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Abstract

We describe a sketch interpretation system that de-
tects and classifies clock numerals created by sub-
jects taking the Clock Drawing Test, a clinical tool
widely used to screen for cognitive impairments
(e.g., dementia). We describe how it balances ap-
pearance and context, and document its perfor-
mance on some 2,000 drawings (about 24K clock
numerals) produced by a wide spectrum of patients.
We calibrate the utility of different forms of con-
text, describing experiments with Conditional Ran-
dom Fields trained and tested using a variety of fea-
tures. We identify context that contributes to inter-
preting otherwise ambiguous or incomprehensible
strokes. We describe ST-slices, a novel representa-
tion that enables “unpeeling” the layers of ink that
result when people overwrite, which often produces
ink impossible to analyze if only the final drawing
is examined. We characterize when ST-slices work,
calibrate their impact on performance, and consider
their breadth of applicability.

1 Introduction

Our real-world sketch interpretation task comes from the
Clock Drawing Test, a deceptively simple test that has been
used for more than fifty years to help determine cognitive sta-
tus. This is a task of growing importance given the “greying”
of populations around the world and the increasing impact of
cognitive impairments [Alzheimer’s Association, 2013]. The
test asks a subject to draw on a blank sheet of paper a clock
face showing a particular time, then asks them to copy a pre-
drawn clock shown on another sheet. Decades of experience
with the test have made it a widely used screen for cogni-
tive impairment of many sorts, e.g., Alzheimer’s, dementia,
stroke, etc. [Solomon et al., 1998].

Interpretation of the test is traditionally based on what the
patient drew (e.g., are all the numbers present at correct lo-
cations) and how accurately it was drawn (e.g., how closely
do the hands point to the correct numerals). Interpretation is

*This work was done when Y. Song and K. Ma were at MIT
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Figure 1: Our task is to detect and to classify clock numerals
from drawings created by subjects taking the Clock Drawing
Test. Shown here are (a) simple example (healthy subject),
(b) overwritten, (c,d) impaired subjects, and our numeral de-
tection/classification results (green: correct, red: incorrect).

currently entirely manual, requires extensive clinical experi-
ence and knowledge, is at times labor-intensive, and has low
inter-rater reliability. These issues limit its clinical effective-
ness, particularly when the goal is detecting impairment early
in disease development.

Since 2006, our research group has been conducting the
THink project [Davis et al., 2015], administering the digital
Clock Drawing Test (dCDT) using a digitizing ballpoint pen
(from Anoto Inc.). The pen records its position on the pa-
per with considerable precision (£ 0.002 inches) every 13.3
ms, providing a sequence of time-stamped coordinates. The
data thus captures both the drawing and the behavior that cre-
ated it. We have accumulated a database of several thousand
tests from both healthy and cognitively impaired subjects, a



unique dataset of real-world drawing behavior. We have es-
tablished and recorded ground truth labels for each pen stroke
(i.e., which numeral it is, which hand, etc.), allowing us to
calibrate the performance of our stroke classifiers.

Our task in this paper is a slightly unusual form of sketch
interpretation: we know from the outset what the user is try-
ing to draw — a clock. The challenge is to understand what
they actually produced, i.e., determine the right label for ev-
ery stroke. Correctly labeled strokes are crucial to the ul-
timate aim of this work: automated screening (disease vs
healthy) and diagnosis (disease selection). Recent work has
shown that correctly labeled strokes enable both of these to
be done with demonstrably higher performance than existing
algorithms [Souillard-Mandar et al., 2015]. We focus here on
clock numerals because numeral features play a particularly
important role in clinical interpretation of the test.

Our task is clearly not traditional isolated digit recognition
(e.g., MNIST [LeCun et al., 1998]), as we have to determine
which strokes are likely to be the digits, and where they are.
It also is considerably more difficult than most digit recogni-
tion because impaired users at times draw digits that cannot
possibly be interpreted accurately in isolation.

Despite its domain-specificity, the task presents interest-
ing challenges widely applicable to sketch recognition. First,
our system must deal with the range of phenomena produced
by a population that is in some cases impaired and is in all
cases completely naive. Our users are the furthest thing from
trained users: A fundamental premise of the test is in fact that
it captures a person’s normal, spontaneous behavior. (This is
one reason why we use the digitizing ballpoint; a tablet could
distort the results by its different ergonomics and novelty, par-
ticularly for older users.)

