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Abstract

Stochastic And-Or grammars (AOG) extend tradi-
tional stochastic grammars of language to model
other types of data such as images and events. In
this paper we propose a representation framework
of stochastic AOGs that is agnostic to the type of
the data being modeled and thus unifies various
domain-specific AOGs. Many existing grammar
formalisms and probabilistic models in natural lan-
guage processing, computer vision, and machine
learning can be seen as special cases of this frame-
work. We also propose a domain-independent in-
ference algorithm of stochastic context-free AOGs
and show its tractability under a reasonable as-
sumption. Furthermore, we provide two interpre-
tations of stochastic context-free AOGs as a sub-
set of probabilistic logic, which connects stochas-
tic AOGs to the field of statistical relational learn-
ing and clarifies their relation with a few existing
statistical relational models.

1 Introduction

Formal grammars are a popular class of knowledge represen-
tation that is traditionally confined to the modeling of natu-
ral and computer languages. However, several extensions of
grammars have been proposed over time to model other types
of data such as images [Fu, 1982; Zhu and Mumford, 2006;
Jin and Geman, 2006] and events [Ivanov and Bobick, 2000;
Ryoo and Aggarwal, 2006; Pei et al., 2011]. One promi-
nent type of extension is stochastic And-Or grammars (AOG)
[Zhu and Mumford, 2006]. A stochastic AOG simultane-
ously models compositions (i.e., a large pattern is the com-
position of several small patterns arranged according to a cer-
tain configuration) and reconfigurations (i.e., a pattern may
have several alternative configurations), and in this way it can
compactly represent a probabilistic distribution over a large
number of patterns. Stochastic AOGs can be used to parse
data samples into their compositional structures, which help
solve multiple tasks (such as classification, annotation, and
segmentation of the data samples) in a unified manner. In this
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paper we will focus on the context-free subclass of stochas-
tic AOGs, which serves as the skeleton in building more ad-
vanced stochastic AOGs.

Several variants of stochastic AOGs and their inference al-
gorithms have been proposed in the literature to model differ-
ent types of data and solve different problems, such as image
scene parsing [Zhao and Zhu, 2011] and video event parsing
[Pei er al., 2011]. Our first contribution in this paper is that
we provide a unified representation framework of stochastic
AOGs that is agnostic to the type of the data being modeled;
in addition, based on this framework we propose a domain-
independent inference algorithm that is tractable under a rea-
sonable assumption. The benefits of a unified framework of
stochastic AOGs include the following. First, such a frame-
work can help us generalize and improve existing ad hoc ap-
proaches for modeling, inference and learning with stochastic
AOGs. Second, it also facilitates applications of stochastic
AOGs to novel data types and problems and enables the re-
search of general-purpose inference and learning algorithms
of stochastic AOGs. Further, a formal definition of stochas-
tic AOGs as abstract probabilistic models makes it easier to
theoretically examine their relation with other models such
as constraint-based grammar formalism [Shieber, 1992] and
sum-product networks [Poon and Domingos, 2011]. In fact,
we will show that many of these related models can be seen
as special cases of stochastic AOGs.

Stochastic AOGs model compositional structures based on
the relations between sub-patterns. Such probabilistic model-
ing of relational structures is traditionally studied in the field
of statistical relational learning [Getoor and Taskar, 2007].
Our second contribution is that we provide probabilistic logic
interpretations of the unified representation framework of
stochastic AOGs and thus show that stochastic AOGs can
be seen as a novel type of statistical relational models. The
logic interpretations help clarify the relation between stochas-
tic AOGs and a few existing statistical relational models and
probabilistic logics that share certain features with stochas-
tic AOGs (e.g., tractable Markov logic [Domingos and Webb,
2012] and stochastic logic programs [Muggleton, 1996]). It
may also facilitate the incorporation of ideas from statistical
relational learning into the study of stochastic AOGs and at
the same time contribute to the research of novel (tractable)
statistical relational models.



2 Stochastic And-Or Grammars

An AOG is an extension of a constituency grammar used in
natural language parsing [Manning and Schiitze, 1999]. Sim-
ilar to a constituency grammar, an AOG defines a set of valid
hierarchical compositions of atomic entities. However, an
AOG differs from a constituency grammar in that it allows
atomic entities other than words and compositional relations
other than string concatenation. A stochastic AOG models
the uncertainty in the composition by defining a probabilistic
distribution over the set of valid compositions.

