, 2014]. 

In our work, an action consists of multiple properties, so 
distributed action representations are managed on a 
per-property basis. To operationalize this, a comprehensive 
action-property embedding matrix, the size of which is 74 
(the total number of possible values of action properties 
computed as 19+39+8+8) by d (embedding size), is created 

2593



(Figure 2B). The action-property embedding matrix is 
learned in two different ways: (1) the matrix is randomly 
initialized following a uniform distribution (max: 0.05, min: 
-0.05) and is fine-tuned during supervised machine learning, 
and (2) the matrix is randomly initialized following the 
same uniform distribution and is pre-trained following a 
language modeling approach [Bengio et al., 2003] (i.e., 
predicting the next action based on a sequence of previous 
actions), and is then fine-tuned during supervised learning. 
We denote the first approach as supervised embedding and 
the second approach as pre-trained embedding. For the 
pre-trained embedding approach, we utilize another LSTM 
model to predict the next action based on a sequence of 
prior actions, and train the model using only player action 
data without goal labels. 

4.4 LSTM-Based Goal Recognition 
Each instance of training data consists of a sequence of 
actions and its goal label. For example, if three actions, x1, 
x2, and x3, are taken to achieve the goal (g), three data 
examples are generated: (1) [x1] for g, (2) [x1, x2] for g, and 
(3) [x1, x2, x3] for g. Each action in the sequence is encoded 
with a single distributed representation by concatenating the 
ten action property-based representations that constitute the 
action. The process for creating this distributed action 
representation is shown in Figure 2B. The action property 
embedding matrix manages the linear mapping from a 
discrete action property index to a d-dimensional continuous 
vector space. Since a distributed action representation is 
created by concatenating all ten d-dimensional vectors, the 
size of a distributed representation becomes ten times d for 
the action, xt.  

At recognition time, a sequence of actions is sequentially 
fed into the LSTM model in the recurrent neural network 
formalism. The memory cell state and output at the previous 
time step are used to compute the cell state and output at the 
current time step. The final memory cell output vector (ht in 
Figure 2A) is used to predict the most likely goal for the 
sequence of actions in a softmax layer, which is interpreted 
as a calculation of posterior probabilities of goals. 

For hyperparameter optimization of our LSTM-based 
goal recognition models, we perform a grid search and 
empirically determine an optimal configuration of the 
networks through cross validation. In this work, we explore 
three hyperparameters: the size of the action property 
embedding among {10, 20}, the number of hidden units 
among {100, 200}, the dropout rate [LeCun et al., 2015] 
among {0.5, 0.75}, all of which have significant potential to 
influence the proposed LSTM-based goal recognition 
performance. Other than these, we use a softmax layer for 
classifying given sequences of actions, adopt a mini-batch 
gradient descent with the mini-batch size of 128, and utilize 
categorical cross entropy for the loss function and a 
stochastic optimizer. For training efficiency, action 
sequences greater than ten are pruned to keep only the last 
ten actions. Finally, the training process stops early if the 
validation score has not improved within the last seven 
epochs. In this work, 10% of the training data is used to 

determine early stopping, while 90% is utilized for 
supervised training. The maximum number of epochs is set 
to 100. 

For pre-trained embedding, an additional LSTM is trained 
to learn initial action property representations prior to 
building the LSTM goal recognizer. For this model, we use 
a sigmoid layer for predicting the next action for a given 
sequence of actions along with the binary cross entropy for 
the loss function, casting it as a multi-label classification 
task predicting the ten features that constitute an action. All 
other hyperparameters are identically applied as in the goal 
recognition model, except that the pre-training process does 
not use early stopping but instead uses a fixed number of 
epochs (100), since this unsupervised approach is not likely 
to exhibit overfitting, and the pre-trained representations 
will be fine-tuned in the following supervised learning step 
for the goal recognition model.  

5 Evaluation 
The game interaction data includes 77,182 player actions 
and 893 achieved goals, with an average of 86.4 player 
actions per goal. The distribution of the seven goals ranges 
from 6.4% (“Speaking with the camp nurse”) to 26.6% 
(“Running laboratory test on contaminated food”), which is 
the majority class baseline [Ha et al., 2011]. The goal 
recognition performance of LSTMs is evaluated relative to 
two competitive baselines: (1) n-gram encoded feedforward 
neural networks (FFNN) pre-trained with stacked denoising 
autoencoders [Min et al., 2014], a previous state-of-the-art 
approach and (2) Markov logic networks (MLN) reported in 
[Baikadi et al., 2014], another previous state-of-the-art 
approach. All models are evaluated using 10-fold cross 
validation using the same data split for pairwise 
comparisons.  

Goal recognition model performance is measured using 
accuracy rate, convergence rate, and convergence point 
[Baikadi et al., 2014; Min et al., 2014] in order to capture 
the multi-dimensional nature of goal recognition 
performance. Convergence rate refers to the percentage of 
observation sequences in which the final goal prediction is 
correct. A higher number is better for this metric. 
Convergence point refers to the proportion of an action 
sequence after which the goal recognizer begins to make 
correct goal predictions for the remainder of the sequence. 
More formally, convergence point is calculated by 

(!!/!!)!
!!! /!, in which m is the number of converged 

action sequences, and ni and ki are the total number of 
actions and the number of actions after which the goal 
recognizer consistently makes accurate predictions in the ith 
converged action sequence, respectively. This metric 
indicates how early a goal recognizer can inform the system 
about the player’s current goal. A lower score is better for 
this metric.  

