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Abstract

Creating new ties in a social network facilitates
knowledge exchange and affects positional advan-
tage. In this paper, we study the process, which we
call network building, of establishing ties between
two existing social networks in order to reach cer-
tain structural goals. We focus on the case when
one of the two networks consists only of a single
member and motivate this case from two perspec-
tives. The first perspective is socialization: we ask
how a newcomer can forge relationships with an
existing network to place herself at the center. We
prove that obtaining optimal solutions to this prob-
lem is NP-complete, and present several efficient
algorithms to solve this problem and compare them
with each other. The second perspective is network
expansion: we investigate how a network may pre-
serve or reduce its diameter through linking with a
new node, hence ensuring small distance between
its members. For both perspectives the experiment
demonstrates that a small number of new links is
usually sufficient to reach the respective goal.

1 Introduction

The creation of interpersonal ties has been a fundamental
question in the structural analysis of social networks. While
strong ties emerge between individuals with similar social cir-
cles, forming a basis of trust and hence community structure,
weak ties link two members who share few common contacts.
The influential work of Granovetter reveals the vital roles of
weak ties: It is weak ties that enable information transfer be-
tween communities and provide individuals positional advan-
tage and hence influence and power [Granovetter, 1973].
Natural questions arise regarding the establishment of
weak ties between communities: How to merge two depart-
ments in an organization into one? How does a company es-
tablish trade with an existing market? We refer to such ques-
tions as network building. The basic setup involves two net-
works; the goal is to establish ties between them to achieve
certain desirable properties in the combined network. A real-
life example of network building is the inter-marriages be-
tween members of the Medici, the leading family of Renais-
sance Florence, and numerous other noble Florentine fami-
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lies, towards gaining power and control over the city[Jackson,
2006]. Another example is by Paul Revere,a prominent Pa-
triot during the American Revolution, who strategically cre-
ated social ties to raise a militia [Uzzi and Dunlap, 2005].
The examples of the Medici and Paul Revere pose a more
restricted scenario of network building: Here one of the two
networks involved is only a single node, and the goal is to es-
tablish this node in the other network. We motivate this setup
from two directions: 1) This setup amounts to the problem of
socialization: the situation when a newcomer joins a network
as an organizational member. A natural question for the new-
comer is the following: How should I forge new relationships
in order to take an advantageous position in the organization?
As indicated in [Morrison, 2002], socialization is greatly in-
fluenced by the social relations formed by the newcomer with
“insiders” of the network. 2) This setup also amounts to the
problem of network expansion. For example, an airline ex-
pands its existing route map with a new destination, while
trying to ensure a small number of legs between any cities.
Distance is an important measure of the amount of influ-
ence one may exert to another in the network [Leskovec et
al., 2007]. The radius of a network refers to the maximal dis-
tance from a central member to all others in a network. Hence
when a newcomer joins an established network, it is in the in-
terest of the newcomer to keep her distance to others bounded
by the radius. The diameter of a network refers to the longest
distance between any two members. It has long been argued
from network science that small-world property — the prop-
erty that any two members of a network are linked by short
paths — improves network robustness and facilitates informa-
tion flow [Wang and Chen, 2003]. Hence it is in the interest
of the network to keep the diameter small as the network ex-
pands. Furthermore, each relation requires time and effort to
establish and maintain; thus one is interested in minimizing
the number of new ties while building a network.
Contribution. The novelty of this work is in proposing a for-
mal, algorithmic study of organizational socialization. More
specifically we investigate the following network building
problems: Given a network GG, add a new node v to GG and
create as few ties as possible for u such that:
(1) w is in the center of the resulting network; or
(2) the diameter of the resulting network is not larger than a
specific value.

