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Abstract

Human answer patterns in psychological reason-
ing experiments systematically deviate from pre-
dictions of classical logic. When interactions be-
tween any artificial reasoning system and humans
are necessary this difference can be useful in some
cases and lead to problems in other cases. Hence,
other approaches than classical logic might be bet-
ter suited to capture human inference processes.
Evaluations are rare of how good such other ap-
proaches, e.g., non-monotonic logics, can explain
psychological findings. In this article we consider
the so-called Suppression Task, a core example
in cognitive science about human reasoning that
demonstrates that some additional information can
lead to the suppression of simple inferences like the
modus ponens. The psychological findings for this
task have often been replicated and demonstrate a
key-effect of human inferences. We analyze infer-
ences of selected formal approaches and compare
them by their capacity to cover human inference
observed in the Suppression Task. A discussion on
formal properties of successful theories conclude
the paper.

Introduction

In everyday life we often use conditionals: We use them to
explain facts, e.g., “if it rains then the street gets wet”, to
state predictions about future events, e.g., “if the air pollution
continues, the ozone hole increases” or to reason about coun-
terfactuals: “if Oswald had not shot Kennedy, then someone
else would have” e.g., [Byrne, 2007]. From a formal logic
perspective we focus on correct inferences and from a cog-
nitive science/psychology perspective we focus on analyzing
how logically naive human reasoners actually do reason. The
goal is to develop cognitive models that can predict system-
atic human reasoning errors. There is a plethora of examples
demonstrating that human reasoning does not follow the rules
of propositional or first order logic. An example that humans
deviate from propositional logic is the famous Wason Selec-
tion Task [Wason, 1968]. It demonstrates, in its abstract ver-
sion, that humans have difficulties with the modus tollens.
However, it would be wrong to simply assume that humans
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make arbitrary errors and may only lack of concentration,
motivation, or necessary knowledge. Actually, human, “com-
monsense”, reasoning is very successful in solving most of
the problems everybody has to face in ones daily life. Human
deviations from classical logic are far from being arbitrary,
experiments show systematic deviations of many humans that
make similar to identical inferences on the same problems. To
explain these findings some researchers turned to probabilis-
tic approaches [Oaksford and Chater, 2007], others to heuris-
tic approaches (for an overview, see [Manktelow, 1999]), and
recently others have proposed to analyze other than classical
logics [Stenning and Lambalgen, 2008]. The reason for this
latter turn is that there are logics that allow for one aspect that
propositional logic does certainly not: non-monotonicity. A
logic is called non-monotonic if additional information can
lead to retract previously drawn inferences. In psychology
this ability in the human reasoning process is demonstrated
with a core research paradigm: the Suppression Task [Sten-
ning and Lambalgen, 2008]. Consider the following example
taken from [Byrne, 1989] where three groups of participants
received one of three types of problems: ad (Group 1), a3
(Group 2), and ayé (Group 3):

(B-case) () If she has an essay to write, (e —=>1)
then she will study late in the library and
(B) If she has a textbook to read, t—10
then she will study late in the library and
() She has an essay to write. (e)

Most participants (98 %) in the study concluded: She will
study late in the library. We will write in a succinct formula-
tion for this problem e

(v-case) () If she has an essay to write, (e —=1)
then she will study late in the library and
() If the library stays open, (o=

she will study late in the library and
(6) She has an essay to write.

©)

only 38 % of the participants make a modus ponens infer-
ence [Byrne, 1989] and conclude in the v-case that: She will
study late in the library and 62% concluded that: She may or
may not study late in the library. This example shows that
although the conclusion “she will study late in the library” is
still correct, it is suppressed by the ~y-conditional, but not by
the - conditional. The effect of the additional S compared
to the most simple modus ponens (using ad) is non existent
— both groups drew the same percentage of inferences “she



will study late in the library”. This example demonstrates the
human capability to draw non-monotonic inferences: It is not
the additional conditional per se but an additional conditional
that may hint a reasoner at exceptions of the a-conditional
leading to a suppressed inference.