Stochastic AOGs were first proposed to model images [Zhu
and Mumford, 2006; Zhao and Zhu, 2011; Wang et al., 2013;
Rothrock ef al., 2013], in particular the spatial composition
of objects and scenes from atomic visual words (e.g., Garbor
bases). They were later extended to model events, in par-
ticular the temporal and causal composition of events from
atomic actions [Pei et al., 2011] and fluents [Fire and Zhu,
2013]. More recently, these two types of AOGs were used
jointly to model objects, scenes and events from the simulta-
neous input of video and text [Tu et al., 2014].

In each of the previous work using stochastic AOGs, a
different type of data is modeled with domain-specific and
problem-specific definitions of atomic entities and composi-
tions. Tu et al. [Tu et al., 2013] provided a first attempt to-
wards a more unified definition of stochastic AOGs that is
agnostic to the type of the data being modeled. We refine and
extend their work by introducing parameterized patterns and
relations in the unified definition, which allows us to reduce
a wide range of related models to AOGs (as will be discussed
in section 2.1). Based on the unified framework of stochastic
AOGs, we also propose a domain-independent inference al-
gorithm and study its tractability (section 2.2). Below we start
with the definition of stochastic context-free AOGs, which are
the most basic form of stochastic AOGs and are used as the
skeleton in building more advanced stochastic AOGs.

A stochastic context-free AOG is defined as a 5-tuple
(¥,N,S,0, R):

3 is a set of terminal nodes representing atomic patterns that
are not decomposable;

N is a set of nonterminal nodes representing high-level pat-
terns, which is divided into two disjoint sets: And-nodes
and Or-nodes;

S € N is a start symbol that represents a complete pattern;

@ is a function that maps an instance of a terminal or nonter-
minal node « to a parameter 0, (the parameter can take
any form such as a vector or a complex data structure;
denote the maximal parameter size by my);

R is a set of grammar rules, each of which takes the form of
x — C representing the generation from a nonterminal
node x to a set C' of nonterminal or terminal nodes (we
say that the rule is “headed” by node = and the nodes in
C' are the “child nodes” of x).

The set of rules R is further divided into two disjoint sets:
And-rules and Or-rules.

e An And-rule, parameterized by a triple (r, ¢, f), repre-
sents the decomposition of a pattern into a configuration
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of non-overlapping sub-patterns. The And-rule speci-
fies a production r : A — {x1,2,...,2,} for some
n > 2, where A is an And-node and x4, xo, ..., x, are
a set of terminal or nonterminal nodes representing the
sub-patterns. A relation between the parameters of the
child nodes, t(0y,,0.,,- .., 0.,), specifies valid config-
urations of the sub-patterns. This so-called parameter
relation is typically factorized to the conjunction of a
set of binary relations. A parameter function f is also
associated with the And-rule specifying how the param-
eter of the And-node A is related to the parameters of the
child nodes: 04 = f(04,,04,,.-.,0.,). We require that
both the parameter relation and the parameter function
take time polynomial in n and my to compute. There is
exactly one And-rule that is headed by each And-node.

e An Or-rule, parameterized by an ordered pair (r, p), rep-
resents an alternative configuration of a pattern. The
Or-rule specifies a production » : O — =z, where O
is an Or-node and z is either a terminal or a nontermi-
nal node representing a possible configuration. A condi-
tional probability p is associated with the Or-rule spec-
ifying how likely the configuration represented by z is
selected given the Or-node O. The only constraint in the
Or-rule is that the parameters of O and = must be the
same: 6o = 0,. There typically exist multiple Or-rules
headed by the same Or-node, and together they can be
written as O — xy|xa|. .. |Tp.

Note that unlike in some previous work, in the definition
above we assume deterministic And-rules for simplicity. In
principle, any uncertainty in an And-rule can be equivalently
represented by a set of Or-rules each invoking a different copy
of the And-rule.

Fig. 1(a) shows an example stochastic context-free AOG of
line drawings. Each terminal or nonterminal node represents
an image patch and its parameter is a 2D vector representing
the position of the patch in the image. Each terminal node de-
notes a line segment of a specific orientation while each non-
terminal node denotes a class of line drawing patterns. The
start symbol .S denotes a class of line drawing images (e.g.,
images of animal faces). In each And-rule, the parameter re-
lation specifies the relative positions between the sub-patterns
and the parameter function specifies the relative positions be-
tween the composite pattern and the sub-patterns.