Intuitively, (1) asks how a newcomer v may optimally con-
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nect herself with members of G, so that she belongs to the
center. We prove that this problem is in fact NP-complete
(Theorem 1). Nevertheless, we give several efficient algo-
rithms for this problem; in particular, we demonstrate a “sim-
plification” process that significantly improves performance.
Intuitively, (2) asks how a network may preserve or reduce
its diameter by connecting with a new member u. We show
that “preserving the diameter” is trivial for most real-life net-
works and give two algorithms for “reducing the diameter”.
We experimentally test and compare the performance of all
our algorithms. Quite surprisingly, the experiments demon-
strate that a very small number of new edges is usually suffi-
cient for each problem even when the graph becomes large.
Related works. This work is predated by organizational be-
havioral studies [Sherman et al., 1986; Jablin and Krone,
1987; Morrison, 2002], which look at how social ties affect a
newcomer’s integration to the organization. Uzzi and Dunlap
in [2005] argue brokers — those who bridge and connect to di-
verse groups of individuals — enable good network building;
creating ties with brokers, and even becoming a broker one-
self allows a person to access private information, wide skill
set and hence gain power. Network building has also been
applied to various other contexts such as economics (strategic
alliance of companies) [Stuart, 1998] and governance (form-
ing inter-government contracts) [Andrew, 2010]. Compared
to these works, the novelty here is in proposing a formal
framework of network building, which employs techniques
from complexity theory and algorithmics.

This work is also related to two forms of network forma-
tion: dynamic models and agent-based models, both aim to
capture the natural emergence of social structures [Jackson,
2006]. The former originates from random graphs, viewing
the emergence of ties as a stochastic process which may or
may not lead to an optimal structure [Donetti e al., 2005;
Calude et al., 1997]. The latter comes from economics,
treating a network as a multiagent system where utility-
maximizing nodes establish ties in a competitive setting
[Kleinberg et al., 2008; Jackson, 2004]. Our work differs
from network formation as the focus here is on calculated
strategies that achieve desirable goals in the combined net-
work.

2 Networks Building: The Problem Setup

We view a network as an undirected unweighted connected
graph G = (V, E') where V is a set of nodes and E is a set of
(undirected) edges on V. We denote an edge {u,v} as uv. If
uv € E then v is said to be adjacent to u. A path (of length
k) is a sequence of nodes ug, u1,...,u, where u;u; 41 € E
for any 0 < i < k. The distance between u and v, denoted
by dist(u,v), is the length of a shortest path from u to v.
The eccentricity of u is ecc(u) = max,ey dist(u,v). The
diameter of the network G is diam(G) = max,cy ecc(u).
The radius rad(G) of G is min,cy ecc(u). The center of G
is the set C(G) = {u € V' | ecc(u) = rad(G)}.

Definition 1. Ler G = (V, E) be a network and u be a node
notin' V. For S C V, denote by Eg the set of edges {uv |
v € S}. Define G ®g u as the graph (V U {u}, EU Eg).

We require that S # & and thus G @ g w is a network built
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by incorporating v into G. By [Uzzi and Dunlap, 2005], for
a newcomer u to establish herself in G it is essential to iden-
tify information brokers who connect to diverse parts of the
network. Following this intuition, we define a broker set as
any S C V such that ecc(u) = rad(G @ u); namely, linking
with S enables u to get in the center of the network.

Formally, given a network G = (V, E), the problem of net-
work building for u means selecting a set S C V' so that the
combined network GG @ g u satisfies certain conditions. More-
over, the desired set S should contain as few nodes as possi-
ble. We focus on the following two key problems:

1. BROKER: S is a broker set.
2. DIAMA: diamG@su) <A for a given A < diam(G).

In the network G @y u, ecc(u) = 1 = rad(G @y u) and
diam(G @y u) = 2. Hence a desired S must exist for
BROKER and DIAMA where A > 2. In the subsequent sec-
tions we systematically investigate these two problems.

3 How to Be in the Center? Complexity and
Algorithms for BROKER

3.1 Complexity

We investigate complexity of the problem BROKER(G, k):
Given G, k, does G have a broker set of size k?