There are basically two approaches how a cognitive scien-
tist may try to model the different inferences humans draw
in the suppression task by a logical system: S/he can de-
velop a new logic or s/he can investigate what already ex-
isting logics may explain. Most researchers from psychology
have followed the latter and have investigated specific sys-
tems, e.g., System P [Neves er al., 2002; Pfeifer and Kleiter,
20051, weak completion semantics with Lukasiewicz-logic
[Dietz et al., 2012] or Kleene-logic [Stenning and Lambal-
gen, 2008]. Each logic has its own properties and, to the best
of our knowledge the relationships between Lukasiewicz (or
Kleene) to de-facto standards as Reiter’s default logic, or in-
ference with System P, System Z, or the successful approach
of c-representations remain unknown. Analyzing the most
prominent non-monotonic logics on such core-examples can
shed light on these systems as well from a formal perspective.

The goal of this paper is to investigate if and how the differ-
ent non-monotonic logics differ inferentially between the -
and the y-problems and compare these inferences to human
inferences. That is, we switch the usual normative perspec-
tive that the system defines the norm the human reasoner is
tested against such that we use the human reasoner as norm
the systems are tested against. The human reasoner as a norm
is given by experimental results. In the following we focus on
the results provided by [Byrne, 1989]. A logic that draws the
same distinction as humans do is nearer to the human infer-
ence process, can be used as a cognitive model and is more
cognitively-adequate. And, this can be a first step towards
a better understanding of commonsense reasoning and about
the human reasoning process in general. It can bring prob-
lems from Cognitive Science to Artificial Intelligence and en-
rich cognitive science modeling by formal techniques from
knowledge representation and reasoning.

The rest of the paper is structured as follows: In the next
section we introduce some technical preliminaries. After-
wards we introduce five important non-monotonic logics and
investigate the inferences for the suppression task. An eval-
vation and discussion of different approaches with conse-
quences about the associated knowledge bases conclude the
article.

Preliminaries

For each conditional “if e then [” the ‘e’ is called the an-
tecedent and ‘I’ is called the consequent of the conditional.
[Stenning and Lambalgen, 2008] proposed two ways how
a formalism can be evaluated: The so-called conceptual
cognitive-adequacy and the so-called inferential cognitive-
adequacy of a reasoning system. The first investigates if the
formal representation of a reasoning system is similar to hu-
man mental representations. The second investigates if the in-
ferences a reasoning system draws are similar/identical to the
human inferences. Applied to our investigations, everything
depends on how we can interpret the conditional (that would

be the conceptual cognitive-adequacy) and the inference sys-
tem that we apply (the inferential cognitive-adequacy). There
are different ways how a conditional given in natural lan-
guage as “if e then [” can be interpreted. The first possibility
is to interpret it as material implication (e.g., propositional
logic). We write shortly e — [, whenever we refer to this
monotonic interpretation. And there are at least two general
ways of how we can extend this by introducing exceptions
in a conditional statement. Exceptions can be represented in
two ways: (1) In the antecedent, e.g., [Dietz et al., 2012;
Stenning and Lambalgen, 2008] for the weak completion se-
mantics. In this case abnormality predicates (ab) capture the
exception, i.e., for the example above we write [ <— e A—abj.
Stenning and Lambalgen call this a “licence for implication”.
And, these logics use a third truth value: the classical two val-
ues like T (for true) or L (for false), and additionally, u, for
unknown. (2) In interpreting the implication; e.g., Reiter’s
Default logic, System P, System Z, or c-representations. In-
stead of using the material implication, in commonsense rea-
soning a conditional represents a notion of plausibility. The
classical consequence relation |= with e |= [ represents: if
e is true, then [ must be true. In contrast the non-monotonic
consequence relation [Kraus et al., 1990] use |~ with e |~ [
meaning: if e is true, then fypically [ is true as well. Applied
to the suppression task e |~ [ does not imply e A o |~ I. Most
‘systems’ try to characterize |~ by specific rules (see below).

Other than the material conditional with its monotonic in-
terpretation we use conditionals (B|A) to express rules that
may have exceptions, “if A then usually B”. (B|A) is verified
if both the antecedent and consequence are true and falsified
if the antecedent is true and the consequent is false. If the
antecedent is false, the evaluation of the conditional is unde-
fined and the conditional is not applicable. A conditional is
tolerated from a set of conditionals iff there is a world that
verifies the conditional and does not falsify any conditional
in the set [de Finetti, 1974; Kern-Isberner, 2001].

