
Abstract
Recent years have seen a growing interest in player
modeling for digital games. Goal recognition,
which aims to accurately recognize players’ goals
from observations of low-level player actions, is a
key problem in player modeling. However, player
goal recognition poses significant challenges
because of the inherent complexity and uncertainty
pervading gameplay. In this paper, we formulate
player goal recognition as a sequence labeling task
and introduce a goal recognition framework based
on long short-term memory (LSTM) networks.
Results show that LSTM-based goal recognition is
significantly more accurate than previous
state-of-the-art methods, including n-gram encoded
feedforward neural networks pre-trained with
stacked denoising autoencoders, as well as Markov
logic network-based models. Because of increased
goal recognition accuracy and the elimination of
labor-intensive feature engineering, LSTM-based
goal recognition provides an effective solution to a
central problem in player modeling for open-world
digital games.

1 Introduction
Open-world digital games enable players to explore and
pursue gameplay objectives within expansive virtual worlds
[Squire, 2008]. In contrast to linear games, which prescribe
a particular sequence of gameplay objectives for players to
accomplish, open-world games support vast numbers of
possible paths through game environments. Players select or
formulate their next objectives and devise plans to
accomplish them. Open-world games provide an ideal
laboratory for investigating computational techniques for
plan, activity, and intent recognition because they can
support a broad range of goal-directed player behavior, and
they can be fully instrumented via telemetry functionalities
[Harrison et al., 2015; Kabanza et al., 2013; Yannakakis et
al., 2013]. However, open-world digital games pose
significant challenges for game designers. Open-world
games’ emphasis on player autonomy is at odds with game
designers’ focus on crafting coherent storylines and

well-paced gameplay; it is difficult for game designers to
craft compelling stories if they do not know, in advance,
what actions the player is going to take next [Riedl and
Bulitko, 2013; Min et al., 2014].

Previous work has investigated these challenges in the
context of player modeling, often with the goal of creating
computational models for dynamically adapting gameplay
to players’ cognitive, behavioral, and affective states
[Yannakakis et al., 2013]. Such player-adaptive games have
incorporated computational techniques for interactive
narrative [Riedl and Bulitko, 2013], procedural content
generation [Shaker et al., 2015], game balancing [Lopes and
Bidarra, 2011] and personalized learning in educational
games [Ha et al., 2011; Min et al., 2014].

A central problem in player modeling is goal recognition,
which is a restricted form of plan recognition. Goal
recognition focuses on identifying a player’s high-level
objectives in a game world, given a series of low-level
gameplay actions [Ha et al., 2011; Harrison et al., 2015;
Min et al., 2014]. Goal recognition models compute
predictions of players’ dynamically changing goals and
inform run-time adaptation of gameplay to enhance players’
experience [Kabanza et al., 2013].

Prior work on plan, activity, and intent recognition has
largely focused on observation sequences in which agents’
actions are rationally motivated by well-defined objectives.
For instance, smart space activity monitoring [Duong et al.,
2009], network security [Geib and Goldman, 2009], and
natural language story understanding [Singla and Mooney,
2011] have served as testbed applications for plan, activity,
and intent recognition. These tasks are influenced by several
sources of uncertainty such as noisy sensors, sub-optimal
plans, and actions with stochastic effects, but they assume
that agents’ actions are directly driven by concrete goals
held by the agents.

In contrast to these environments, open-world digital
games, which often do not explicitly present goals to
players, are marked by highly idiosyncratic sequences of
player actions [Ha et al., 2011; Min et al., 2014]. In cases
where players have little or no prior experience with a game,
players are likely to explore the game world (e.g.,
conversing with non-player characters, triggering game
world events) in order to identify goals, rather than perform

Player Goal Recognition in Open-World Digital Games
with Long Short-Term Memory Networks

Wookhee Min, Bradford Mott, Jonathan Rowe, Barry Liu, James Lester

Department of Computer Science
North Carolina State University

Raleigh, North Carolina 27695, USA
{wmin, bwmott, jprowe, bliu12, lester}@ncsu.edu

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2590

actions in order to achieve a specific gameplay objective. It
is also possible that players unintentionally achieve goals
through exploratory actions, abandon goals with little
warning, or adopt new goals based upon recent or prior
events. Thus, goal recognition in open-world digital games
is characterized by considerable uncertainty, and goal
recognition models must be able to operate robustly even in
the face of highly noisy sequences of low-level player
actions.

