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Abstract
Traffic congestion causes huge economic loss
worldwide in every year due to wasted fuel, exces-
sive air pollution, lost time, and reduced productiv-
ity. Understanding how humans move and select
the transportation mode throughout a large-scale
transportation network is vital for urban congestion
prediction and transportation scheduling. In this
study, we collect big and heterogeneous data (e.g.,
GPS records and transportation network data), and
we build an intelligent system, namely DeepTrans-
port, for simulating and predicting human mobility
and transportation mode at a citywide level. The
key component of DeepTransport is based on the
deep learning architecture that that aims to under-
stand human mobility and transportation patterns
from big and heterogeneous data. Based on the
learning model, given any time period, specific lo-
cation of the city or people’s observed movements,
our system can automatically simulate or predict
the persons’ future movements and their transporta-
tion mode in the large-scale transportation network.
Experimental results and validations demonstrate
the efficiency and superior performance of our sys-
tem, and suggest that human transportation mode
may be predicted and simulated more easily than
previously thought.

1 Introduction
With the rapid population growth and urbanization, traffic
congestion has become a big and global problem worldwide.
The 2014 study by INRIX and the Centre for Economics and
Business Research (Cebr) indicates that the combined annual
cost of traffic gridlock (such as wasted fuel, decreased pro-
ductivity, and higher prices for goods) in Europe and the US
will soar to 293.1 billion dollars by 2030, almost a 50 percent
increase from 2013. They estimate that the traffic congestion
costs the average American household dozens of hours and
thousands of dollars in 2013. Thus, it is critical to under-
stand how humans move and select the transportation mode
throughout a large-scale transportation network in order to
plan effective urban congestion prediction and transportation
scheduling.
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Figure 1: Can we learn the deep models for understanding
human mobility and transportation mode pattern at a city-
wide level? Human mobility and transportation transitions on
large-scale transportation network are the highly non-linear
and complex phenomenon, can we develop some deep pre-
dictive models to effectively model and predict them?

The existing studies mainly rely on simulation techniques
or complex network theory to model traffic congestion dy-
namics in a small-scale network [Wang et al., 2012; Yang,
2013]. However, recent years have witnessed the prolifera-
tion of people’s mobile phone data, GPS trajectory data, and
location-based online social networking data, which have be-
come readily available. Such rapidly growing human mo-
bile sensing data have become today’s “Big Data”, provid-
ing a new way to circumvent the methodological problems
faced by previous studies on large-scale transportation plan-
ning and human mobility understanding [Song et al., 2010;
Gonzalez et al., 2008; Ma et al., 2015a; Song et al., 2013].
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Figure 2: System Architecture. DeepTransport mainly contains four components: database server, pre-processing module, deep
learning module, and visualization and evaluation module. Please see the texts for more details.

Moreover, human mobility and transportation transitions on a
large-scale transportation network are the highly non-linear
and complex phenomenon, which is almost impossible to
be model through the “shallow models”. The recent emer-
gence of deep learning technology has been shown to be a
highly effective learning approach and has demonstrated su-
perior performance in various domains (e.g., vision, speech,
and text) [Hinton and Salakhutdinov, 2006; Lee et al., 2008;
Hochreiter and Schmidhuber, 1997]. Therefore, in this study,
we aim to understand how humans move and select the trans-
portation mode throughout a large-scale transportation net-
work by using a deep learning approach, and develop an intel-
ligent system for large-scale human mobility and transporta-
tion mode prediction and simulation.

In this article, we collect big and heterogeneous data, and
build an intelligent system, namely DeepTransport, for pre-
dicting and simulating human mobility and transportation
mode on a large-scale transportation network (as shown in
Fig.1). The learning component of our system is based on
the deep Long Short-Term Memory (LSTM) learning archi-
tecture that contains four LSTM layers: one encoding layer
for the input sequence, one decoding layer for output se-
quences, and rest two layers are the hidden layers that share
the same parameters. The proposed learning architecture is
able to jointly learn human mobility and transportation tran-
sition models from the heterogeneous data source, and allows
the network to learn at different time scales over the input
sequences. Finally, given any location of urban area, time
period or observed human mobility, DeepTransport can au-
tomatically predict or simulate a large number of people’s
movements and their transportation transition at a citywide
level. To the best of our knowledge, DeepTransport is the first
system that applies deep learning approaches to jointly model
human mobility and transportation pattern on a large-scale
transportation network, and it has the following key charac-
teristics that make it unique:

• Big and heterogeneous data: DeepTransport is based
on a big and heterogeneous data source. It stores and
manages the GPS records of 1.6 million users collected
over three years and large-scale transportation network
data.