A knowledge base A in the following is a finite set of con-
ditionals over a language. A knowledge base A is consistent
iff for every nonempty subset A’ C A there is a conditional
(B|A) € A’ that is tolerated by A’. This is equivalent to
saying that there is a maximal (with respect to set inclusion)
partitioning of the knowledge base A = Ag W ... W A,, such
that each conditional in a partition A; 0 < ¢ < m is tolerated
by the set Jj~;,, A; [Pearl, 1990]. For the S-case of the

example above it is A% = {(I|e), (I|t), (e|T)}. As humans
may interpret the y-conditional differently, we investigate the
following three knowledge bases:

AY = {61 : (lle),d2: (l]o),d3 : (e|T)} (y-case)
AV = {6, : (lle), 84 : (o]1), 85 : (e|T)} (+/-case)
A" = {61 : (le), 85 : (1[0), 65 : (e|T)} (y''-case)

Here, A" is the implementation of the «y-case from the orig-
inal work of [Stenning and Lambalgen, 2008] with J5 being
the literal meaning of the premise v. We extend this with
two additional implementations, 4" and +”, where ¢, encodes
the conditional “if she is in the library, the library is/must
be open” and J5 refers to: “if the library is not open, she is
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not/cannot be in the library”. Both are two possible alter-
native interpretations humans may draw if they read/hear Jo;
others are as well possible but we focus exemplarically on
these three.

Systems of nonmonotonic reasoning and the
suppression task

In this section we briefly introduce some prominent non-
monotonic logics (for an overview of formalizations see Ta-
ble 2). We test inferences regarding [ of these reasoning sys-
tems for the -, 4/, and 7”’-cases. If the logics infer [ for these
cases then they do for the S-case as well.

We start modeling the Suppression Task with the promi-
nent and de facto standard of inference systems, System P,
proceed with logic programming and Reiter’s default logic
and finally model the task in systems based on ordinal condi-
tional functions (OCF).

1. System P

A de-facto standard in nonmonotonic reasoning is System P.
It computes a preferential consequence relation |~ based on
the KLM-rules in the table below [Kraus et al., 1990]:

Reflexivity for all A € £ it holds that A~ A

Left Logical Equiv. =~ A = B and Bj~C imply ApC
Right weakening B | Cand A~ B imply A C
Cautious Monotony ~ Ap~ B and Ap~C imply AB~C
CUT A~ B and AB~C imply A~ C

OR ApC and Bj~C imply (AV B)~C

Definition 1 [Goldszmidt and Pearl, 1991] For a given
preferential structure (W, <) consisting of a set of worlds W
and a partial order < on the worlds, we define p-entailment

(oh P1/)) if ¥ holds in all <-minimal models of ¢.

Whether a formula p-entails another from a knowledge
base can be computed by checking whether the knowledge
base can be extended consistently with the inverse of the con-
ditional formed from both formulae, formally:

Proposition 1 [Goldszmidt and Pearl, 1996] Let A be a
knowledge base and A and B be formulas. Formula A p-
entails B in the context of A iff AU {(B|A)} is inconsistent.

_ For all three cases, we check whether we can entail [ or
[ from the knowledge base. We check whether A7, A" or
A" are inconsistent with (1| T) or (I| T), respectively.

In the y-case, AYU{(!| T)} is consistent, the world elo, for
instance, verifies all conditionals. On the other hand, A7 U
{(1]T)} is inconsistent since there is no world that verifies at
least one of the conditionals and accepts all others. Therefore,
in the y-case we have T}wiwl and Tkoiwl, and hence ‘she
will study late in the library’.

In the »/-case, A7 U {(I|T)} is consistent, the world elo,
for instance, verifies all conditionals. On the other hand,
A7 U{(I|T)} is inconsistent since there is no world that ver-
ifies at least one of the conditionals and accepts all others.
Therefore, in the 7'-case we have T~ sz land Te Zw’ [, and
hence ‘she will study late in the library’.
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In the 7"-case, A7 U {({|T)} is consistent, the knowl-
edge base can be partitioned in the tolerance partitions A
{01,053, (1|T)} and A} = {d5}. On the other hand, AU
{(I|T)} is inconsistent as there is no world that verifies at
least one of the conditionals and accepts all others. Therefore,
in the 7/-case we have T}viwl and T%ZWZ, and hence
‘she will study late in the library’.

In System P we can infer for all three cases A7, A, A
that ‘she will study late in the library’. As a consequence
System P does not replicate the suppression effect.