The problem is trivial if G has radius 1, as then V' is the
only broker set. When rad(G) > 1, we recall the notion of
dominating set, which refers to a set S' of nodes where every
node not in S is adjacent to at least one member of S. The
domination number v(G) is the size of a smallest dominating
set for G. The DOM(G, k) problem concerns testing whether
~v(G) < k for a given graph G and input k; it is a classical
NP-complete decision problem [Garey and Johnson, 1979].

Theorem 1. BROKER(G, k) is NP-complete.

Proof. BROKER(G, k) is clearly in NP. Therefore we only
show NP-hardness. We present a reduction from DOM(G, k)
to BROKER(G, k). Note that when rad(G) = 1, v(G) =
1. Hence DOM(G, k) remains NP-complete if we assume
rad(G) > 1. Given a graph G = (V, E) where rad(G) > 1,
we construct a graph H. The set of nodes in H is {v; | v €
V,1 < < 3}. The edges of H are as follows:

e Add an edge v;v;41 foreveryv € V,1 <7 <3

e Add an edge v;w; forevery v,w € V

e Add an edge vow, for every edge vw € E
Namely, for each node v € V' we create three nodes vy, vo, v
which form a path. We link the nodes in {v; | v € V} to form
a complete graph, and nodes in {vy | v € V'} to form a copy
of G. Since rad(G) > 2, for eachnode v € V thereisw € V
with dist(v,w) > 2. Hence in H, dist(vs,ws) > 4, and
dist(vg, w3) > 3. As the longest distance from any v; to any
other node is 3, we have rad(H) = 3.

Suppose S is a dominating set of G. If we add all edges uv
where v € D = {vg | v € S}, ecc(u) = 3 =rad(H ®p w).
Hence D is a broker set for . Thus the size of a minimal
broker set of H is at most the size of a minimal dominating
set of G. Conversely, for any set D of nodes in H, define
the projection p(D) = {v | v; € D forsomel < i < 3}.



Suppose p(D) is not a dominating set of G. Then there is
some v € V such that for all w € p(D), dist(vy, ws) > 2.
Thus if we add all edges in {ux | z € D}, dist(u, vs) > 4.
But then ecc(w;) = 3 for any w € p(D). So D is not a
broker set. This shows that the size of a minimal dominating
set of GG is at most the size of a minimal broker set.

The above argument implies that the size of a minimal bro-
ker set for H coincides with the size of a minimal dominating
set for G. This finishes the reduction and hence the proof. [

3.2 Efficient Algorithms

Theorem 1 implies that computing optimal solution of
BROKER is computationally hard. Nevertheless, we next
present a number of efficient algorithms that take as input a
network G = (V, E) with radius r and output a small broker
set S for G. A set S C V is called sub-radius dominating
if for all v € V not in S, there exists some w € S with
dist(v,w) < r. Our algorithms are based on the following
fact, which is clear from definition:

Fact 1. Any sub-radius dominating set is also a broker set.

(a) Three greedy algorithms. We first present three greedy
algorithms; each algorithm applies a heuristic that iteratively
adds new nodes to the broker set S. The starting configu-
ration is S = @ and U = V. During its computation, the
algorithm maintains a subgraph F' = (U, EU), which is in-
duced by the set U of all “uncovered” nodes, i.e., nodes that
have distance > (r — 1) from any current nodes in S. It re-
peatedly performs the following operations until U = &, at
which point it outputs S:

1. Select a node v € U based on the corresponding heuris-
tic and add v to S.

2. Compute all nodes at distance at most (r — 1) from v.
Remove these nodes and all attached edges from F'.

Algorithm 1: Max (Max-Degree). The first heuristic is
based on the intuition that one should connect to the person
with the highest number of social ties; at each iteration, it
adds to S a node with maximum degree in the graph F'.
Algorithm 2: Btw (Betweenness). The second heuristic is
based on betweenness, an important centrality measure in net-
works [Barthelemy, 2004]. More precisely, the berweenness
of a node v is the number of shortest paths from all nodes to
all others that pass through v. Hence high betweenness of v
implies, in some sense, that v is more likely to have short dis-
tance with others. This heuristic works in the same manner
as Max but picks nodes with maximum betweenness in F'.
Algorithm 3: ML (Min-Leaf). The third heuristic is based
on the following intuition: A node is called a leaf if it has
minimum degree in the network; leaves correspond to least
connected members in the network, and may become out-
liers once nodes with higher degrees are removed from the
network. Hence this heuristic gives first priority to leaves.
Namely, at each iteration, the heuristic adds to .S a node that
has distance at most » — 1 from v. More precisely, the heuris-
tic first picks a leaf v in F', then applies a sub-procedure to
find the next node w to be added to .S. The sub-procedure
determines a path v = uq,uq, ... in F iteratively as follows:
1. Suppose u; is picked. If 7 = r or u; has no adjacent node
in F), set u; as w and terminate the process.
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2. Otherwise select a u; 1 (which is different from wu;_1)
among adjacent nodes of u; with maximum degree.
After the process above terminates, the algorithm adds w to

S. Note that the distance between w and v is at most r — 1.

We mention that Algorithms 1,3 have been applied in
[Duckworth and Mans, 2005] to regular graphs, i.e., graphs
where all nodes have the same degree. In particular, ML has
been shown to produce small k-dominating sets for a given k
in the average case for regular graphs.
(b) Simplified greedy algorithms. One significant short-
coming of Algorithms 1-3 is that, by deleting nodes from
the network G, the network may become disconnected, and
nodes that could have been connected via short paths are no
longer reachable from each other. This process may produce
isolated nodes in F', i.e., nodes having degree 0, which are
subsequently all added to the output set S. Moreover, main-
taining the graph F' at each iteration also makes implemen-
tations more complex. Therefore we next propose simplified
versions of Algorithms 1-3.
Algorithms 4 S-Max, 5 S-Btw, 6 S-ML. The simplified al-
gorithms act in a similar way as their “non-simplified” coun-
terparts; the difference is that here the heuristic works over
the original network G as opposed to the updated network F'.
Hence the graph I’ is no longer computed. Instead we only
need to maintain a set U of “uncovered” nodes. The simpli-
fied algorithms have the following general structure: Start
from S = @ and U = V/, and repeatedly perform the follow-
ing until U = @, at which point output S:

1. Select a node v from U based on the corresponding

heuristic and add v to S.

2. Compute all nodes with distance < rad(G) from v, and
remove them from U.

We stress that here the same heuristics as described above

in Algorithms 1-3 are applied, except that we replace any

mention of “F” in the description with “U”, while all notions

of degrees, distances, and betweenness are calculated based
on the original network G.

As an example, in Fig. 1 we run Max and S-Max on the
same network and show how S-Max may output a smaller
sub-radius dominating set. We further verify via experiments
below that the simplified algorithms lead to much smaller out-
put S in almost all cases.

(c) Center-based algorithms. The 6 algorithms presented
above can all be applied to find k-dominating set for arbitrary
k > 1. Since our focus is in finding sub-radius dominating set
to answer the BROKER problem, we describe two algorithms
that are specifically designed for this task. When building the
network for a newcomer, it is natural to consider nodes that
are already in the center of the network G. Hence our two
algorithms are based on utilizing the center of G.

Algorithm 7 Center. The algorithm finds a center v in G
with minimum degree, then output all nodes that are adja-
cent to v. Since v belongs to the center, for all w € V, we
have dist(v, w) < rad(G) and thus there is v’ adjacent to v
such that dist(w,v") = dist(w,v) — 1 < rad(G). Hence the
algorithm returns a sub-radius dominating set. Despite its ap-
parent simplicity, Center returns surprisingly good results in
many cases, as shown in the experiments below.



(a) Node with max degree (b) Output sets

Figure 1: The network G has rad(G) = 4. Iteration 1: Both Max
and S-Max add the same green node into .S, U contains the red
nodes. S-Max outputs the green nodes {3, 13} in (b); Max outputs
the red-circled nodes {3, 18,14, 8,26} in (b).