Second, our system must handle corrections in natural
handwriting. When users correct mistakes, they often do
so by crossing out and over-writing, adding to the difficulty
of interpretation, sometimes making recognition impossible
to do from the image alone (e.g., the overwritten regions in
Fig. 1 (b)). Finally, our system must be prepared for ele-
ments that are distorted, misplaced, repeated, or missing en-
tirely (Fig. 1 (c) and (d)), as our users range in age from their
20’s to well into their 90’s, and span from completely healthy
to those with cognitive impairments.

2  Our Approach

Our system starts its stroke recognition by finding an initial
approximation of the center of the drawing, for use as a refer-
ence point for angular measures. This is frequently provided
by identifying the clock circle, typically the longest circu-
lar stroke(s). We find a best-fit ellipse to the points in these
strokes, giving both a good initial approximation to a center
and a measure of clock size. If there is no clock circle (as can
happen), we use the center of mass of all of data points.

2.1 Digit/ Non-digit Stroke Classification

The first step is to separate digit stokes from non-digit strokes.
We expect digits to be further from the clock center, and have
observed a tendency for users to complete the task in cate-
gories: clock circle, numerals, hands (not necessarily in that
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Figure 2: An illustration of ST-slices: (a) a helical ramp; (b)
the final ink excerpt from Fig. 1b near the 8 position; (c, d, )
the final ink unpacked into ST slices.

order). There is thus both a temporal and a spatial dimension
in which digit strokes may be grouped. Accordingly, we use
k-means clustering [Arthur and Vassilvitskii, 2007] in a 2-D
space defined by stroke starting time and distance from the
clock center.

The result is three groups of strokes, one intended to con-
tain the clock circle, another intended to contain hand strokes,
and the last intended to contain digits and other strokes shar-
ing the same space/time region, e.g., tick marks. Since the
majority of strokes represent numerals in a clock drawing,
we consider the largest cluster the digit cluster and focus here
on those, discarding others.

2.2 ST Segmentation of Digit Strokes

In terms of the original drawing, the set of presumed digit
strokes lie in a very roughly annular area. The next task is
to divide the annulus into segments intended to contain indi-
vidual clock numerals (1 to 12). In a clean drawing, a simple
angular difference threshold works well (e.g., Fig. 1 (a)). But
an angular measure would not work for drawings like Fig. 1
(b), (c) or (d); in fact it is impossible to tell from the drawing
alone what happened near the 8 position in Fig. 1 (b).

As our data is time-stamped, we can (literally) play a movie
of the test, a remarkably effective way of enabling a person to
make sense of complex, overwritten ink.

Wanting the computer to similarly unravel the layers of ink
motivated a hybrid representation combining space and time.
A spatial representation alone is inadequate because of over-
writing, which can produce incomprehensible ink (e.g., Fig. 1
(b)). A temporal representation alone is inadequate because
users may go back and add strokes to areas where they drew
previously; these additional strokes make sense only in the
context of what was drawn there (perhaps much) earlier.

We thus segment the annulus by considering both space
and time. For any pair of strokes in time sequence, we com-
pute their central angle (with respect to the estimated center
of a clock) and their time difference, producing a 2-D feature
vector. We then examine each pair sequentially, and segment
them using a boosted logistic regression classifier [Friedman
et al., 2000] trained on a held-out dataset, annotated with bi-
nary labels indicating the ground truth segments.

We call the resulting representation spatio-temporal slices
(ST-slices) and find that they are an effective representation
for untangling the ink in complex drawings. One way to make
the idea more intuitive is to imagine the digits being drawn on
a helical ramp of paper (Fig. 2 (a)), where the vertical dimen-
sion is time. We segment the ramp whenever two consecutive



Algorithm 1 Detecting Overwriting and Augmentation

1: Input: Chronologically ordered set of ST-slices S
2: procedure OVERWRITING-AUGMENTATION(S)

3: fOl‘(Si,Sj)ES,j>i do

4: if overlap(s;, s;) > 6; then

5: // Deemed overwrite: s; overwrites s;

6: S+ S\ {si}

7: else if overlap(s;, s;) > 0 then

8: // Deemed augmentation: s; augments s;
9: s; < merge(s;, s;)

10: S+ S\ {s;}

11: end if

12:  end for

13: end procedure

strokes are sufficiently far apart angularly and/or temporally
according to the segmenter. The result is a collection of ST-
slices, each holding a set of strokes that is likely to represent
a single clock numeral.