2. Logic programming approaches

Logic programming with a weak completion semantics has
been recently successfully applied to the ~y-problems of the
Suppression Task. As outlined above Stenning and van Lam-
balgen [Stenning and Lambalgen, 2008] and Dietz and col-
leagues [Dietz et al., 2012] claim that conditionals should
be encoded by “licenses for implications”. For example, the
conditional if she has an essay to finish, she will study late in
the library or short (I <— e) should be encoded by the clause
l < e A abj, where ab; is an abnormality predicate which
expresses that [ holds if e holds and nothing abnormal is
known. In Table 1 two logic programs are presented for the
two examples of the Suppression Task [Dietz et al., 2012]. A
second aspect is that despite the great success of two valued
logics in artificial intelligence or cognitive science, the truth
of a statement or premise cannot always be determined and
so it might be cognitively plausible to introduce a third truth
value, namely unknown/undefined [Lukasiewicz, 1920]. By
introducing a third truth value, there are many possibilities
for defining truth tables for the connectives [Kleene, 1952;
bukasiewicz, 1920; Fitting, 1985]. The Lukasiewicz logic
has the model intersection property [Holldobler and Kencana
Ramli, 20091, i.e., the intersection of two models is a model.
This property entails the existence of least models. The so-
called weak-completion semantics process works as follows
[Holldobler and Kencana Ramli, 2009]:

1. Replace all clauses with the same head by a disjunction
of the body elements, i.e., A < By,...,A < B, by

2. Replace all occurrences of <— by <.

The resulting set of equivalences is called the weak comple-
tion and the model intersection property holds for weakly
completed programs [Holldobler and Kencana Ramli, 2009]
guaranteeing the existence of a least model.

The abnormality predicates (e.g., ab;) represent abnormal
cases: For instance, ab; is true when the library does not stay
open and abs is true when she does not have an essay to finish.
The logic programs and the inferences can be found in Table
1. The results show that only in the ~y-case the WCS does
not draw the [-inference, but in the alternative cases 7' and
~"" it can be inferred. The cases 4" and «” require additional
empirical data from human participants. Weak completion
semantics is very sensitive to additional information.

Theorem 1 Cautious monotony does not hold in the weak
completion semantics.



Table 1: The weak completion semantics approach for the 3,
v, v'-cases. v" is analog to . The ab represents abnormality
predicates. Percentages present modus ponens drawn by the
participants [Byrne, 1989]. Adapted from [Dietz et al., 2012].

Problems B y ~

Program [+ eAaby l<eAab; < eAab;
l(—t/\gg l%()/\%z O(—l/\%4
aby « | ab; < 0 ab; <0
abgel abg —e ab4 —e
e+ T e T e+ T

wcs 1+ (e Naby) 1< (enaby) [+« (eAaby)

\/(t/\%g) \/(()/\Eg) O(—)(I/\Ezl)

aby < L ab; <> 0 ab; <0
ab2<—>L ab3 e ab4 e
e T e T e T

Least Model ({e,1},{ab1,aba}) ({e},{abs}) ({e},{abs})

Percentage of parti-

cipants inferring I~ 96% 38% n/a

Cautious monotony is defined by, if II |= a, IT |= b then
ITU {a} E b. To show that cautious monotony does not
hold we adapt an idea of [Baral, 2003, p. 338]. Consider the
following program. II = {—b < a,c A —a < b,a <+ c}.
Then we can infer by weak completion that a and ¢ follow.
For IT U {c}, however, we cannot conclude a anymore. So
in this respect the weak completion semantics seems to be a
very cautious approach in the class of non-monotonic logics.

3. Reiter’s Default Logic

Reiter’s default logic [Reiter, 1980] is based on a tuple
(W, D) with a classical background theory W and a set
of default rules D = {&,&s,...,&,} where each default
¢ = pre() gust()

cons (&)
mula pre(§)), a set of justifications just(£) and a set of con-
sequences cons(€). A default € is applicable to a deductively
closed set On(A) iff pre(§) € On(A) and =B ¢ Cn(A)
for every B € just(§). A (default) process 11 is a finite se-
quence of defaults (¢, , ..., &1, ), O, € Dforalll <i<m
with the two sets In(II) = Cn(W U {cons(§)|¢ € II) and
Out(Il) = {-A|A € just(§),& € II} such that each de-
fault £ is applicable to the In-set of the foregoing defaults. A
process is successful iff In(I1) N Out(I1) = () and closed iff
every £ € D that is applicable to In(II) is an element of II. £
is an extension of (W, D) iff there is a closed and successful
process IT with £ = In(II) [Antoniou, 1997]. A formula is
inferred credulously from (W, D) under Reiter’s logic iff it is
element of the union of all extensions and sceptically iff it is
element of the intersection of all extensions £ of (W, D).
For the suppression task W = {e} is given. We transfer the
implementation for Logic programming [Stenning and Lam-
balgen, 2008; Dietz et al., 2012] as shown in the previous
section to Reiter defaults and obtain the sets