• Deep predictive model: The multi-tasks deep learn-
ing architecture ensures the system can learn at different
time scales over big sequence data, and the developing
predictive model is superior to the traditional shallow
ones.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly reviews some related studies. Section 3 provides
an overview of the entire system and the using data source.
Section 4 describes the deep learning architecture of our sys-
tem. Section 5 presents our experimental results and system
evaluations. Finally, Section 6 summarizes our findings and
concludes this study.

2 Related Work
In the past decades, a number of studies have been conducted
on urban transportation modeling and understanding [Wang
et al., 2012; Yang, 2013]. These studies mainly focus on
small-scale transportation networks or rely on either math-
ematical equations or visualization techniques. However, re-
search on the dynamics of human mobility and transporta-
tion evolution on a nation- or city-wide scale is very limited
due to the fact that there is no reliable approach for accu-
rately sensing human mobility. Recently, with the increasing
prevalence of positioning technologies, human mobile sens-
ing data (e.g. GPS traces of mobile deviece, CDR data, on-
line social networking data, etc.) have become the “big data”,
which makes it possible to understand human mobility and
urban transportation conditions in a citywide level [Song et
al., 2010; Gonzalez et al., 2008; Ma et al., 2015a]. Fur-
thermore, understanding, modeling, and mining human mo-
bility and their transportation mode [Giannotti et al., 2011;
Zheng et al., 2008; Ma et al., 2015b; Stenneth et al., 2011;
Yuan et al., 2013; Cho et al., 2011; Ye et al., 2013] has be-
come the main research focus for smart city development and
sustainable urbanization. However, most of these research
are based on small dataset, and the models discussed above
are “shallow models” that face have difficulties in handling a
big and heterogeneous data source.

Recently, deep learning technology [Hinton and Salakhut-
dinov, 2006; Krizhevsky et al., 2012; Ngiam et al., 2011;
Lee et al., 2008; Huang et al., ; Sak et al., 2014] has been
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Figure 3: Big and heterogeneous data source. This figure shows the heterogeneous data source of our system. (a) shows human
mobility data and the transportation mode label in Osaka. (b) shows transportation network of entire Japan. (c) shows urban
mobility graph of Fukuoka. The edge color indicates the edge parameters. Here, it shows the travel frequency; warmer colors
indicate higher travel frequency, and these values are normalized from 0 to 1.

shown to be a highly effective learning approach, and it has
demonstrated superior performance in various domains (e.g.,
vision, speech, text, and transportation). Hence, this study
constitutes the first attempt to apply the deep learning ap-
proach to human mobility and urban transportation modeling.

3 System Overview and Data Source
3.1 System Overview
The system architecture is shown in Fig.2. It consists of
four main components: database server, pre-processing mod-
ule, deep learning module, and visualization and evaluation
module. The database server module [Song et al., 2014a]
stores and manages the data source. It can provide index-
ing, retrieval, editing, and visualization services. The pre-
processing module can clean the data and map the human
mobility into the transportation network. Lastly, this mod-
ule generates a large number of human GPS traces with the
transportation mode label on the large-scale transportation
network. The deep learning module is the key component
of DeepTransport and it includes four LSTM layers for the
training: one encoding layer for separated input sequence,
one decoding layer for separated output sequences, and rest
two layers are the hidden layers that share the same parame-
ters. Further details on this module will be provided in Sec-
tion 4. Finally, the visualization and evaluation module can
visualize the results and evaluate the performance of the over-
all system.

3.2 Heterogeneous Data Source
In this study, we employ a big and heterogeneous data source
to understand human mobility and their transportation mode
at a citywide level (as shown in Fig.3). The data can be sum-
marized as follows:

Human mobility data: We collected GPS records of ap-
proximately1.6 million anonymized users throughout Japan
from August 1, 2010, to July 31, 2013. To manage these
data, we employed five computers (Intel Xeon 2.6 GHz CPU,
8 GB RAM, and 2x2 TB HDD) to build a Hadoop cluster
that consists of 32 cores, 32 GB memory, and 16 TB stor-
age, and is able to run 28 tasks simultaneously. Furthermore,

we installed Hive on top of Hadoop to make the entire sys-
tem support SQL-like spatial queries. This set up can provide
indexing, retrieval, editing, and visualization services. In ad-
dtion, the transportation mode labels (e.g., stay, walk, bicycle,
car, train) of people were added to the data source (as shown
in Fig.3-a).