With a stochastic context-free AOG, one can generate a
compositional structure by starting from a data sample con-
taining only the start symbol S and recursively applying the
grammar rules in R to convert nonterminal nodes in the data
sample until the data sample contains only terminal nodes.
The resulting compositional structure is a tree in which the
root node is S, each non-leaf node is a nonterminal node, and
each leaf node is a terminal node; in addition, for each ap-
pearance of And-node A in the tree, its set of child nodes
in the tree conforms to the And-rule headed by A, and for
each appearance of Or-node O in the tree, it has exactly one
child node in the tree which conforms to one of the Or-rules
headed by O. The probability of the compositional structure
is the product of the probabilities of all the Or-rules used in
the generation process. Fig. 1(b) shows an image and its com-



P=04x04x05x...

Figure 1: (a) A graphical representation of an example stochastic AOG of line drawings of animal faces. Each And-rule is
represented by an And-node and all of its child nodes in the graph. The spatial relations within each And-rule are not shown for
clarity. Each Or-rule is represented by an Or-node and one of its child nodes, with its probability shown on the corresponding
edge. (b) A line drawing image and its compositional structure generated from the example AOG. Again, the spatial relations
between nodes are not shown for clarity. The probability of the compositional structure is partially computed at the top right.

positional structure generated from the example AOG in Fig.
1(a). Given a data sample consisting of only atomic patterns,
one can also infer its compositional structure by parsing the
data sample with the stochastic context-free AOG. We will
discuss the parsing algorithm later.

Our framework is flexible in that it allows different types
of patterns and relations within the same grammar. Consider
for example a stochastic AOG modeling visually grounded
events (e.g., videos of people using vending-machines). We
would have two types of terminal or nonterminal nodes that
model events and objects respectively. An event node repre-
sents a class of events or sub-events, whose parameter is the
start/end time of an instance event. An object node repre-
sents a class of objects or sub-objects (possibly in a specific
state or posture), whose parameter contains both the spatial
information and the time interval information of an instance
object. We specify temporal relations between event nodes to
model the composition of an event from sub-events; we spec-
ify spatial relations between object nodes to model the com-
position of an object from its component sub-objects as well
as the composition of an atomic event from its participant ob-
jects; we also specify temporal relations between related ob-
ject nodes to enforce the alignment of their time intervals.

Note that different nonterminal nodes in an AOG may
share child nodes. For example, in Fig.l each terminal
node representing a line segment may actually be shared by
multiple parent nonterminal nodes representing different line
drawing patterns. Furthermore, there could be recursive rules
in an AOG, which means the direct or indirect production of a
grammar rule may contain its left-hand side nonterminal. Re-
cursive rules are useful in modeling languages and repetitive
patterns.

In some previous work, stochastic AOGs more expressive
than stochastic context-free AOGs are employed. A typi-
cal augmentation over context-free AOGs is that, while in
a context-free AOG a parameter relation can only be spec-
ified within an And-rule, in more advanced AOGs parame-
ter relations can be specified between any two nodes in the
grammar. This can be very useful in certain scenarios. For
example, in an image AOG of indoor scenes, relations can
be added between all pairs of 2D faces to discourage overlap
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[Zhao and Zhu, 2011]. However, such relations make infer-
ence much more difficult. Another constraint in context-free
AOGs that is sometimes removed in more advanced AOGS is
the non-overlapping requirement between sub-patterns in an
And-rule. For example, in an image AOG it may be more
convenient to decompose a 3D cube into 2D faces that share
edges [Zhao and Zhu, 2011]. We will leave the formal defini-
tion and analysis of stochastic AOGs beyond context-freeness
to future work.

2.1 Related Models and Special Cases

Stochastic context-free AOGs subsume many existing mod-
els as special cases. Because of space limitation, here we
informally describe these related models and their reduction
to AOGs and leave the formal definitions and proofs in the
supplementary material [Tu, 2016].

Stochastic context-free grammars (SCFG) are clearly a
special case of stochastic context-free AOGs. Any SCFG can
be converted into an And-Or normal form that matches the
structure of a stochastic AOG [Tu and Honavar, 2008]. In a
stochastic AOG representing a SCFG, each node represents
a string and the parameter of a node is the start/end posi-
tions of the string in the complete sentence; the parameter
relation and parameter function in an And-rule specify string
concatenation, i.e., the substrings must be adjacent and the
concatenation of all the substrings forms the composite string
represented by the parent And-node.