This paper presents a computational framework for player
goal recognition based on long short-term memory networks
(LSTMs) [Hochreiter and Schmidhuber, 1997], a variant of
recurrent neural networks. We formalize goal recognition as
the task of predicting the player’s next gameplay objective
in service of completing the overarching game. Our goal
recognition framework is evaluated with game interaction
logs from over 100 players interacting with CRYSTAL
ISLAND, an open-world educational game for middle school
science. Findings from the evaluation suggest that
LSTM-based goal recognition significantly outperforms the
previous state-of-the-art method based on n-gram encoded
feedforward neural networks pre-trained with stacked
denoising autoencoders [Min et al., 2014]. Further, we find
that LSTM-based goal recognition outperforms non-deep
learning methods, including a discovery event-based
Markov logic network model [Baikadi et al., 2014], with
respect to predictive accuracy and convergence rate.
Notably, the LSTM-based goal recognition models
automatically extract predictive features, specifically
leveraging a distributed representation learning technique
that represents discrete actions in a continuous vector space
as well as representation learning provided by LSTMs.

2 Related Work
Plan, activity, and intent recognition is a modeling task that
predicts an agent’s high-level plans, objectives, and
activities based on a sequence of low-level observations
[Baker et al., 2009; Kautz and Allen, 1986; Sukthankar et
al., 2014]. It has been actively investigated with a variety of
machine learning techniques such as Bayesian inference
models [Geib and Goldman, 2009], dynamic Bayesian
networks [Duong et al., 2009], and Markov logic networks
[Baikadi et al., 2014; Ha et al., 2011; Singla and Mooney,
2011].

Digital games have proven to be a valuable testbed for
investigating plan, activity, and intent recognition. [Kabanza
et al., 2013] presented a heuristic weighted model counting
algorithm that enables recognition of upper and lower
bounds of posterior probabilities of goals in real-time
strategy games. Closely related to this work, [Ha et al.,
2011] used Markov logic networks (MLNs) to recognize
player goals in an educational game, yielding significant
improvements in goal recognition accuracy relative to
previous n-gram and Bayesian network approaches [Mott et
al., 2006]. MLN-based goal recognition has been further
explored by [Baikadi et al., 2014]. Their work investigated
narrative discovery events, domain-specific representations
of player progress through the game, in MLNs, and

demonstrated improved performance relative to the models
reported in [Ha et al., 2011].

Recent years have witnessed an explosion of interest in
deep learning, which has contributed to significant advances
in computer vision, speech recognition and natural language
processing [LeCun et al., 2015]. Deep learning has also
been investigated in goal and plan recognition. [Bisson et
al., 2015] presented recursive neural network-based
decision models and evaluated the approach on three plan
recognition benchmark domains including StarCraft, a
real-time strategy game. Recursive neural networks [Socher
et al., 2010] have demonstrated potential as a computational
plan recognizer by outperforming a probabilistic
plan-library based approach and an inverse planning
approach. [Min et al., 2014] investigated stacked denoising
autoencoder pre-trained feedforward neural networks for
goal recognition in an educational game, which significantly
outperformed the previous state-of-the-art MLN models in
[Ha et al., 2011]. Compared to the MLN-based approaches
[Baikadi et al., 2014; Ha et al., 2011], which used a
combination of hand-authored logic formulae and
machine-learned weights, this deep learning approach
eliminated labor-intensive feature engineering efforts by
utilizing multi-level feature abstraction techniques. The
approach presented in this paper is the first to examine goal
recognition with long short-term memory networks
leveraging distributed action representations, which
effectively model temporal information characterized in
observation sequences of player behavior.

Figure 1. CRYSTAL ISLAND virtual environment.