Algorithm 8 Imp-Center. We present a modified version of
Center, which we call Imp-Center. The algorithm first picks
a center with minimum degree, and then orders all its neigh-
bors in decreasing degree. It adds the first neighbor to .S and
remove all nodes < (r — 1)-steps from it. This may discon-
nect the graph into a few connected components. Take the
largest component C'. If C' has a smaller radius than r, we
add the center of this component to S; otherwise we add the
next neighbor to S. We then remove from F’ all nodes at dis-
tance < (r — 1) from the newly added node. This procedure
is repeated until F' is empty. See Procedure 1. Fig. 2 shows
an example where Imp-Center out-performs Center.

Procedure 1 Imp-Center: Given G = (V, E)) (with radius r)

Pick a center node v in G with minimum degree d
Sort all adjacent nodes of v to a list uy, us, ..., uq in de-
creasing order of degrees
Set S+ Jandi+ 1
while U # @ do
Set C as the largest connected component in F
if rad(C) < rad(G) — 1 then
Pick a center node w of C. Set S + S U {w}
SetU <~ U\ {w' e U | dist(w,w’) < r}
else
Set S+ SU {’U/Z}
SetU <~ U\ {w € U | dist(u;,w') <r}
Seti+i+1
end if
Set I as the subgraph induced by the current U
end while
return S

The next theorem follows from Fact 1.
Theorem 2. Any of Alg. 1-8 outputs a broker set S for G.

3.3 Experiments for BROKER

We implemented the algorithms using Sage [Stein, 2012].
We apply two models of random graphs: The first (BA) is
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Figure 2: rad(G) = 3. The yellow node 0 is a center with min
degree 4. Thus Center outputs 4 nodes. The dark green node 29
adjacent to 0 has max degree; Red nodes are “uncovered” by 29.
Thus Imp-Center outputs the 3 blue circled nodes.

Barabasi-Albert’s preferential attachment model which gen-
erates scale-free graphs whose degree distribution of nodes
follows a power law; this is an essential property of numer-
ous real-world networks [Barbasi and Albert, 1999]. The
second (NWS) is Newman-Watts-Strogatz’s small-world net-
work [Newman et al., 2002], which produces graphs with
small average path lengths and high clustering coefficient.

For each algorithm we are interested in two indicators of its

performance: 1) Output size: The average size of the output
broker set (for a specific class of random graphs). 2) Opti-
mality rate: The probability that the algorithm gives optimal
broker set for a random graph. To compute this we need to
first compute the size of an optimal broker set (by brute force)
and count the number of times the algorithm produces opti-
mal solution for the generated graphs.
Experiment 1: Output sizes. We generate 300 graphs whose
numbers of nodes vary between 100 and 1000 using each
random graph model. We compute averaged output sizes of
generated graphs by their number of nodes n and radius r.
The results are shown in Fig. 3. From the result we see: a)
The simplified algorithms produce significantly smaller bro-
ker sets compared to their unsimplified counterparts. This
shows superiority of the simplified algorithms. b) BA graphs
in general allow smaller output set than NWS graphs. This
may be due to the scale-free property which results in high
skewness of the degree distribution.

Experiment 2: Optimality rates. For the second goal, we
compute the optimality rates of algorithms when applied to
random graphs, which are shown in Fig. 4a. For BA graphs,
the simplified algorithm S-ML has significantly higher opti-
mality rate (> 85%) than other algorithms. On the contrary,
its unsimplified counterpart ML has the worst optimality rate.
This is somewhat contrary to Duckworth and Mans’s work
showing ML gives very small solution set for regular graphs
[Duckworth and Mans, 2005]. For NWS graphs, several al-
gorithms have almost equal optimality rate. The three best
algorithms are S-Max, S-Btw and S-ML which have varying
performance for graphs with different sizes (See Fig. 4b).