:aby 0:ab : aby e:ab
Dﬂ,:{&:e ;1;&:0 la1;§3zo ;2;54:6 a2}

is composed of a precondition (the for-

ab 2

D’ —p7 :{51: e:ﬁ;&:i;&za:abl}
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Figure 1: The process trees visualising the processes for the
suppression task in Reiter’s Default Logic.

On({e}) ® @
&
Cn({c}) o 0 Cn({c,1}) @ f{abi}
N ‘
On({e,1}) @ {ab} On({e,1,0}) ® {aby, -0}

(a) The case D" (b) The cases DY and D"

As shown in the process tree in Figure 1, in all cases there
is only one extension, hence credulous and sceptical Reiter
inference is identical for this task. And [ is in every extension
of the default logic, and we can credulously and sceptically
infer for both tasks that given D7, D”’l, and D" from the
fact that ‘she has an essay to write’ we can infer that ‘she
will study late in the library’, formally (Reiter® represents the
credulous case and Reiter the sceptical case):

Reiter® Reiter Reiter® Reiter
ey boep el ey I and el

4. OCF based systems

An Ordinal Conditional Function (OCF) [Spohn, 2012] is a
function x : © — N§° assigning to each world w € €2 an
implausibility rank, that is, the higher x(w), the less plau-
sible the world is. Moreover, as a normalization condition,
there must be at least one world w such that x(w) = 0.
The rank of a formula A € £ is the minimal rank of all
worlds that satisfy A, k(4) = min{x(w)|lw = A}. The
rank of a conditional (B|A) is the rank of the conjunction
of premise and conclusion normalised by the rank of the
premise, k(B|A) = k(AB) — k(A). k accepts a conditional
(B|A) (written k = (B|A)) iff its verification is more plau-
sible than its falsification. The inference relation of OCF is
defined using preferential models [Makinson, 1994], defining
that B is inferred from A using the OCF &, formally A~ B,
iff the verification of the conditional (B|A) is more plausible
than its falsification, iff x accepts the conditional, formally

A~ B iff k(AB) < k(AB) iff k[ (B|A)
An OCF can be obtained inductively from a knowledge base.

To model the suppression task we use System Z and c-
representations for inductive reasoning.

4a. System Z

System Z uses the partitioning of the consistency test of a
knowledge base from the preliminaries as a notion of excep-
tionality. It rates the implausibility of each world by the most
exceptional conditional falsified, that is, System Z assigns to
each world the maximum partition number which contains
conditionals falsified by this world (incremented by 1 because
the numbering of partitions is zero-based).

In the ~y-case, all conditionals in the knowledge base are
put into AJ. For example, the world elo verifies every condi-
tional in the knowledge base, hence every conditional is tol-
erated by AJ. Therefore we get the ranking function which is



Table 2: Typical comprehension of the natural-language conditionals of the suppression task in the considered logics.

Natural Language Conditional Inference

material indicative weak completion cred. Reiter Reiter System P SystemZ  c-rep.
If she has an (e)ssay to write then she will e — { (lle) I+ e —aby e}'vRAeilercl e}wRAe“erl e)wil e)wil e Q1
study late in the ({)ibrary.
If the library is (o)pen then she will study o — [ (1]o) l + o\ —aby O)NIXMCZ O)NRAEHHZ o}wil o)wil o4l
late in the (!)ibrary.
If she has a (t)extbook to read then she ¢ — 1 (1]t) I+ t A\ —abg t)NRACimCl t)NRACiml t)wil tkvil th Q1
will study late in the ({)ibrary.
She has an (e)ssay to write. e (e|T) e+ T TRB e TR TR Re Thie ThGe