3 Goal Recognition Corpus
CRYSTAL ISLAND (Figure 1) is an open-world educational
game for middle school science. In the game players are
tasked with identifying the cause of an illness afflicting a
team of scientists on a remote island research camp.
Implemented as a Half-Life 2 mod, CRYSTAL ISLAND’s
gameplay is similar to many exploration-centric games in
which players experience the world from a first-person
viewpoint and perform actions such as navigating from one
location to another, discovering important items, picking up
objects, and talking with non-player characters. CRYSTAL
ISLAND’s non-linear narrative consists of seven key goals
that players must accomplish to complete the game. Five of
these goals involve speaking with non-player characters

2591

about the spreading illness, while the remaining two involve
testing contaminated food in the camp’s laboratory and
submitting a completed diagnosis to the camp nurse.
CRYSTAL ISLAND has been shown to provide substantial
increases in both learning and motivation [Rowe et al.,
2011] through a series of empirical studies.

During gameplay, CRYSTAL ISLAND logs all player
actions, which can be retrieved for offline data analysis. The
data used in the evaluation of our goal recognition model
was collected during a study involving 153 eighth grade
students from a middle school. Due to incomplete data or
prior experience playing the game, data from 16 participants
was removed. Our goal recognition corpus is composed of
data from the remaining 137 participants.

It should be noted that players’ action sequences do not
necessarily represent optimal paths for achieving goals in
CRYSTAL ISLAND. Rather, action sequences are often
sub-optimal or noisy; players explore the virtual
environment in order to familiarize themselves with the
gameworld and often do not utilize the most efficient
problem-solving strategies available. For example, in
pursuit of a goal, Test the Contaminated Food, one player in
our dataset performed 86 actions. These actions began with
six actions encoded as Talk with the Camp Nurse, each
corresponding to a dialogue turn during a branching
conversation with one of the game’s non-player characters.
After several more actions in the infirmary, the player
embarked on an exploration of the gameworld using
multiple Move actions to different locations. The player
actions continued in this manner: the player made gradual
but circuitous progress toward the next objective, eventually
culminating with the final action that achieved the goal.

4 Long Short-Term Memory Network-Based
Goal Recognition

Due to the exploratory nature of player behavior in
open-world digital games, goal recognition models should
robustly handle cyclical relationships between player goals
and actions [Ha et al., 2011]. Players’ previously achieved
goals may inform their subsequent actions, and their current
actions may influence their upcoming goals. Consequently,
extracting patterns from sequences of player actions and
goals is likely to provide strong evidence to predict the next
high-level objective that a player will achieve. These
characteristics of open-world digital games inspire our
investigation of long short-term memory networks (LSTMs)
[Hochreiter and Schmidhuber, 1997] for goal recognition. In
this work, players’ sequential interaction data is encoded
using distributed action representations, which serve as the
input to LSTMs. We present a brief overview of LSTMs,
the input data encoding method, the distributed
representation learning procedure for the action-based input
data, and the LSTM-based goal recognition framework.

4.1 LSTM Background
LSTMs are a variant of recurrent neural networks (RNNs)
that are specifically designed for sequence labeling of

temporal data. LSTMs have achieved high predictive
performance in various sequence labeling tasks, often
outperforming standard recurrent neural networks by
leveraging a longer-term memory than standard RNNs,
preserving short-term lag capabilities, and effectivly
addressing the vanishing gradient problem [Graves, 2012].

LSTMs (Figure 2A) feature a sequence of memory blocks
that include one or more self-connected memory cells along
with three gating units: an input gate, a forget gate, and an
output gate [Graves, 2012]. In LSTMs, the input and output
gates modulate the incoming and outgoing signals to the
memory cell, and the forget gate controls whether the
previous state of the memory cell is remembered or
forgotten.

In this LSTM implementation, the input gate (!!), forget
gate (!!), and candidate memory cell state (!!) at time t are
computed by Equations (1) – (3), respectively, in which W
and U are weight matrices for the input (!!) at time t and the
cell output (ℎ!!!) at time t-1, b is the bias vector of each
unit, and σ and tanh are the logistic sigmoid and hyperbolic
tangent function, respectively.