There have been a variety of grammar formalisms devel-
oped in the natural language processing community that go
beyond the concatenation relation of strings. For examples,
in some formalisms the substrings are interwoven to form the
composite string [Pollard, 1984; Johnson, 1985]. More gen-
erally, in a grammar rule a linear regular string function can
be used to combine lists of substrings into a list of composite
strings, as in a linear context-free rewriting system (LCFRS)
[Weir, 1988]. All these grammar formalisms can be repre-
sented by context-free AOGs with each node representing a
list of strings, the node parameter being a list of start/end
positions, and in each And-rule the parameter relation and
parameter function defining a linear regular string function.
Since LCFRSs are known to generate the larger class of
mildly context-sensitive languages, context-free AOGs when



instantiated to model languages can be at least as expressive
as mildly context-sensitive grammars.

Constraint-based grammar formalisms [Shieber, 1992] are
another class of natural language grammars, which associate
so-called feature structures to nonterminals and use them to
specify constraints in the grammar rules. Such constraints
can help model natural language phenomena such as En-
glish subject-verb agreement and underlie grammatical the-
ories such as head-driven phrase structure grammars [Pollard
and Sag, 1988]. It is straightforward to show that constraint-
based grammar formalisms are also special cases of context-
free AOGs (with a slight generalization to allow unary And-
rules), by establishing equivalence between feature structures
and node parameters and between constraints and parameter
relations/functions.

In computer vision and pattern recognition, stochastic
AOGs have been applied to a variety of tasks as discussed
in the previous section. In addition, several other popular
models, such as the deformable part model [Felzenszwalb et
al., 2008] and the flexible mixture-of-parts model [Yang and
Ramanan, 2011], can essentially be seen as special cases of
stochastic context-free AOGs in which the node parameters
encode spatial information of image patches and the param-
eter relations/functions encode spatial relations between the
patches.

Sum-product networks (SPN) [Poon and Domingos, 2011]
are a new type of deep probabilistic models that extend the
ideas of arithmetic circuits [Darwiche, 2003] and AND/OR
search spaces [Dechter and Mateescu, 2007] and can com-
pactly represent many probabilistic distributions that tradi-
tional graphical models cannot tractably handle. It can be
shown that any decomposable SPN has an equivalent stochas-
tic context-free AOG: Or-nodes and And-nodes of the AOG
can be used to represent sum nodes and product nodes in
the SPN respectively, all the node parameters are set to null,
parameter relations always return true, and parameter func-
tions always return null. Because of this reduction, all the
models that can reduce to decomposable SPNs can also be
seen as special cases of stochastic context-free AOGs, such
as thin junction trees [Bach and Jordan, 2001], mixtures of
trees [Meila and Jordan, 2001] and latent tree models [Choi
etal.,2011].

2.2 Inference

The main inference problem associated with stochastic AOGs
is parsing, i.e., given a data sample consisting of only terminal
nodes, infer its most likely compositional structure (parse). A
related inference problem is to compute the marginal proba-
bility of a data sample. It can be shown that both problems
are NP-hard (see the supplementary material [Tu, 2016] for
the proofs). Nevertheless, here we propose an exact inference
algorithm for stochastic context-free AOGs that is tractable
under a reasonable assumption on the number of valid com-
positions in a data sample. Our algorithm is based on bottom-
up dynamic programming and can be seen as a generalization
of several previous exact inference algorithms designed for
special cases of stochastic AOGs (such as the CYK algorithm
for text parsing).