Table 3: OCFs obtained by System Z and minimal c- Table 4: System Z and c-representations mimicking the weak
representations for the cases v, 7/, and 7”. completion semantics approach for the 3, v, 7/-cases.
w elo elo elo elo elo elo elo €lo
W w o0 o0 1 1 1 1 1 1 Problems B v ol
Kay(w) 0 1 1 1 1 1 2 1 knowledge base (Ile) (I|eo) (lleo)
Wow o0 1 1 1 1 1 1 1 (1t) (ofle)
Koy (w) 0 1 2 1 1 2 1 1 Belief sets Cn(el)  On(elVels) Cn(eloV elo)
K (W) 0 2 1 1 1 2 1 1 wcs knowledge base  (I|e) (I|eo) (lleo)
Kaarn(w) 0 2 1 1 1 3 1 1 (11t) (eoll) (eol)
(e V|l (o|le)
(lefo)
shown in Table 3. For System Z we have k%, (1) =0 < 1 = Belief sets Cn(el)  On(eloVeld) Cn(eloV elo)
k%, (1), hence it can be derived that ‘she will study late in the Percentage 96% 38Y% n/a
library’.
In the v/-case, we again have Ag/ = {01, 93,04} because,
e.g., the world elo verifies every conditional in the knowledge =~ Isberner, 2001; 20041:
base which gives the OCF (Table 3): Kiw’ H=0<1-= B ' B ‘ B
k% _, (1) hence ‘she will study late in the library’. ki > TG Z N } T Le Z N } 2
A wiEpiAp; 1<j<n,j#i wiEi A 1<j<n,j#i
wEQ; A=Y wEQiATY;

In the 7"/-case, we have the partitions Ag// = {61,053} and
A" = 65. The OCF (Table 3) is again xZ_,(I) = 0 <
1= k% ./ (1) hence ‘she will study late in the library’. So the
System Z does not show the suppression effect.

4b. c-representations

System Z combines conditionals in the knowledge base by
their exceptionality. It is known that this approach may lead
to neglecting the effect of conditionals (the so-called “Drown-
ing Problem” [Pearl, 1990; Benferhat er al., 1993]). Other
than that, the approach of c-representations [Kern-Isberner,
2001; 2004] assigns to each conditional an individual impact
k; € Ny as abstract weight to each conditional in the knowl-
edge base R = {(1|¢1); - - -, (¥n|¢Pn)}. The rank of a world
is the combined impact of all falsified conditionals, so a c-re-
presentation xf is an OCF defined by

>

wEGi AP,

Ky

ey

rA (W)

)

where the individual impacts xk; € Ny are chosen such that
kR is admissible with respect to A, which is the case if the
impacts satisfy the following system of inequations [Kern-
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Applying c-representations to the y-case the system of in-
equations (2) can be solved minimally with the values k] =
1, k3 = 0 and k3 = 1 which gives us the OCF k%, (w) in
Table 3. We have k% (1) = 0 < 1 = k%, (1) hence ‘she will
study late in the library’.

In the ~'-case, the system of inequations (2) can be solved
with the values k; = 1, k; = 1 and k3 = 1 which gives us
the OCF £/ (w) in Table 3. We have x4, (I) = 0 <1 =

C

%~ (1) hence ‘she will study late in the library’.
In the v"-case, the system of inequations (2) can be solved

with the values k| = 1, k; = 1 and k3 = 1 hence the

OCF is %, (w) (cp. Table 3). We have %, (I) = 0 <

1 = K » (1) hence ‘she will study late in the library’. A
possibility is to reformulate the knowledge base as we can

see in the next subsection.

K

4c. Mimicking weak completion semantics (WCS)

The weak completion semantics is able to make a difference
between the cases 3 and  resp. v'. However, as can be seen
from Table 1, there is a slight difference already in modelling
these cases — the abnormality predicates in cases 7 resp. 7/
are linked to € and o which is not done for case 3. We show



that we can achieve at least very similar effects to the weak
completion semantics by using System Z or c-representations
when building them from conditional knowledge bases which
mimick the modellings from Table 1. We consider both the
modelling obtained from the logic program and the modelling
induced by WCS. Instead of putting the evidential informa-
tion e into the knowledge base, we compute the final results
by conditioning the x-function obtained from the generic
knowledge base by System Z resp. c-representations on e
because this simulates better the distinction between generic
and evidential knowledge. However technically, in the con-
sidered cases, putting e into the knowledge base right from
the beginning would not make a significant difference. The
computations are very similar to the ones performed in the
previous subsections: we summarize the results in Table 4.
In all cases, the most plausible beliefs are the same for Sys-
tem Z and c-representations (there are slight differences in
the resulting x-functions), so we do not distinguish between
these two approaches in the table. In the end, we find that in
the [3-case, the agent believes el, but in the v and +'-cases,
the agent believes e while no longer being certain about . In-
terestingly, this effect is already obtained from modelling the
logic program (without WCS). It is only in the ~y-case, that
there is a minor difference at all between the belief sets of the
knowledge bases with or without weak completion semantics:
Here, WCS induces a stronger equivalence between [ and o.