In the evaluation, the FFNN model was initialized using 
hyperparameter search. The MLN model was developed 
through manual feature engineering by a domain expert. 
Two sets of LSTM results are reported. The results vary 
based upon whether the LSTM utilized pre-training of 
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action property representations. The two models are denoted 
as LSTM-S (supervised embedding) and LSTM-P 
(pre-trained embedding).  

Table 1 presents results for the three computational goal 
recognition approaches. LSTM-S achieves the highest goal 
recognition accuracy of 66.3%. In this table, only the model 
that achieves the highest cross-validation accuracy per 
approach is reported. Convergence rate and convergence 
point are calculated based on the model with the highest 
accuracy.  

 MLN FFNN LSTM-P LSTM-S 
Accuracy Rates 54.63 62.30 66.25 66.34 

Convergence Rates 50.06 70.90 76.25 78.54 
Convergence Points 35.86 42.82 68.13 69.66 

Table 1. Accuracy rate (%), convergence rate (%) and convergence 
point (%) results for the best performing LSTM, FFNN, and MLN 
models under 10-fold cross validation. 

Both the LSTM-S and LSTM-P models achieve the 
greatest accuracy when configured with an action property 
embedding size of 20, 100 hidden units, and a dropout rate 
of 0.75. For pairwise comparisons of the three 
computational approaches (MLN, FFNN, and LSTM-S), we 
run a Friedman non-parametric statistical test followed by 
Wilcoxon non-parametric post-hoc tests based on the 
fold-level cross-validation results. The Friedman test finds a 
significant difference in accuracy rates across the models, 
χ2(2)=14.6, p=0.001. Wilcoxon tests applied with the 
Holm-Bonferroni correction indicate that there are 
significant improvements in accuracy rates for LSTM-S 
over FFNN (p=0.022), LSTM-S over MLN (p=0.005), and 
FFNN over MLN (p=0.013). 

Additionally, LSTM-based goal recognition is found to 
make more accurate predictions on the last action (LSTM-S: 
78.5%, LSTM-P: 76.3%) than competitive baselines. On the 
other hand, LSTMs are found to have the latest convergence 
point, which indicates that the models’ predictions slowly 
converge to the correct goal after observing longer 
sequences of actions. This result can be partially explained 
by the inherent tension between a high convergence rate and 
low convergence point. Accurate goal recognizers make 
correct goal predictions, even on noisy sequences of actions, 
which increases the number of converged action sequences, 
and thus the convergence rate. But goal recognition that 
occurs early in an observation sequence, especially with 
noisy data, is more often wrong, thereby yielding higher 
values for their convergence point. 

It is notable that LSTM-S (66.34%) and LSTM-P 
(66.25%) are competitive to each other. We did not find 
evidence of a statistically significant difference in predictive 
accuracy between the two models. Considering that both 
models achieve the highest accuracy with the same set of 
network hyperparameters, it may be that hyperparameter 
selection has a more significant influence on model 
performance than pre-training in inducing distributed action 
representations. To examine the individual impacts of the 
three hyperparameters optimized through grid search, the 
two highest performing LSTMs, both with (embedding size, 

hidden units, dropout rate) of (20, 100, 0.75) are compared 
to the their alternate models in terms of the 10-fold 
cross-validation results (Table 2). 

Among the hyperparameters, only the number of LSTM 
hidden units commonly results in sizable difference in 
accuracy rate. This finding is echoed in [Bergstra and 
Bengio, 2012], which found that only a few 
hyperparameters substantially impact model performance. 
Identifying important hyperparameters informs directions 
for future work to obtain more accurate goal recognizers.  

 Dropout 
(0.5) 

Hidden units 
(200) 

Embedding 
(10) Highest 

LSTM-S 65.13 62.21 65.36 66.34 
LSTM-P 64.44 63.31 64.57 66.25 

Table 2. Averaged hyperparameter level accuracy rates (%) where  
Dropout (0.5) denotes (20, 100, 0.5), Hidden units (200) denotes 
(20, 200, 0.75), and Embedding (10) denotes (10, 100, 0.75). 

6 Conclusion 
Open-world digital games provide an ideal laboratory for 
investigating computational models of goal recognition. A 
key challenge in goal recognition is devising predictive 
models that accurately recognize player goals based on 
game interaction logs containing noisy data due to player 
exploration and minimally goal-directed behavior. This 
paper has introduced a goal recognition framework that 
leverages long short-term memory networks (LSTMs) and 
distributed action representations, which significantly 
outperforms previous state-of-the-art approaches with 
respect to predictive accuracy. Additionally, LSTMs 
demonstrate higher convergence rates over competitive deep 
learning and non-deep learning-based baselines. The LSTM 
goal recognition framework achieves these results without 
requiring labor-intensive manual feature engineering often 
required by other machine learning approaches. 

In the future it will be important to investigate forms of 
recurrent neural networks that use fewer parameters. In 
addition, model optimization can be examined either by 
utilizing different optimizers or identifying an optimal 
configuration of hyperparameters. Further, it will be 
important to devise additional metrics that quantify 
unmeasured aspects of goal recognizer performance. For 
example, in spite of its broad utilization, the convergence 
point metric does not thoroughly measure models’ early 
prediction capability because it ignores action sequences 
that do not converge. It will also be important to investigate 
the impact of distributed action representations on LSTM 
goal recognition performance. In this paper, we did not 
isolate the effects of the LSTM models’ action-property 
embedding layer. Finally, it will be important to investigate 
how goal recognition models operate at run-time within 
open-world digital game environments to understand how 
goal recognizers can most effectively drive gameplay 
personalization in player-adaptive games.  
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