!! = !(!!!! + !!ℎ!!! + !!) (1)
!! = !(!!!! + !!ℎ!!! + !!) (2)

!! = !"#ℎ(!!!! + !!ℎ!!! + !!) (3)

Once these three vectors are computed, the current
memory cell’s state is updated to a new state (!!) by
modulating the current memory candidate value (!!) via the
input gate (!!) and the previous memory cell state (!!!!) via
the forget gate (!!). Through this process, a memory block
decides whether to keep or forget the previous memory cell
state via the forget gate and regulates the candidate of the
current memory cell state via the input gate. This step is
described in Equation (4):

!! = !!!! + !!!!!! (4)

In Equation (5), the output gate (!!), similarly calculated
as in Equations (1) – (3), is utilized to compute the memory
cell output (ℎ!) of the LSTM memory block at time t, based
on the updated cell state (!!) as in Equation (6):

!! = !(!!!! + !!ℎ!!! + !!) (5)
ℎ! = !! !"#ℎ(!!) (6)

Once the cell output (ℎ!) is calculated at time t, the next
step is to use the computed cell output vector to predict the
label of the current training example. For player goal
recognition, we use the final cell output vector, assuming
that ℎ! captures long-term dependencies from the previous
time steps.

4.2 Data Encoding for Goal Recognition
We cast goal recognition as a multiclass classification
problem in which a trained classifier predicts the most likely
goal associated with the currently observed sequence of
actions after the previously observed goal. We assume that a
given sequence of actions maps to a single goal, and no
interleaving occurs between actions associated with
different goals, since the goal recognition corpus does not

2592

Figure 2. (A) An illustration of LSTMs [Graves, 2012] for goal recognition. The cell output vector, ℎ!, is utilized to predict the goal
associated with xt at time t using a softmax layer. (B) A distributed action representation (xt) generated from a discrete action representation
(inputt). An action-property embedding matrix linearly maps each action property (i.e., action type, action location, narrative state,
previously achieved goals) in a discrete vector space onto a continuous vector space, and all N+3 continuous vectors are concatenated to
generate a single distributed action representation, xt (N=7 in this work). The induced xt is fed into the LSTM memory block at time t.

lend itself to this type of analysis. In this setting, all actions
that precede the current goal, but follow the previous goal,
are labeled with the current goal, and all actions taken after
achievement of the last goal are ignored, since these actions
might not be directly related to gameplay goal pursuit.

A player action is encoded with four properties: action
type, action location, narrative state (the player’s progress
in solving the game’s narrative), and previously achieved
goals [Min et al., 2014]. In CRYSTAL ISLAND, a player
action can be “Talk (action type) with the Camp Nurse at the
Camp Infirmary (action location), after having achieved
Speak with the Camp Cook about Recently Eaten Food
(previously achieved goal) while having just completed the
narrative milestone of Submit a Diagnosis to the Camp
Nurse (narrative state).” In our work, action types include
19 distinct types of player actions, action location includes
39 non-overlapping sub-locations within the gameworld,
narrative states contain 8 possible values based on the
interactive storyline’s plot structure, and there are 8 possible
goals that could be previously achieved, which includes
‘None’ in case the player has not yet achieved any goals.
Note that the set of these four action properties was initially
devised to be scalable to general digital games [Ha et al.,
2011] and can be adjusted according to characteristics of the
game being investigated by adding specific properties that
are expected to contribute to goal recognition or removing
properties that are not applicable to the game.

To represent an action input in our work, we utilize a
10-dimensional discrete vector (Figure 2B). The first three

dimensions of the vector are allocated to represent the action
type, action location, and current narrative state with
integer-based indices, while the following seven dimensions
represent a sequence of previously achieved goals (seven
goals in total in this work) also with integer-based indices.
Note that since (1) the goals are often achieved after many
time steps (the average number of player actions per goal is
86.4 according to [Ha et al., 2011]), and (2) action
sequences longer than a threshold (k) are cut to utilize the
last k actions for the training efficiency in this work, we
explicitly encode the previously achieved goals in the input.

4.3 Distributed Action Representations
Inspired by advances in distributed vector representations of
text (e.g., words, sentences) [Bengio et al., 2003; Le and
Mikolov, 2014], this work investigates distributed
representations of actions for goal recognition. Distributed
representations of words have been examined with a range
of neural networks [Bengio et al., 2003; Le and Mikolov,
2014], and they have been investigated in a wide range of
natural language processing tasks, such as language
modeling [Bengio et al., 2003], language parsing [Socher et
al., 2010] and sentiment analysis [Le and Mikolov, 2014].