The clock in Fig. 1(b) provides one example of the effec-
tiveness of the ST-slice representation. The ST-slices pro-
duced near the 8 position of the clock reveal what is otherwise
hidden: As shown in Fig. 2, there was first an “8” drawn in
the appropriate position on the clock (Fig. 2(c); undetectable
in the final drawing). The 8 was later overwritten by a 10
(Fig. 2(d)); both of these were later scratched out (Fig. 2(e)).
(The “8” clearly visible in Fig. 1(b) is a distinct pair of strokes
added later next to the over-writes.)

In terms of the ST-slices, each of these drawing actions ap-
pears on a separate layer of the helical ramp, with their over-
lapping angular position on the clock face captured in their
matching angular positions on the ramp. ST-slices are effec-
tive in “unpeeling” layers of ink produced when people over-
write. The resultant ability to see into the layers and interpret
overwritten characters appears to be unique to our work. They
are also “low cost,” in the sense that they default to ordinary
angular slicing in the absence of overwriting.

2.3 Overwriting and Augmentation

When ST-slices overlap spatially, we look at pairs of those
slices to determine whether they represent overwriting (the
second set of strokes is intended to replace the first), or aug-
mentation (the second augments the first).

Algorithm 1 describes our approach. Given a chronologi-
cally ordered set of ST-slices, we examine each pair of slices
(84,8 j), J > 1, and determine overwriting and augmentation
based on stroke area overlap. This is based on the assumption
that two slices that capture an overwrite are likely to have ex-
tensive area overlap, as measured by the intersection of the
convex hulls of their respective stroke sets. (The intersection
is measured in either direction — s; as percent of s; and vice
versa — if one does not wholly contain the other, and as the
smaller as a percentage of the larger if one does contain the
other.) Augmentations, by contrast, are likely to have small
area overlap (e.g., adding just a “hat” or a “foot” to a 1). We
empirically set the threshold values based on training data (6,
is 60% and 6 is 5%).
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Figure 3: Context can be crucial in clock numeral interpre-
tation. When considered in context, the number on the left
side is interpreted by trained analysts as an 8, because it sits
between the 7 and 9.

Strokes in a slice deemed overwritten are classified for fu-
ture reference, then removed from further consideration, be-
cause the user replaced them. We classify the strokes us-
ing the sketched symbol recognizer of [Ouyang and Davis,
2009b], trained on a set of properly segmented clock numer-
als drawn by healthy participants.

A slice deemed to be an augmentation is merged with its
corresponding slice(s).

The result at this point is a set of slices that we believe
represent what the subject intended the final drawing to show,
with overwritten ink analyzed and removed.

2.4 Clock Numeral Classification

As has long been recognized, context can be crucial in inter-
pretation. Consider the digit in Fig. 3. It is clearly ambiguous
and could be a 1 or a 7. Yet when considered in context it is
interpreted by trained analysts as an 8 (it sits between the 7
and 9). We want our system to have a similar ability to con-
sider more than just the appearance of each set of pen strokes.

We take context into account by formulating the prob-
lem as structured prediction, and use a conditional random
field (CRF) [Lafferty et al., 2001] that provides one way to
combine information about what pen strokes look like with
contextual information such as where they are in the clock,
what’s on either side of them angularly, etc.

We could encode the spatial relationship between the n
digit slices using a circular chain structure, mimicking the
annular area in a clock face. But this loopy structure makes
it difficult to perform inference in the CRF model, as it re-
quires performing approximate inference using methods such
as alpha expansion [Szummer et al., 2008] or mean field ap-
proximation [Koltun, 2011].

In response, we take advantage of the fact that our graph is
a simple circular chain and break it right after the north slice
of the clock face (often the numeral 12), creating a loop-free
linear chain graph. We then append to each slice the adja-
cent slices on either side of it, so that z; = [x;_1; x;; Ti41]-
Each slice feature vector now has a dimension three times
the original size. This combination of breaking the circle and
concatenating feature vectors permits the use of an efficient
belief propagation algorithm [Pearl, 1982], while still taking
account of spatial context.