Experiment 3: Real-world datasets. We test the algorithms
on several real-world datasets: The Facebook dataset, col-
lected from survey participants of Facebook App, consists
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of friendship relation on Facebook [McAuley and Leskovec,
2012]. Enron is an email network of the company made pub-
lic by the FERC [Leskovec et al., 2009]. Nodes of the net-
work are email addresses and if an address ¢ sent at least
one email to address j, the graph contains an undirected
edge from 7 to j. Coll and Col2 are collaboration networks
that represent scientific collaborations between authors pa-
pers submitted to General Relativity and Quantum Cosmol-
ogy category (Col1), and to High Energy Physics Theory cat-
egory (Col2) [Leskovec et al., 2007].

Results on the datasets are shown in Fig. 5. Btw and S-Btw
become too inefficient as it requires computing shortest paths
between all pairs in each iteration. Moreover, S-Max also did
not terminate within reasonable time for the Enron dataset.
Even though the datasets have many nodes, the output sizes
are in fact very small (within 10). In some sense, it means
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Facebook | Enron Coll Col2
Number of nodes | 4,039 33,969 4,158 8,638
Number of edges | 88,234 180,811 | 13,422 | 24,806
diameter 8 13 17 18
radius 4 7 9 10

Table 1: Network properties
that to become in the center even in a large social network, it
is often enough to establish only very few connections.
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Figure 5: The number of new ties for the four real-world networks

Among all algorithm Imp-Center has the best performance,
producing the smallest output set for all networks. Moreover,
for Enron, Coll and Col2, Imp-Center returns the optimal
broker set with cardinality 2. A rather surprising fact is, de-
spite straightforward seemingly-naive logic, Center also pro-
duces small outputs in three networks. This reflects the fact
that in order to become central it is often a good strategy to
create ties with the friends of a central person.

4 How to Preserve or Improve the Diameter?
Complexity and Algorithms for DIAMA

Let G = (V,E) be a network and v ¢ V. The DIAMa
problem asks for a set S C V such that the network G &g u
has diameter < A; we refer to any such S as A-enabling.
(a) Preserving the diameter. We first look at a special case
when A = diam(G), which has a natural motivation: How
can an airline expand its existing route map with an additional
destination while ensuring the maximum number of hops be-
tween any two destinations is not increased? We are inter-
ested in creating as few new connections as possible to reach
this goal. Let 0(G) denote the size of the smallest diam(G)-
enabling set for G. We say a graph is diametrically uniform
if all nodes have the same eccentricity.
Theorem 3. (a) If G is not diametrically uniform,6(G) =1.
(b) If G is complete, then 6(G) = |V|.
(c) If G is diametrically uniform and incomplete, then 1 <
0(G) < d where d is the minimum degree of any node in
G, and the upper bound d is sharp.

Proof. For (a), suppose G is not diametrically uniform. Take
any v where ecc(v) < diam(G). Then in the expanded net-
work G @,y u, we have ecc(u) = ecc(v)+1 < diam(G). (b)
is clear. For (c), Suppose G is diametrically uniform and in-
complete. For the lower bound, suppose Ygiam(c)—1(G) = 1.
Then there is some v € V with the following property: In
the network G' ®,) u we have ecc(u) < diam(G), which
means that ecc(v) < diam(G). This contradicts the fact that



G is diametrically uniform. For the upper bound, take a node
v € V with the minimum degree d. Let IV be the set of nodes
adjacent to v. From any node w # v, there is a shortest path
of length < diam(G) to v. This path contains a node in N.
Hence w is at distance < diam(G) — 1 from some node in N.
Furthermore as G is not complete, diam(G) > 2 and v is at
distance 1 < diam(G) — 1 from nodes in N.

In [Lokshtanov et al., 2013], calculating the exact value of
d(G) is shown to be complete for W[2], second level of the
W-hierarchy. Hence DIAM 4 is unlikely to be in P. On the
other hand, we argue that real-life networks are rarely diamet-
rically uniform. Hence by Thm. 3(a), the smallest number of
new connections needed to preserve the diameter is 1.