Algorithm 1 shows the inference algorithm that returns the
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Algorithm 1: Parsing with a stochastic context-free AOG

Input: a data sample X consisting of a set of non-duplicate in-
stances of terminal nodes, a stochastic context-free AOG G in
Chomsky normal form

Output: the probability p* of the most likely parse of X

1: Create an empty map M /* M [z, 0,0,T)] stores the prob-
ability of a valid composition of size i with root Or-node O,
parameter 6, and set T" of terminal instances. */

: forallz € X do
:  a < the terminal node that x is an instance of

2
3
4: 0 < the parameter of =

5:  for all Or-rule (O — a, p) in G do
6: M[1,0,0,{z}] < p

7: fori=2to |X|do

8 forj=1to:— 1do

9: for all (O1,01,p1) : M[j,01,01,T1] = p1 do
10: for all <02,92,p2> : M[’L‘*j,OQ,@Q,TQ} = P2 do
11: for all And-rule (A — 010>, t, f) in G do
12: if t(01,02) = True and Ty (T2 = () then
13: ¢+ f(01,02)
14: T+ TiUT
15: for all Or-rule (O — A, po) in G do
16: P < popip2
17: if M[i, O, ¢,T] is null then
18: M[i,0,6,T] +
19: else
20: M(i, 0, ¢, T} max{p, Mli, 0, 6, T]}

21: return maxg M[|X]|, S, 6, X] /* S is the start symbol */

probability of the most likely parse. After the algorithm ter-
minates, the most likely parse can be constructed by recur-
sively backtracking the selected Or-rules from the start sym-
bol to the terminals. To compute the marginal probability of
a data sample, we simply replace the max operation with sum
in line 20 of Algorithm 1.

In Algorithm 1 we assume the input AOG is in a gener-
alized version of Chomsky normal form, i.e., (1) each And-
node has exactly two child nodes which must be Or-nodes,
(2) the child nodes of Or-nodes must not be Or-nodes, and
(3) the start symbol S is an Or-node. By extending previ-
ous studies [Lange and Leif, 2009], it can be shown that any
context-free AOG can be converted into this form and both
the time complexity of the conversion and the size of the new
AOG is polynomial in the size of the original AOG. We give
more details in the supplementary material [Tu, 2016].

The basic idea of Algorithm 1 is to discover valid com-
positions of terminal instances of increasing sizes, where the
size of a composition is defined as the number of terminal
instances it contains. Size 1 compositions are simply the ter-
minal instances (line 2-6). To discover compositions of size
¢ > 1, the combination of any two compositions of sizes j
and i — j (j < i) are considered (line 7-20). A complete
parse of the data sample is a composition of size | X | with its
root being the start symbol S (line 21).

The time complexity of Algorithm 1is O(| X |?c?|G|(| X |+
|G])) where ¢ = max; |C;| and C; is the set of valid compo-
sitions of size ¢ in the data sample X. In the worst case when
all possible compositions of terminal instances from the data

sample are valid, we have ¢ = (LI )‘()f /|2 J) which is exponential



in | X|. To make the algorithm tractable, we restrict the value
of ¢ with the following assumption on the input data sample.

Composition Sparsity Assumption. For any data sample X
and any positive integer i < |X |, the number of valid compo-
sitions of size i in X is polynomial in | X|.

This assumption is reasonable in many scenarios. For text
data, for a sentence of length m, a valid composition is a sub-
string of the sentence and the number of substrings of size
i is m — i + 1. For image data, if we restrict the composi-
tions to be rectangular image patches (as in the hierarchical
space tiling model [Wang er al., 2013]), then for an image of
size m = n X n it is easy to show that the number of valid
compositions of any specific size is no more than n3.

3 Logic Perspective of Stochastic AOGs

In a stochastic AOG, And-rules model the relations between
terminal and nonterminal instances and Or-rules model the
uncertainty in the compositional structure. By combining
these two types of rules, stochastic AOGs can be seen as
probabilistic models of relational structures and are hence re-
lated to the field of statistical relational learning [Getoor and
Taskar, 2007]. In this section, we manifest this connection
by providing probabilistic logic interpretations of stochastic
AOGs. By establishing this connection, we hope to facilitate
the exchange of ideas and results between the two previously
separated research areas.

3.1 Interpretation as Probabilistic Logic

We first discuss an interpretation of stochastic context-free
AOGs as a subset of first-order probabilistic logic with a
possible-world semantics. The intuition is that we interpret
terminal and nonterminal nodes of an AOG as unary relations,
use binary relations to connect the instances of terminal and
nonterminal nodes to form the parse tree, and use material
implication to represent grammar rules.