In our work, an action consists of multiple properties, so
distributed action representations are managed on a
per-property basis. To operationalize this, a comprehensive
action-property embedding matrix, the size of which is 74
(the total number of possible values of action properties
computed as 19+39+8+8) by d (embedding size), is created

2593

(Figure 2B). The action-property embedding matrix is
learned in two different ways: (1) the matrix is randomly
initialized following a uniform distribution (max: 0.05, min:
-0.05) and is fine-tuned during supervised machine learning,
and (2) the matrix is randomly initialized following the
same uniform distribution and is pre-trained following a
language modeling approach [Bengio et al., 2003] (i.e.,
predicting the next action based on a sequence of previous
actions), and is then fine-tuned during supervised learning.
We denote the first approach as supervised embedding and
the second approach as pre-trained embedding. For the
pre-trained embedding approach, we utilize another LSTM
model to predict the next action based on a sequence of
prior actions, and train the model using only player action
data without goal labels.

4.4 LSTM-Based Goal Recognition
Each instance of training data consists of a sequence of
actions and its goal label. For example, if three actions, x1,
x2, and x3, are taken to achieve the goal (g), three data
examples are generated: (1) [x1] for g, (2) [x1, x2] for g, and
(3) [x1, x2, x3] for g. Each action in the sequence is encoded
with a single distributed representation by concatenating the
ten action property-based representations that constitute the
action. The process for creating this distributed action
representation is shown in Figure 2B. The action property
embedding matrix manages the linear mapping from a
discrete action property index to a d-dimensional continuous
vector space. Since a distributed action representation is
created by concatenating all ten d-dimensional vectors, the
size of a distributed representation becomes ten times d for
the action, xt.

At recognition time, a sequence of actions is sequentially
fed into the LSTM model in the recurrent neural network
formalism. The memory cell state and output at the previous
time step are used to compute the cell state and output at the
current time step. The final memory cell output vector (ht in
Figure 2A) is used to predict the most likely goal for the
sequence of actions in a softmax layer, which is interpreted
as a calculation of posterior probabilities of goals.

For hyperparameter optimization of our LSTM-based
goal recognition models, we perform a grid search and
empirically determine an optimal configuration of the
networks through cross validation. In this work, we explore
three hyperparameters: the size of the action property
embedding among {10, 20}, the number of hidden units
among {100, 200}, the dropout rate [LeCun et al., 2015]
among {0.5, 0.75}, all of which have significant potential to
influence the proposed LSTM-based goal recognition
performance. Other than these, we use a softmax layer for
classifying given sequences of actions, adopt a mini-batch
gradient descent with the mini-batch size of 128, and utilize
categorical cross entropy for the loss function and a
stochastic optimizer. For training efficiency, action
sequences greater than ten are pruned to keep only the last
ten actions. Finally, the training process stops early if the
validation score has not improved within the last seven
epochs. In this work, 10% of the training data is used to

determine early stopping, while 90% is utilized for
supervised training. The maximum number of epochs is set
to 100.

For pre-trained embedding, an additional LSTM is trained
to learn initial action property representations prior to
building the LSTM goal recognizer. For this model, we use
a sigmoid layer for predicting the next action for a given
sequence of actions along with the binary cross entropy for
the loss function, casting it as a multi-label classification
task predicting the ten features that constitute an action. All
other hyperparameters are identically applied as in the goal
recognition model, except that the pre-training process does
not use early stopping but instead uses a fixed number of
epochs (100), since this unsupervised approach is not likely
to exhibit overfitting, and the pre-trained representations
will be fine-tuned in the following supervised learning step
for the goal recognition model.