Transportation network data: We collected the trans-
portation network data of some important cities of Japan.
These data include road structure and POI information (as
shown in Fig.3-b). Transportation networks might come to a
standstill in the event of a major earthquake. Therefore, we
also used a large number of human emergency movements
to train the urban mobility graph [Song et al., 2014a] that
includes transportation information (e.g., road connections,
travel time, and travel frequency of each road) for emergen-
cies (as shown in Fig.3-c).

4 Deep Learning Architecture
4.1 Preliminaries
Consider a set of individual people’s GPS trajectories
Tra = {tra1, tra2, ..., tran} in an urban area or city,
which has been mapped to the large-scale transportation
network. For each trajectory tra

i

= r1r2...rm, it con-
sists of a series of m GPS records and their transporta-
tion mode. Each record r is a tuple in the form of r =<

uid, time, latitude, longtitude,mode >, where uid is the
id of people, time is the time of the record, and latitude

and longtitude specify the geographic position of the record,
mode is the transportation mode label (e.g., stay, walk, bicy-
cle, car, train) at current time and location.

Therefore, our goal is to learn a simulation or prediction
model from Tra. Given any person’s GPS trajectory tra

ob

=
r1r2...rt with the transportation mode from time 1 to time t,
we want to predict its mobility and transportation mode at the
next several time steps.

4.2 RNN and LSTM Network
Human mobility and transportation patterns have a high de-
gree of temporal and spatial correlation. For instance, if the
first several time steps of commute traveling pattern is like

2620



Ct!1

Input!
Gate

Output!
Gate

Forget!
Gate

LSTM!
Memory!Block

ft

it ot

Ct
xt yt

mt

(a)!LSTM!Memory!Block

LSTM LSTM

LSTM LSTM

LSTM

LSTM

Shared!
LSTM!
Layers

Input!
Encoding!
Layer

Output!
Decoding!
Layer

Mobility!Input Transportation!
Mode!Input

Mobility!Output Transportation!
Mode!Output

LSTM LSTM

LSTM LSTM

LSTM

LSTM

Shared!
LSTM!
Layers

Input!
Encoding!
Layer

Output!
Decoding!
Layer

Mobility!Input Transportation!
Mode!Input

Mobility!Output Transportation!
Mode!Output

Output

Input
Time!1 Time!T

(b)!Deep!LSTM!Learning!Architecture

Figure 4: Deep learning architecture. (a) shows LSTM memory block, and (b) shows the overall deep learning architecture of
our system.

“walk-train-walk-bus”, the possibility of next mode as “bi-
cycle” will be small. Due to the spatial-temporal nature of
human mobility, Recurrent Neural Networks (RNN) is es-
pecially suitable to capture the temporal and spatial evo-
lution of human moving and transportation transition pat-
terns. However, previous studies [Hochreiter and Schmid-
huber, 1997] have shown that the traditional RNNs fail to
capture the long temporal dependency for the input sequence
due to the vanishing gradient and exploding gradient prob-
lems. To address these drawbacks, Long Short-Term Memory
(LSTM)- a special RNN architecture is developed [Hochre-
iter and Schmidhuber, 1997] for sequence labeling and pre-
diction tasks. LSTM is able to learn the time series with long
time spans and automatically determine the optimal time lags
for prediction. In this study, we choose to use LSTM to model
long-term temporal dependency of human mobility and trans-
portation patterns.

An LSTM network (as shown in Fig.4-a) computes a map-
ping from an input sequence X = (x1, ..., xT

) to an output
sequence Y = (y1, ..., yT ) by calculating the network unit ac-
tivations using the following equations iteratively from t = 1
to T :
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where i, f and o are respectively the input gate, forget gate,
output gate. c and m are the activation vectors for each cell
and memory block, and the weigh matrices W and bias vec-
tors b are utilized to build connects between the input layer,
output layer and memory block. Here, � represents the scalar
product of two vectors, �(·) denotes the standard logistics
sigmoid function, and g(·) and h(·) are the cell input and cell

output activation functions, generally centered logistic sig-
moid function in this study. � is the network output activation
function, and we use softmax in this study.