We first describe the syntax of our logic interpretation of
stochastic context-free AOGs. There are two types of formu-
las in the logic: And-rules and Or-rules. Each And-rule takes
the following form (for some n > 2).

s Yns AT) — /\ (Bi(yi) A Ri(z,94))

A Re(e(x), 9(y1)7 9(y2)7 ceey e(yn))

The unary relation A corresponds to the left-hand side And-
node of an And-rule in the AOG; each unary relation B; cor-
responds to a child node of the And-rule. We require that
for each unary relation A, there is at most one And-rule with
A(x) as the left-hand side. The binary relation R; is typ-
ically the HasPart relation between an object and one of
its parts, but R; could also denote any other binary relation
such as the Agent relation between an action and its ini-
tiator, or the HasColor relation between an object and its
color. Note that these binary relations make explicit the na-
ture of the composition represented by each And-rule of the
AOG. 0 is a function that maps an object to its parameter.

Vo Ely17y2a o
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Ry is a relation that combines the parameter relation and pa-

rameter function in the And-rule of the AOG and is typically

factorized to the conjunction of a set of binary relations.
Each Or-rule takes the following form.

Vo, A(x) = B(z) :p

The unary relation A corresponds to the left-hand side Or-
node and B to the child node of an Or-rule in the AOG;
p is the conditional probability of A(x) — B(z) being
true when the grounded left-hand side A(x) is true. We re-
quire that for each true grounding of A(z), among all the
grounded Or-rules with A(x) as the left-hand side, exactly
one is true. This requirement can be represented by two
additional sets of constraint rules. First, Or-rules with the
same left-hand side are mutually exclusive, i.e., for any two
Or-rules Vz, A(x) — Bj(z) and Vz, A(z) — Bj(z), we
have Vz, A(z) — B;(x) 1 Bj(x) where 1 is the Sheffer
stroke. Second, given a true grounding of A(z), the Or-
rules with A(x) as the left-hand side cannot be all false, i.e.,
Vz, A(x) — \/, Bi(x) where i ranges over all such Or-rules.
Further, to simplify inference and avoid potential inconsis-
tency in the logic, we require that the right-hand side unary
relation B of an Or-rule cannot appear in the left-hand side of
any Or-rule (i.e., the second requirement in the generalized
Chomsky normal form of AOG described earlier).

We can divide the set of unary relations into two categories:
those that appear in the left-hand side of rules (corresponding
to the nonterminal nodes of the AOG) and those that do not
(corresponding to the terminal nodes). The first category is
further divided into two sub-categories depending on whether
the unary relation appears in the left-hand side of And-rules
or Or-rules (corresponding to the And-nodes and Or-nodes of
the AOG respectively). We require these two sub-categories
to be disjoint. There is also a unique unary relation S that
does not appear in the right-hand side of any rule, which cor-
responds to the start symbol of the AOG.

Now we describe the semantics of the logic. The interpre-
tation of all the logical and non-logical symbols follows that
of first-order logic. There are two types of objects in the uni-
verse of the logic: normal objects and parameters. There is a
bijection between normal objects and parameters, and func-
tion # maps a normal object to its corresponding parameter.
A possible world is represented by a pair (X, L) where X is a
set of objects and L is a set of literals that are true. We require
that there exists exactly one normal object s € X such that
S(s) € L. In order for all the deterministic formulas (i.e.,
all the And-rules and the two sets of constraint rules of all
the Or-rules) to be satisfied, the possible world must contain
a tree structure in which:

1. each node denotes an object in X with the root node
being s;

2. each edge denotes a binary relation defined in some
And-rule;

3. for each leaf node z, there is exactly one terminal unary
relation T such that T'(z) € L;

4. for each non-leaf node x, there is exactly one
And-node unary relation A such that A(x) €
L, and for the child nodes {y1,y2,...,yn} of



x in the tree, {B;(y:)}"y U {Ri(z,y:)}, U
{Ro(0(x),0(y1),0(y2),...,0(yn))} C L according to
the And-rule associated with relation A4;

5. for each node z, if for some Or-node unary relation A we
have A(z) € L, then among all the Or-rules with A as
the left-hand side, there is exactly one Or-rule such that
B(z) € L where B is the right-hand side unary relation
of the Or-rule, and for the rest of the Or-rules we have
-B(x) € L.