Algorithm 2 Repair Strategy for Under-segmentation
1: Input: Set of ST-slices S, ST-slice s

2: procedure REPAIR—-UNDERSEGMENTATION(S, s)
3:  // Find the best scoring partition of s

4: P <+ partitions of s into sets of chronological strokes
5:  for each partition P; € P do

6: for each set of strokes p; € P; do

7: score of p; < recognize(p;)

8: end for

9:  end for

10:  P* < partition with the highest average score
11:  score of s < recognize(s)
12:  if the highest average score > score of s then

13: // Find non-overlapping subset of slices

14: for (p;,p;) € P*,j > ido

15: if overlap(p;, p;) > 61 then

16: P* «+ P*\ p;

17: end if

18: end for

19: // Replace s with P*, preserving stroke order in &
20: S+ (S\{s})uPpP*

21:  endif

22: end procedure

Algorithm 3 Repair Strategy for Over-segmentation
1: Input: Set of ST-slices S, consecutive ST-slices s;, s
2: procedure REPAIR—OVERSEGMENTATION(S, s;, 5;)
3:  merged score < recognize(merge(s;, s;))

4:  original score < recognize(s;)

5 if merged score > original score then

6: s; < merge(s;, s;)

7

8

9

S+ S\ {s;}
end if
: end procedure

We define the CRF with a singleton term that learns the ap-
pearance of digits as the compatibility between a digit label
y; and the feature vector x; for the i-th slice, and a pairwise
term that captures the context as the compatibility between
two angularly consecutive digit labels y; 1 and y;. For each
ST-slice the CRF returns a 12-element vector indicating the
probability of each numeral label for that slice.

Training of the CRF follows the standard gradient descent
approach [Lafferty er al., 2001]. To avoid over-fitting, we
used an /5 regularization with its scale term set at 0.01, chosen
based on 10-fold cross validation.

To determine the appropriate feature representations to use,
we trained and tested 12 CRF classifiers with different com-
binations of features, including the 24 x 24 feature images
from the [Ouyang and Davis, 2009b] symbol recognizer, the
angular position of the slice, and the number of pen strokes
in the slice. We review the results in Section 3.

2.5 Repairs

The ST-slice mechanism is of course not perfect: it will
under-segment in some cases and over-segment in others. In
Fig. 1(b), the 2 overwritten with the 4 (at the 4 position) pro-
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Figure 4: A clock drawing sample and the corresponding
CRF probabilities before and after applying our repair strat-
egy for over-segmentation. The 5 is initially over-segmented
into the 6th and the 7th digit slices, but later corrected.
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duces an under-segmentation, because the 2 was immediately
overwritten with the 4, yielding a single ST-slice with all three
strokes in it. Conversely, ST-slices can over-segment in cir-
cumstances like those in Fig. 4, described below.

In response, the next step is to examine the posterior proba-
bilities provided by the CRF for the highest ranking interpre-
tation for each slice in sequence, and detect “valleys” in this
score as a way of finding places where the stroke interpreta-
tion may be incorrect (e.g., the 6th and the 7th digit slices)
Fig. 4). We consider a slice to be a valley if its probability
score is at least 30% lower than the score for either of its ad-
jacent slices. Looking at score differences from slice to slice
rather than absolute scores adjusts to some extent for clocks
with generally badly drawn digits.

When multiple potential repair sites are found, we start
with the repair site whose adjacent slice has the highest score,
trying to work from what we are relatively more sure of (the
high-scored slice) to help guide the repair (referred to as the
“islands of certainty” strategy in [Erman ez al., 1980]).

After each repair, the entire set of (revised) ST-slices is sent
back to the CRF to determine whether the repair improved
the interpretation. An improvement in one slice can of course
propagate, affecting scores in adjacent slices, leading to an
overall improvement and/or the identification of additional
repair site candidates. This process continues until no new
repair sites are identified.

We developed repair strategies to handle both over-
segmentation (e.g., where a single numeral was split into two
slices) and under-segmentation (e.g., multiple digits so close
angularly they end up in a single ST-slice). Slice properties
determine which strategy to apply: oversegmentation is ap-
plied to valleys formed by two consecutive slices, while un-
dersegmentation is applied to valleys containing only a sin-
gle slice that is unusually wide angularly and that has an un-
usually large number of strokes in it (“unusual” is defined as
more than one standard deviation larger than the average of
that property).