Conclusion and Discussion

A core problem in Al, many non-monotonic logics have been
evaluated on, is ‘Tweety’ the famous commonsense reason-
ing problem about a penguin that is a spoiler for the often
accepted statement that birds can fly. A successful Al rea-
soning system must handle a class/subclass inheritance prob-
lem. Another feature relevant in commonsense reasoning
among humans is cautious reasoning. Hence, we investi-
gated the suppression task, a core research paradigm in Cog-
nitive Science/Psychology, that shows how humans deal in
the light of new information. We evaluated the ~y-case (and
variations) to test, if humans may have interpreted the second
premises differently. Our motivation was two-fold to (1) test
the inferences from the different non-monotonic logics for a
core problem relevant in cognitive science and, as a subse-
quent goal, (2) to learn more about the relationships between
the logics. We analyzed many of the de-facto standards in
NML, like Reiter’s default logic, System P, System Z, and c-
representations with human inferences, how they deal with
such cautious reasoning problems. To test the inferences
(1) we could show that the weak completion semantics, c-
representations and System Z make different inferences for
the 8 and for the ~, 4/, and +"-cases. The other systems
Reiter’s default logic and System P made no distinction for
the three investigated representations -, 4/, and +”. How-
ever, there could be additional alternative interpretations of
the first and second premise. Especially the interpretation of
the conclusion of the premise « (Table 1), that is, whether
she will stay late in the library, is intricate. By separating
this sentence into “staying / working late” and “being in the
library” « can be interpreted to be “if she has an essay to
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write and she stays / works late, then she will be in the li-
brary” as well as to be “if she has an essay to write, then she
will stay / work late and be in the library”. By separating the
knowledge in this way, it is possible to trigger hidden back-
ground knowledge that (usually) libraries are not accessible
24-hours a day, so “staying late” may trigger an exception
to the library being open, if the participant is made aware
that it could be otherwise by ~. By using this formalisation,
c-revision, i.e., belief revision with c-representations [Kern-
Isberner, 2001] captures the suppression effect and makes as
well a difference between the S and y-cases. The basic idea
is that we need to extend the notion of a knowledge base by a
temporal order of the information processed by humans. Es-
pecially the conceptual-adequacy needs to be further inves-
tigated from a formal and cognitive perspective. In the last
decade System P has been regarded as a possible candidate
for capturing human reasoning [Pfeifer and Kleiter, 2005;
Neves et al., 2002]. But, previous empirical research showed
that none of the three systems C, CL, and P could be shown
to be cognitively-adequate [Kuhnmiinch and Ragni, 2014],
i.e., some inferences are rarely drawn. Additionally, System
P does not make any distinction between the 8 and ~y-case,
so further research is necessary to test if System P captures
human reasoning processes. The formal analysis inspires fu-
ture empirical research questions and we need to thoroughly
investigate the human interpretation of the premises. Regard-
ing the second point: As the Tweety-problem shows differ-
ences between the nonmonotonic systems, the suppression
task does as well. Although the weak-completion-semantics
have not yet, to the best of our knowledge, been formally
compared to system-based non-monotonic logics, we derive:

Theorem 2 Weak completion semantics is not contained in
Reiter’s default logic, System P, Z, and c-representations.

The first two follow from the difference on the suppression
task. And the latter two follow from Theorem 1 and from
the fact that for System Z and c-representation holds the even
stronger principle of rational monotony.

The motivation of this article was to investigate to which
extend de-facto standard logics are able to simulate human
inference processes and could serve potentially as cognitive
models. Some non-monotonic logics seem to be adequate
to describe human commonsense reasoning. The investi-
gated de-facto logics have many interesting properties that
inspire further empirical research on human reasoning pro-
cesses, its possible nonmonotonic properties, and allow to de-
velop human-oriented commonsense reasoning Al-systems.
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