5 Evaluation
The game interaction data includes 77,182 player actions
and 893 achieved goals, with an average of 86.4 player
actions per goal. The distribution of the seven goals ranges
from 6.4% (“Speaking with the camp nurse”) to 26.6%
(“Running laboratory test on contaminated food”), which is
the majority class baseline [Ha et al., 2011]. The goal
recognition performance of LSTMs is evaluated relative to
two competitive baselines: (1) n-gram encoded feedforward
neural networks (FFNN) pre-trained with stacked denoising
autoencoders [Min et al., 2014], a previous state-of-the-art
approach and (2) Markov logic networks (MLN) reported in
[Baikadi et al., 2014], another previous state-of-the-art
approach. All models are evaluated using 10-fold cross
validation using the same data split for pairwise
comparisons.

Goal recognition model performance is measured using
accuracy rate, convergence rate, and convergence point
[Baikadi et al., 2014; Min et al., 2014] in order to capture
the multi-dimensional nature of goal recognition
performance. Convergence rate refers to the percentage of
observation sequences in which the final goal prediction is
correct. A higher number is better for this metric.
Convergence point refers to the proportion of an action
sequence after which the goal recognizer begins to make
correct goal predictions for the remainder of the sequence.
More formally, convergence point is calculated by

(!!/!!)!
!!! /!, in which m is the number of converged

action sequences, and ni and ki are the total number of
actions and the number of actions after which the goal
recognizer consistently makes accurate predictions in the ith
converged action sequence, respectively. This metric
indicates how early a goal recognizer can inform the system
about the player’s current goal. A lower score is better for
this metric.

In the evaluation, the FFNN model was initialized using
hyperparameter search. The MLN model was developed
through manual feature engineering by a domain expert.
Two sets of LSTM results are reported. The results vary
based upon whether the LSTM utilized pre-training of

2594

action property representations. The two models are denoted
as LSTM-S (supervised embedding) and LSTM-P
(pre-trained embedding).

Table 1 presents results for the three computational goal
recognition approaches. LSTM-S achieves the highest goal
recognition accuracy of 66.3%. In this table, only the model
that achieves the highest cross-validation accuracy per
approach is reported. Convergence rate and convergence
point are calculated based on the model with the highest
accuracy.

 MLN FFNN LSTM-P LSTM-S
Accuracy Rates 54.63 62.30 66.25 66.34

Convergence Rates 50.06 70.90 76.25 78.54
Convergence Points 35.86 42.82 68.13 69.66

Table 1. Accuracy rate (%), convergence rate (%) and convergence
point (%) results for the best performing LSTM, FFNN, and MLN
models under 10-fold cross validation.

Both the LSTM-S and LSTM-P models achieve the
greatest accuracy when configured with an action property
embedding size of 20, 100 hidden units, and a dropout rate
of 0.75. For pairwise comparisons of the three
computational approaches (MLN, FFNN, and LSTM-S), we
run a Friedman non-parametric statistical test followed by
Wilcoxon non-parametric post-hoc tests based on the
fold-level cross-validation results. The Friedman test finds a
significant difference in accuracy rates across the models,
χ2(2)=14.6, p=0.001. Wilcoxon tests applied with the
Holm-Bonferroni correction indicate that there are
significant improvements in accuracy rates for LSTM-S
over FFNN (p=0.022), LSTM-S over MLN (p=0.005), and
FFNN over MLN (p=0.013).

Additionally, LSTM-based goal recognition is found to
make more accurate predictions on the last action (LSTM-S:
78.5%, LSTM-P: 76.3%) than competitive baselines. On the
other hand, LSTMs are found to have the latest convergence
point, which indicates that the models’ predictions slowly
converge to the correct goal after observing longer
sequences of actions. This result can be partially explained
by the inherent tension between a high convergence rate and
low convergence point. Accurate goal recognizers make
correct goal predictions, even on noisy sequences of actions,
which increases the number of converged action sequences,
and thus the convergence rate. But goal recognition that
occurs early in an observation sequence, especially with
noisy data, is more often wrong, thereby yielding higher
values for their convergence point.

It is notable that LSTM-S (66.34%) and LSTM-P
(66.25%) are competitive to each other. We did not find
evidence of a statistically significant difference in predictive
accuracy between the two models. Considering that both
models achieve the highest accuracy with the same set of
network hyperparameters, it may be that hyperparameter
selection has a more significant influence on model
performance than pre-training in inducing distributed action
representations. To examine the individual impacts of the
three hyperparameters optimized through grid search, the
two highest performing LSTMs, both with (embedding size,

hidden units, dropout rate) of (20, 100, 0.75) are compared
to the their alternate models in terms of the 10-fold
cross-validation results (Table 2).