Algorithm 2 attempts to deal with under-segmentation
by partitioning strokes in a slice into multiple subsets of
chronological strokes. For example, given a slice with three
strokes {1, 2, 3}, we create three partitions P = { P, P, Ps}
where P, = {{1},{2,3}}, P» = {{1,2},{3}}, and P; =
{{1},{2},{3}}. It then applies the sketched symbol recog-
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nizer mentioned in Section 2.3 [Ouyang and Davis, 2009b],
which has been trained to recognize the twelve clock numer-
als in isolation, and uses the results to determine whether any
of the partitions improves the interpretation. Once the slice is
re-segmented using the optimal partition, we remove any sub-
set of strokes if it has been overwritten by strokes in a subse-
quent subset in that slice (using the same 6 = 60% criterion
as in Algorithm 1). As one example, this deals successfully
with the 2 overwritten by a 4 in Fig. 1(b).

Fig. 4 illustrates an over-segmentation: the top stroke of the
5 is sufficiently far angularly from the midpoint of the base
stroke that the two are put in separate slices. Algorithm 3
looks for a valley two slices wide, tries merging them, and
evaluates the interpretation of the new set of slices. The graph
in Fig. 4 shows the successful repair, with the CRF probabil-
ities demonstrating significant improvement from initial seg-
mentation (red, 13 slices) to the repaired segementation (blue,
12 slices).

3 Experiments

We used a set of 2,024 clock drawings collected from clinical
facilities: 1,654 clocks drawn by healthy participants and 370
clocks randomly selected from mildly cognitively impaired
participants. Ground truth labeling was provided by trained
analysts, including segmentation and identification of each
clock numeral slice.

3.1 Clock Numeral Identification

Our final digit identification accuracy ranged from 99.14%
for healthy-user clocks to 92.32% for impaired-user clocks.
For healthy users virtually all errors were in segmentation; us-
ing ground truth segmentation labels, digit identification was
99.32% (see overall performance in Table 1). The segmenta-
tion errors were typically over-segmentations (e.g., splitting
the two digits in a “12”). Our repair strategies dealt success-
fully with about half the segmentation errors that occurred,
producing the final result of 99.14%.

Unsurprisingly, impaired clocks had more errors in identi-
fication (3.66%) and segmentation (4.08%), yielding an over-
all accuracy of 92.32%. Errors in these cases typically re-
sulted when a sequence of digits were drawn badly (e.g., the
1,2,3,4,5,6 sequence in Fig. 1 (c)), preventing context from
offering sufficient guidance.

Overall our performance compares favorably to the state
of the art isolated digit recognition — an accuracy of 99.79%
on the MNIST dataset [Wan et al., 2013] - considering the
added difficulties we face (non-isolated digits, 12 labels to as-
sign, some extremely challenging data). It also illustrates the
power of context to aid interpretation, something obviously
not used in isolated digit recognizers.

3.2 Quantifying The Impact of ST-Slices

Our segmentation method (ST-slices) can deal with overwrit-
ing that is otherwise incomprehensible even to humans. To
see its effectiveness, we selected 70 clocks in our dataset
that contain at least one incomprehensible part resulting from
overwriting.

Our ST-slice mechanism separated the layers of ink ac-
curately in 79% of these cases. As a comparison, a purely
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Figure 5: Success (green) and failure (red) cases of ST-slices,
categorized into four canonical types of complications.

temporal segmenter — a boosted logistic regression classi-
fier [Friedman et al., 2000] trained on just the time difference
between successive strokes — performed significantly worse
at an accuracy of 66%.

Fig. 5 provides some insight into when our technique
works well and when it fails. ST-slices performed well on
cases where two slices are spatially close (which confused
a purely spatial segmenter), but still temporally distinguish-
able. This handles cases in which two numerals are written
near each other but at different times (Fig. 5a) and cases in
which a numeral is crossed out and another written next to it
(b). Our technique correctly segmented most of the slices pro-
duced in these cases (the green boxes in Fig. 5a and Fig. 5b).

Given the complexity of the ink that results from overwrit-
ing, none of these would have been handled by existing digit
recognition or sketch interpretation techniques.