4.3 Multi-task and Deep LSTM Learning
Architecture

In this research, we aim to jointly model a large number
of people’s movements and transportation patterns in a spe-
cific urban area or city (large-scale transportation network of
cities). The training data will be huge and vary at differ-
ent temporal and spatial scales (e.g., different persons, dif-
ferent time, different locations of city, etc.), and the single
layer LSTM is difficult to model them. Thus, the training se-
quences vary at different time scales and need to be processed
by a multiple nonlinear hidden layers. Recently, Google’s
acoustic modeling system [Sak et al., 2014] has demonstrated
that multiple layers LSTM [Hermans and Schrauwen, 2013]
allowed the network to learn at different time scales over the
input. Therefore, we choose to use the deep LSTM learning
architecture to build the whole system, which results in inputs
going through more non-linear operations per time step.

Besides, persons’ location and their transportation mode
share important information and are highly correlated with
each other. For instance, the “train” mode will only appear at
the “train line” of the transportation network; the “walk” and
“bicycle” mode will not appear at expressway. Thus, instead
of using a joint feature vector, we view mobility and trans-
portation mode prediction as two separated tasks, and pro-
pose a multi-task deep LSTM learning architecture to jointly
learn the predictive model for persons’ movements and trans-
portation mode pattern. The key concept of multi-task learn-
ing [Ngiam et al., 2011] is to learn several tasks simultane-
ously with the aim of gaining mutual benefits; thus, learning
performance can be improved through parallel learning while
using a shared representation. Therefore, it is reasonable to
expect better results from our application through this learn-
ing framework. Another advantage of this learning architec-
ture is that we can use a single data source and shared rep-
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Figure 5: Visualization of the results. (a) Given a person’s current observed movements (blue lines), the person’s possible
movements and transportation mode are predicted as shown in the colorful lines, and the actual movements are shown by white
lines. (b) Given any location and time period, the person’s possible movements and transportation mode are randomly simulated
as shown by colorful lines based on the output distribution of our deep learning models, and the most similar one in the ground
truth data is shown by white lines. (c) shows the sample prediction results for a large number of persons in Tokyo, and (d)
shows the sample simulation results for a large number of people in Osaka on weekdays.

resentation to train the predictive model for some real-world
applications in which we need to predict people’s future mo-
bility and transportation mode without transportation mode
label or observed human mobility.

Previous study [Dai and Le, 2015] has shown that the re-
current network can be used as encoder to improve the super-
vised learning performance. Inspired this idea, we add one
encoding and decoding layer to the whole learning architec-
ture. Thus, the overall learning architecture is shown in Fig.4-
b, and it contains four LSTM layers: one encoding layer for
separated input sequence, one decoding layer for separated
output sequences, and two hidden shared layers that share the
same parameters.

5 Experimental Results
In this section, we present extensive experimental results and
evaluate our system for the prediction of human mobility and
transportation mode.

5.1 Experimental Setup and Parameters Setting
Experimental setup: In the experiments, we randomly re-
trieved a large number of human GPS traces over random

long-term days (including weekdays and weekend days) that
had more than 3,000 GPS records from our database server;
the selected geotropical regions were some large cities of
Japan (e.g., Tokyo, Osaka, Fukuoka, etc.). Then these GPS
traces were pre-processed (e.g., data cleaning, noise reduc-
tion, etc.) and mapped to the transportation network of the
cities. Lastly, the pre-processing module of our system out-
putted the training and testing sequences of weekdays and
weekend. To evaluate the performance of our sytem, K-fold
cross-validation was performed. The whole sequence data
were randomly partitioned into three subsamples: one sample
was used as validation data while the other two were used as
training data. The cross-validation process was then repeated
three times with each sub-sample used exactly once as vali-
dation data. For the prediction task, we input the sequence of
the first five time steps, and our system predicted the follow-
ing sequences. For the simulation task, our system randomly
generated the sequences based on the output distribution of
the deep learning module.