Among the hyperparameters, only the number of LSTM
hidden units commonly results in sizable difference in
accuracy rate. This finding is echoed in [Bergstra and
Bengio, 2012], which found that only a few
hyperparameters substantially impact model performance.
Identifying important hyperparameters informs directions
for future work to obtain more accurate goal recognizers.

 Dropout
(0.5)

Hidden units
(200)

Embedding
(10) Highest

LSTM-S 65.13 62.21 65.36 66.34
LSTM-P 64.44 63.31 64.57 66.25

Table 2. Averaged hyperparameter level accuracy rates (%) where
Dropout (0.5) denotes (20, 100, 0.5), Hidden units (200) denotes
(20, 200, 0.75), and Embedding (10) denotes (10, 100, 0.75).

6 Conclusion
Open-world digital games provide an ideal laboratory for
investigating computational models of goal recognition. A
key challenge in goal recognition is devising predictive
models that accurately recognize player goals based on
game interaction logs containing noisy data due to player
exploration and minimally goal-directed behavior. This
paper has introduced a goal recognition framework that
leverages long short-term memory networks (LSTMs) and
distributed action representations, which significantly
outperforms previous state-of-the-art approaches with
respect to predictive accuracy. Additionally, LSTMs
demonstrate higher convergence rates over competitive deep
learning and non-deep learning-based baselines. The LSTM
goal recognition framework achieves these results without
requiring labor-intensive manual feature engineering often
required by other machine learning approaches.

In the future it will be important to investigate forms of
recurrent neural networks that use fewer parameters. In
addition, model optimization can be examined either by
utilizing different optimizers or identifying an optimal
configuration of hyperparameters. Further, it will be
important to devise additional metrics that quantify
unmeasured aspects of goal recognizer performance. For
example, in spite of its broad utilization, the convergence
point metric does not thoroughly measure models’ early
prediction capability because it ignores action sequences
that do not converge. It will also be important to investigate
the impact of distributed action representations on LSTM
goal recognition performance. In this paper, we did not
isolate the effects of the LSTM models’ action-property
embedding layer. Finally, it will be important to investigate
how goal recognition models operate at run-time within
open-world digital game environments to understand how
goal recognizers can most effectively drive gameplay
personalization in player-adaptive games.

2595

References
[Baker et al., 2009] C. Baker, R. Saxe, and J. Tenenbaum.

Action understanding as inverse planning. Cognition,
113(3):329–349, 2009.

[Baikadi et al., 2014] A. Baikadi, J. Rowe, B. Mott, and J.
Lester. Generalizability of Goal Recognition Models in
Narrative-Centered Learning Environments. In
Proceedings of the 22nd Conference on User Modeling,
Adaptation, and Personalization, pages 278–289, 2014.

[Bengio et al., 2003] Y. Bengio, R. Ducharme, P. Vincent,
and C. Janvin. 2003. A Neural Probabilistic Language
Model. The Journal of Machine Learning Research,
3:1137–1155, 2003.

[Bergstra and Bengio, 2012] J. Bergstra and Y. Bengio.
Random Search for Hyper-Parameter Optimization.
Journal of Machine Learning Research, 13:281–305,
2012.

[Bisson et al., 2015] F. Bisson, H. Larochelle, and F.
Kabanza. Using a Recursive Neural Network to Learn an
Agent’s Decision Model for Plan Recognition. In
Proceedings of the 24th International Joint Conference
on Artificial Intelligence, pages 918–924, 2015.

[Duong et al., 2009] T. Duong, D. Phung, H. Bui, and S.
Venkatesh. Efficient duration and hierarchical modeling
for human activity recognition. Artificial Intelligence,
173(7-8):830–856, 2009.

[Geib and Goldman, 2009] C. Geib and R. Goldman. A
probabilistic plan recognition algorithm based on plan
tree grammars. Artificial Intelligence, 173(11):1101–
1132, 2009.