Trained on | Input | Ang, # Stk | Overall Perf (sd) | Perf Healthy (sd) | Perf Impaired (sd)
Healthy single 89.93% (0.0101) | 93.83% (0.0103) 71.03% (0.0309)
Healthy single Y 87.51% (0.0068) | 90.51% (0.0074) 73.01% (0.0321)
Healthy concat. 98.43% (0.0049) | 96.76% (0.0018) 92.01% (0.0243)
Healthy concat. Y 99.01% (0.0045) | 99.90% (0.0011) 94.66% (0.0232)
Impaired single 75.11% (0.2420) | 78.43% (0.0268) 59.04% (0.0232)
Impaired single Y 76.76% (0.0285) | 79.05% (0.0328) 65.67% (0.0234)
Impaired concat. 98.84% (0.0055) | 99.75% (0.0024) 94.45% (0.0234)
Impaired concat. Y 99.05% (0.0092) | 99.82% (0.0025) 95.31% (0.0429)
Both single 88.96% (0.0080) | 92.88% (0.0094) 69.95% (0.0224)
Both single Y 88.29% (0.0137) | 92.18% (0.0140) 75.31% (0.0264)
Both concat. 98.85% (0.0048) | 99.82% (0.0018) 94.13% (0.0228)
Both concat. Y 99.32% (0.0028) | 99.93% (0.0009) 96.34% (0.0160)

Table 1: We report mean accuracy and standard deviation across 10 folds. We measured the effect of several factors, including
choice of training set (healthy, impaired, both), whether feature vectors for the CRF were concatenated for three adjacent slices,
and whether the feature vector contained only 24 x 24 feature images, or included slice angular position and stroke count.

One source of failure came from immediate overwriting,
with either the same (Fig. 5c) or a different digit (Fig. 5d),
as these strokes end up in the same ST-slice. As noted, we
handle this by examining sequential subsets of strokes in the
slice, looking for subsets recognizable as a digit. Fig. 5c and
d shows examples of both successes and failures.

A relatively rare problem arises from numerals assembled
with non-chronological strokes; our system always fails to
correctly (re)group temporally interspersed strokes. These
scenarios require determining intent, and are a focus of con-
tinued work.

3.3 Quantifying The Impact of Context

Given the important role of context in interpretation, particu-
larly in clocks by impaired users, we did a set of experiments
to provide a quantitative calibration of the contribution of dif-
ferent context features.

We trained and tested our digit classifier with 12 different
combinations of context features, using as the base feature the
24 x 24 feature images from the [Ouyang and Davis, 2009b]
symbol recognizer. To focus on calibrating the contribution
of context features, training and testing was done on correctly
segmented pen strokes (i.e., isolated clock numerals), using
10-fold cross validation.

We report mean accuracy and standard deviation across the
folds. As Table 1 suggests, adding angle and stroke count
alone increases accuracy only a small amount, from 98.85%
to 99.32% (the last two rows). Concatenating data from ad-
jacent slices provides a more significant performance boost,
from 88.96% to 98.85% (the second and the fourth to the last
row). Not surprisingly, concatenation provided a particularly
significant benefit for impaired clocks, where performance
improved from 69.95% to 94.13%.

In terms of training sets, training on only the impaired
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clocks typically gave the worst results, even for performance
on impaired clocks, perhaps because some digits are so dis-
torted that they are blurring the ability to distinguish more
clearly drawn digits.

Overall these results give quantitative evidence for the sig-
nificant contribution made by considering each digit in the
context of the two on either side of it. While not unexpected,
it is useful to see that it provides the kind of capability ev-
idenced by human performance, e.g., for the digit in Fig. 3,
which is now properly classified as an 8.

4 Related Work

Work in [Kim, 2013] is also focused on the clock draw-
ing test, but emphasizes interface design, seeking to create
a tablet-based system that is usable by both subjects and clin-
icians. It does basic digit recognition but does not report deal-
ing with distorted or over-written digits, or the other complex-
ities described here.

Digit recognition has a long history, for both online and
offline capture: [Plamondon and Srihari, 2000] provides a
survey, recent work on convolutional neural networks offers
current performance levels [Ciresan et al., 2012; Wan et al.,
2013]. While we need a good digit recognizer, our larger fo-
cus is on the identification of digits in context in challenging
conditions (e.g., distorted by impairment, crossed out, over-
writing, etc.), which has not been studied extensively.