(b) Reducing the diameter. We now explore the question
DIAMA where 2 < A < diam(G); this refers to the goal
of placing a new member in the network and creating ties to
allow a closer distance between all pairs of members. We
suggest two heuristics to solve this problem.

Algorithm 9 Periphery. The periphery P(G) of G consists of
all nodes v with ecc(v) = diam(G). Suppose diam(G) > 2.
Then the combined network G' @ p () v has diameter smaller
than diam(G). Hence we apply the following heuristic:
Two nodes v, w in G are said to form a peripheral pair if
dist(v, w) = diam(G). The algorithm first adds the new node
u to G and repeats the following procedure until the current
graph has diameter < A:

1) Randomly pick a peripheral pair v, w in the current graph

2) Adds the edges uv, uw if they have not been added already
3) Compute the diameter of the updated graph

Note that once v, w are chosen as a peripheral pair and the
corresponding edges uv, uw added, v and w will have dis-
tance 2 and they will not be chosen as a peripheral pair again.
Hence the algorithm eventually terminates and produces a
graph with diameter at most A.

Algorithm 10 CP (Center-Periphery). This algorithm ap-
plies a similar heuristic as Periphery, but instead of picking
peripheral pairs at each iteration, it first picks a node v in the
center and adds the edge uv; it then repeats the following pro-
cedure until the current graph has diameter < A:

1) Randomly pick a node w in the periphery of the graph

2) Add the edge ww if it has not been added already

3) Compute the diameter of the updated graph

Suppose at one iteration the algorithm picks w in the periph-
ery. Then after this iteration the eccentricity of w is at most
r 4+ 2 where r is the radius of the graph.

(c) Experiments for DIAM A We implement and test the per-
formance of Algorithms 9 and 10.Their performance are mea-
sured by the number of new ties created.

Experiment 4: Random graphs. We apply the two models
of random graphs, BA and NWS, as described above. We
generated 350 graphs and considered the case when A =
d(G) — 1, i.e. the aim was to improve the diameter by one.
For both types of random graphs (fixing size and radius), the
average number of new ties are shown in Fig. 6. The exper-
iments show that Periphery performs better when the radius
of the graph is close to the diameter (when radius is > 2/3
of diameter), whilst CP is slightly better when the radius is
significantly smaller than the diameter.
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Figure 6: Comparing two methods for improving diameter applied
to BA (left) and NWS (right) graphs

Experiment 5: Real-World Datasets. We run both
Periphery and CP on the networks Coll and Col2 introduced
above, setting A = diam(G) — i for 1 < i < 4. The numbers
of new edges obtained by Periphery and CP are shown in Fig-
ure 7; naturally for increasing ¢, more ties need to be created.
We point out that, despite the large total number of nodes, one
needs less than 19 new edges to improve the diameter even by
four. This reveals an interesting phenomenon: While a col-
laboration network may be large, a few more collaborations
are sufficient to reduce the diameter of the network.

On the Facebook dataset, Periphery is significantly better
than CP: To reduce the diameter of this network from 8 to
7, Periphery requires 2 edges while CP requires 47. When
one wants to reach the diameter 6, the numbers of new edges
increase to 6 for Periphery and 208 for CP.
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Figure 7: Applying algorithms for improving diameter to Collabo-
ration 1 and Collaboration 2 datasets

5 Conclusion and Outlook

This work studies how ties are built between a newcomer and
an established network to reach certain structural properties.
Despite achieving optimality is often computationally hard,
there are efficient heuristics that reach the desired goals using
few new edges. We also observe that the number of new links
required to achieve the specified properties remain small even
for large networks. This work amounts to an effort towards
an algorithmic study of network building. Along this effort,
natural questions that have yet to be explored include: (1)
Investigating the creation of ties between two arbitrary net-
works, namely, how ties are created between two established
networks to maintain or reduce diameter. (2) Investigating
network building in the context of organizational networks
by incorporating both formal and information relations [Liu
and Moskvina, 2015].
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