Parameters setting: The learning architecture of our sys-
tem contained four LSTM layers, with 80 cells at each layer.
We initialized all of the LSTM’s parameters with the uniform
distribution between -0.02 and 0.02, and used stochastic gra-
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Table 1: Performance Evaluation

Algorithm Mobility MAPE Mobility MSE Trans Mode Precision Accuracy Trans Mode Recall Accuracy

LSTM 25.37% 83.77 72.32% 70.21%
DLSTM 19.38% 63.53 80.35% 79.27%
TDNN 31.87% 109.52 63.76% 61.23%

GM 39.68% 138.97 NA NA
HMM 27.89% 88.59 NA NA

Our System 17.38% 57.39 83.26% 81.37%

dient descent with a learning rate of 0.01 and a momentum of
0.95. It took 8 training epochs to converge.

5.2 Visualization of Results
The visualization of the results is shown in Fig.5. As shown
in Fig.5-a, given a person’s observed movements (blue lines),
our system can predict his/her future movements and trans-
portation mode (e.g., other colorful lines). From this sample
results, we can see that our prediction results are very sim-
ilar to the real scenarios (white lines). Furthermore, Fig.5-c
shows the sample prediction results for a large number of per-
sons in Tokyo.

On the other hand, if we cannot observe a person’s mo-
bility, we can just input start location and time period, our
system will automatically simulate human mobility and their
transportation mode (as shown in Fig.5-b,d) based on the
output distribution of deep learning models. Fig.5-b shows
the simulation results of single person (the colorful lines) on
weekdays, and it was very easy for us to find a very similar
GPS traces (white lines) from the ground truth data. Fig.5-
d shows the sample simulation results for a large number of
people in Osaka on weekdays.

5.3 Performance Evaluation
Evaluation metric and baseline models: To measure and
evaluate the performance of different systems or algorithms,
the Mean Absolute Percentage Errors (MAPE) and Mean
Squared Errors (MSE) of distance were used to measure the
performance of mobility prediction, and the average preci-
sion accuracy and average recall accuracy were used to mea-
sure the performance of transportation mode prediction. Fur-
thermore, we consider the following baseline models for the
comparisons. (1) Shallow LSTM (LSTM): this model con-
tained only single LSTM layer, and the input vector was the
joint feature vector of mobility and transportation mode. (2)
Deep LSTM (DLSTM): this model contained four LSTM lay-
ers , but it was different from our multi-task deep learning
architecture because it used the joint input feature vector of
mobility and transportation mode, and it was constructed by
four shared LSTM layers. For the above baseline models, the
parameters setting was same to our system. (3) Time-delay
neural network (TDNN): this model feeds back the previous
input values into the current input, and it thus can be consid-
ered as a nonlinear AR model for sequence prediction. (4)
Gaussian model (GM): This model was proposed by Gonza-
les et al. [Gonzalez et al., 2008]; it models human mobility or
movements as a stochastic process centered around a single

location. But this model cannot predict human transportation
mode. (5) Hidden Markov model (HMM): This model was
proposed by Song et al. [Song et al., 2014b]; it uses an HMM
to model dependencies among different human behaviors and
mobility. This is a strong baseline model for human mobility
prediction, but it cannot predict human transportation mode.

Performance evaluation: We compared the performances
of our model and the baseline models. Table 1 summarizes
the performances of all the models. From this table, we can
see that our approach achieved better performance than the
baseline models. For the TDNN, GM and HMM, they are
all are shallow models, and they do not have sufficient ca-
pabilities to handle the complexity of human mobility and
transportation mode. Meanwhile, we can see that our multi-
tasks learning architecture obtained the better performance
than traditional LSTM or deep LSTM learning architecture.

6 Conclusion
In this study, we collected big and heterogeneous data to un-
derstand and model human mobility and transportation mode,
and we built an intelligent system called DeepTransport. The
experimental results and validations demonstrated the effi-
ciency and superior performance of our system. To the best of
our knowledge, DeepTransport is the first system that applies
deep learning approaches to human mobility and transporta-
tion pattern modeling.

In the future, our system can be extended and improved
in the following aspects. (1) Our transportation network data
contains POI information, but it has not been used as the fea-
ture for the deep learning model development. Thus, some
tensor decomposition approaches can be considered to com-
bine the POI information in the future. (2) Currently, the
transportation network is static. But it may change due to
some emergency events (e.g., standstill of the train or bus
line). Hence, some approaches or models that can be applied
to such kind of situations should be explored and developed
in the future.
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