[Graves, 2012] A. Graves. Supervised Sequence Labelling
with Recurrent Neural Networks. Studies in
Computational Intelligence, Springer, 2012.

[Ha et al., 2011] E. Ha, J. Rowe, B. Mott, and J. Lester.
Goal Recognition with Markov Logic Networks for
Player-Adaptive Games. In Proceedings of the Seventh
AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, pages 32–39, 2011.

[Harrison et al., 2015] B. Harrison, S. Ware, M. Fendt, and
D. Roberts. A Survey and Analysis of Techniques for
Player Behavior Prediction in Massively Multiplayer
Online Role-Playing Games. IEEE Transactions on
Emerging Topics in Computing, 3(2): 260–274, 2015.

[Hochreiter and Schmidhuber, 1997] S. Hochreiter and J.
Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1–32, 1997.

[Kabanza et al., 2013] F. Kabanza, J. Filion, A. Rezak
Benaskeur, and H. Irandoust. Controlling the hypothesis
space in probabilistic plan recognition. In Proceedings of
the 23rd International Joint Conference on Artificial
Intelligence, pages 2306–2312, 2013.

[Kautz and Allen, 1986] H. Kautz and J. Allen. Generalized
Plan Recognition. In Proceedings of the Fifth National
Conference on Artificial Intelligence, pages 32–38, 1986.

[Le and Mikolov, 2014] Q. Le and T. Mikolov. Distributed
Representations of Sentences and Documents. In
Proceedings of the 31st International Conference on
Machine Learning, pages 1188–1196, 2014.

[LeCun et al., 2015] Y. LeCun, Y. Bengio, and G. Hinton.
Deep learning. Nature, 521(7553): 436–444, 2015.

[Lopes and Bidarra, 2011] R. Lopes and R. Bidarra.
Adaptivity challenges in games and simulations: A
survey. IEEE Transactions on Computational
Intelligence and AI in Games, 3(2):85–99, 2011.

[Min et al., 2014] W. Min, E. Ha, J. Rowe, B. Mott and J.
Lester. Deep Learning-Based Goal Recognition in
Open-Ended Digital Games. In Proceedings of the 10th
AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, pages 37–43, 2014.

[Mott et al., 2006] B. Mott, S. Lee, and J. Lester.
Probabilistic goal recognition in interactive narrative
environments. In Proceedings of the 21st National
Conference on Artificial Intelligence, pages 187–192,
2006.

[Riedl and Bulitko, 2013] M. Riedl and V. Bulitko.
Interactive Narrative: An Intelligent Systems Approach.
AI Magazine, 34(1):67–77, 2013.

[Rowe et al., 2011] J. Rowe, L. Shores, B. Mott, and J.
Lester. Integrating learning, problem solving, and
engagement in narrative-centered learning environments.
International Journal of Artificial Intelligence in
Education. 21(1-2):115–133, 2011.

[Shaker et al., 2015] N. Shaker, J. Togelius, and M. J
Nelson. Procedural Content Generation in Games: A
Textbook and an Overview of Current Research.
Springer, 2015.

[Singla and Mooney, 2011] P. Singla and R. Mooney.
Abductive Markov logic for plan recognition. In
Proceedings of the 25th National Conference on
Artificial Intelligence, pages 1069–1075, 2011.

[Socher et al., 2010] R. Socher, C. Manning, and A. Ng.
Learning continuous phrase representations and syntactic
parsing with recursive neural networks. In Proceedings
of the NIPS-2010 Deep Learning and Unsupervised
Feature Learning Workshop, pages 1–9, 2010.

[Squire, 2008] K. Squire. Open-ended video games: A
model for developing learning for the interactive age.
The ecology of games: Connecting youth, games, and
learning, pages 167–198, 2008.

[Sukthankar et al., 2014] G. Sukthankar, C. Geib, H. Bui, D.
Pynadath, and R. Goldman. Plan, activity, and intent
recognition: Theory and practice. Newnes, 2014.

[Yannakakis et al., 2013] G. Yannakakis, P. Spronck, D.
Loiacono, and E. André. Player Modeling. Artificial and
Computational Intelligence in Games, 6:45–59, 2013.

2596