Our work on ST-slices builds on and extends a long his-
tory of using temporal information in sketch understanding,
where it has been used in a variety of ways, including stroke
segmentation (e.g. [Ouyang and Davis, 2009al) and interpre-
tation [Sezgin and Davis, 2008; Taele and Hammond, 2008].
While previous work has explored over-tracing (writing the
same thing on top of itself, often for emphasis, e.g., [Sezgin
and Davis, 2004]), overwriting (writing to replace) appears to



be rarely tackled. [Hiirst et al., 1998] take on the task, but
set it in the context of interactive handwriting recognition, in
which the user and the system work cooperatively, which is
inappropriate for our task. Work in [Dickmann et al., 2010]
combines spatial and temporal information to do stroke seg-
mentation, but appears to deal only with consecutive strokes.
Spatio-temporal information have also been used together
in a variety of circumstances, as for example dense trajec-
tories [Wang et al., 2013] and C3D [Tran et al., 2015] for
video analysis in the computer vision community. Our vi-
sual feature representation from [Ouyang and Davis, 2009b]
can be thought of as 2D convolutional features obtained from
pre-defined filters; using 3D convolutional features [Tran er
al., 2015] to represent our pen stroke data could give us extra
performance boost. This is the focus of our ongoing work.

5 Conclusions

Our sketch interpretation system balances visual appearance
and context, enabling it to handle some of the complex phe-
nomena found in drawings produced during a real-world task
performed by a wide range of naive users behaving as they do
ordinarily.

We demonstrate our system on detecting and classifying
clock numerals from drawings created by subjects taking the
digital Clock Drawing Test. We report performance on clock
numeral detection and classification at the 96%—99% level
even for sketches drawn by those with impairments, calibrat-
ing and demonstrating the utility of different forms of context.
We show that a novel representation — ST-slices — and the pro-
cessing that accompanies it enables unpeeling and interpret-
ing the layers of ink that result when people overwrite, giving
our system a novel ability to classify symbols in a drawing
even though they have been over-written or crossed out.

As the performance figures suggest, the system works well
on clock numeral isolation and detection for clocks from both
healthy and impaired users. Even so there are several avenues
of improvement to be explored.

Perhaps the most important is to explore alternatives to the
sequential character of our system (segmentation and recog-
nition). Human segmentation of strokes is clearly guided in
part by understanding the drawing, i.e., segmentation and in-
terpretation work simultaneously. Recent research has shown
that convolutional neural networks combined with region pro-
posals are very effective at simultaneous detection and recog-
nition of visual objects from images [Girshick et al., 2014].
Applying techniques like this to our domain would require
additional steps to deal with cross-outs and over-writing. We
are looking into ways to accomplish this and expect it to re-
duce the role of segmentation as a major source of clock nu-
meral identification error.

We have focused here on clock numeral identification be-
cause it is the most difficult part of the task, but full sketch
interpretation for the clock means recognizing all the other
elements (hands, tick marks, etc.). We have a start on this but
there is considerably more to do.

Where possible we compared our work to the state of the
art, e.g., its performance on healthy clocks, which is com-
parable to the best isolated digit recognizers on the MNIST
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dataset [Wan et al., 2013]. But an important, novel part of
our system is space-time slicing for sketch recognition, and
its ability to handle the cross-outs and over-writing that oc-
cur in ordinary drawing and writing. Since there is yet no
standard dataset or alternative program to compare directly
against for this part of the system, we provided the qualita-
tive analysis (Fig. 5) that explains in detail when space-time
slicing works well and when it fails.

While ST-slices have been applied here to a specific task,
the concept is more generally applicable to any sketch under-
standing task where layers of ink are encountered and need to
be unraveled. More generally, they are a combination of the
spatial and temporal properties of pen strokes and as such are
applicable to a variety of sketch recognition domains, e.g.,
drawings of chemical structures [Ouyang and Davis, 2011].

The general idea of using context to guide signal under-
standing is of course both known and widely applicable. This
work provides a calibration of its power on a specific task and
more generally shows how spatial and temporal information
can be captured in a way that is powerful on this specific task,
yet general enough to be applicable to a variety of other hand
drawing interpretation tasks.
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