We enforce the following additional requirements to ensure
that the possible world contains no more and no less than the
tree structure:

1. No two nodes in the tree denote the same object.

2. X and L contain only the objects and relations specified
above.

The probability of a possible world (X, L) is defined as
follows. Denote by RO the set of Or-rules. For each Or-rule
r : Yz, A(x) — B(z), denote by p, the conditional proba-
bility associated with 7 and define g, := {z € X|A(z) €
L A B(z) € L}. Then we have:

pex.0) = [] »'*

reROr

In this logic interpretation, parsing corresponds to the in-
ference problem of identifying the most likely possible world
in which the terminal relations and parameters of the leaf
nodes of the tree structure match the atomic patterns in the
input data sample. Computing the marginal probability of a
data sample corresponds to computing the probability sum-
mation of the possible worlds that match the data sample.

Our logic interpretation of stochastic context-free AOGs
resembles tractable Markov logic (TML) [Domingos and
Webb, 2012; Webb and Domingos, 2013] in many as-
pects, even though the two have very different motivations.
Such similarity implies a deep connection between stochastic
AOGs and TML and points to a potential research direction
of investigating novel tractable statistical relational models
by borrowing ideas from the stochastic grammar literature.
There are a few minor differences between stochastic AOGs
and TML, e.g., TML does not distinguish between And-nodes
and Or-nodes, does not allow recursive rules, enforces that the
right-hand side unary relation in each Or-rule is a sub-type of
the left-hand side unary relation, and disallows a unary rela-
tion to appear in the right-hand side of more than one Or-rule.

3.2 Interpretation as a Stochastic Logic Program

Stochastic logic programs (SLP) [Muggleton, 1996] are
a type of statistical relational models that, like stochastic
context-free AOGs, are a generalization of stochastic context-
free grammars. They are essentially equivalent to two other
representations, independent choice logic [Poole, 1993] and
PRISM [Sato and Kameya, 2001]. Here we show how a
stochastic context-free AOG can be represented by a pure
normalized SLP [Cussens, 2001]. Since several inference
and learning algorithms have been developed for SLPs and
PRISM, our reduction enables the application of these algo-
rithms to stochastic AOGs.
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In our SLP program, we have one SLP clause for each And-
rule and each Or-rule in the AOG. The overall structure is
similar to the probabilistic logic interpretation discussed in
section 3.1. For each And-rule, the corresponding SLP clause
takes the following form:

1.0: a(X, P) - bl(Xl,P1)7b2(X2,P2),' N ,bn(Xn,Pn),
append([X1, ..., X,], X),r1(X, X1),7r2(X, X2),
7TYL(X7XYL)7T0(P7P15"'aPTL)-

The head a(X, P) represents the left-hand side And-node of
the And-rule, where X represents the set of terminal instances
generated from the And-node and P is the parameters of the
And-node. In the body of the clause, b; represents the i-th
child node of the And-rule, r; represents the relation between
the And-node and its i-th child node, append(. . .) states that
the terminal instance set X of the And-node is the union of
the instance sets from all the child nodes, and 7y represents
arelation that combines the parameter relation and parameter
function of the And-rule. For relations r; and g, we need to
have additional clauses to define them according to the type
of data being modeled.

For each Or-rule in the AOG, if the right-hand side is a
nonterminal, then we have:

p: a(X,P):-b(X,P).

where p is the conditional probability associated with the Or-
rule, a and b represent the left-hand and right-hand sides of
the Or-rule respectively, whose arguments X and P have the
same meaning as explained above. If the right-hand side of
the Or-rule is a terminal, then we have:

poa(ft) [ ).

where ¢ is the right-hand side terminal node and the second
argument represents the parameters of the terminal node.
Finally, the goal of the program is

- s(X, P).

which represents the start symbol of the AOG, whose argu-
ments have the same meaning as explained above.

4 Conclusion

Stochastic And-Or grammars extend traditional stochastic
grammars of language to model other types of data such as
images and events. We have provided a unified representa-
tion framework of stochastic AOGs that can be instantiated
for different data types. We have shown that many existing
grammar formalisms and probabilistic models in natural lan-
guage processing, computer vision, and machine learning can
all be seen as special cases of stochastic context-free AOGs.
We have also proposed an inference algorithm for parsing
data samples using stochastic context-free AOGs and shown
that the algorithm is tractable under the composition sparsity
assumption. In the second part of the paper, we have provided
interpretations of stochastic context-free AOGs as a subset of
first-order probabilistic logic and stochastic logic programs.
Our interpretations connect stochastic AOGs to the field of
statistical relational learning and clarify their relation with a
few existing statistical relational models.
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