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Abstract

Mathematical Word Problems (MWPs) are impor-
tant for training students’ literacy and numeracy
skills. Traditionally MWPs have been manually de-
signed; an effective automated MWP generator can
significantly benefit education and research. The
goal of this work is to efficiently synthesize MWPs
that are authentic (i.e., similar to manually written
problems), diverse (i.e., covering a wide range of
mathematical tasks), and configurable (i.e., vary-
ing difficulty levels and solution characteristics).
This is challenging because a generated problem
needs to both exhibit a well-founded mathematical
structure and also an easily understood natural lan-
guage story. Our key insight is to leverage the im-
portant role that dimensional units play in MWPs,
both textually and symbolically. We first synthe-
size a dimensionally consistent equation and then
compose the natural language story via a bottom-up
traversal of the equation tree. We have realized our
technique and extensively evaluated its efficiency
and effectiveness. Results show that the system
can generate hundreds of valid problems per sec-
ond with varying levels of difficulty. More impor-
tantly, we show, via a user study with 30 students
from a local middle school, that the generated prob-
lems are statistically indistinguishable from actual
textbook problems for practice and examination.

1 Introduction

A Mathematical Word Problem (MWP) comprises several
sentences to communicate a short narrative, which includes
some numerical information and asks for some unknown
quantities to be calculated. MWPs are interesting exercises
because they challenge a student from multiple perspectives:
(1) reading and understanding the problem (literacy skills);
(2) modeling the narrative via symbolic equations (analytical
skills); and (3) obtaining an answer by solving the equations
(numerical skills). Figure 1 depicts an example MWP.

Given their significant role in education, our goal is to au-
tomatically construct well-designed MWPs. This automation
has some important benefits. First, it frees teachers from
manually designing MWPs and provides students with a rich
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Example 1. A Mathematical Word Problem: Joseph has
been running at a constant speed for 75 minutes. Eric com-
pleted 50 laps around a 400-meters track. Joseph and Eric
have traveled the same distance. What’s Joseph’s speed mea-
sured in meters per hour?

Equation: X x 1.25 = 400 x 50

Solution: X = 16,000

Figure 1: An example MWP with its equation and solution.

source of practice problems. Second, it benefits Al research
that develops algorithms for solving MWPs by providing a
large supply of diverse benchmark problems.

However, automatic generation of MWPs is challenging
because an MWP needs to have a well-formed mathemati-
cal structure and a clear natural language story. Our insight is
to utilize dimensional units to tackle the challenges, both tex-
tually and mathematically. Indeed, our careful study of popu-
lar MWP corpuses shows that most MWPs concern physical
quantities expressed in their corresponding dimensional units.
In the literature, there also exist many discussions on the sig-
nificant role that dimensional units play in MWPs [Erickson,
1999; Adam, 2006; Singley and Bennett, 2002]. Relying on
dimensional units, our generation procedure operates in two
main steps. First, it synthesizes an equation where each quan-
tity (either a variable or constant) is assigned a dimensional
unit such that the equation is dimensionally consistent (i.e.
both sides have the same dimension). In the second step, it
translates the generated equation into a multi-sentence narra-
tive; the key is to leverage the (binary) expression tree rep-
resentation of the synthesized equation. In particular, the ex-
pression tree both provides the skeleton of the story and also
allows the full narrative to be constructed recursively.

We have implemented our MWP generation algorithm and
extensively evaluated it. Our evaluation focuses on two as-
pects: (1) performance of the generation procedure, and (2)
authenticity of the generated problems (in terms of their con-
formity to actual textbook problems). Results show that our
system is efficient, taking one second to generate hundreds of
MWPs, and more importantly the generated problems closely
resemble textbook problems for practice and examination.

The rest of the paper is structured as follows. We first detail
our MWP generation methodology (Section 2). Then, Sec-



Operator | First Operand | Second Operand Result Interpretation
Addition Q1 (du) Q2 (du) Q3 (du) Q3 is the addition of )1 and Q)2
Addition Q1(du) A(du) Q2 (du) Q- is greater than Q1 by A
Addition Aq(du) A (du) As(du) Ajs is the combined offset of A; and Ao
Addition Ry Rs Rs Q3 is the combined ratio of R; and R,
Subtraction Q1(du) Q2 (du) Q3 (du) Q5 is the difference between @, and Q-
Subtraction Q1(du) Q2(du) A(du) Q1 is greater than Q3 by A
Subtraction Q1(du) A(du) Q2 (du) Q1 is greater than Q2 by A
Subtraction Aq(du) Aq(du) As(du) Ajs is the offset equaling Ay minus Ao
Subtraction Ry Rs R3 Qs is the ratio equaling Ry minus Ry
Multiplication Q1(duy) Q2(dusz) Q3(duy * dug) | Q3 is the multiplication of ()1 and Q2
Multiplication Q1(dur) R Q2 (duy) Q2 is R times as much as 0,
Multiplication Ry Ry R3 Q3 is the product ratio of R; and Ry
Division Q1(duy) Q2(dusz) 3(duy /dus) | Qs is the division of Q1 and Q2
Division Q1(du) Q2(du) R Q1 is R times as much as @,
Division Q1(du) R Qa(du) Q1 is R times as much as Q

Table 1: Semantics of binary operands w.r.z. dimensional units.

tion 3 presents the evaluation setup and results. Finally, we
survey related work (Section 4) and conclude (Section 5).

2 Methodology

This section details the design of our MWP generation al-
gorithm. It first presents a formalization of MWPs. Then
it describes the two key modules for MWP generation: the
equation generator and the narrative generator. Throughout
this section, we will use the example MWP in Figure 1 to
illustrate the operation of our algorithm.

2.1 Formalization

We define an MWP both syntactically and semantically. First
syntactically, an MWP refers to its textual representation,
which we define as follows.

Definition 1 (Syntax of MWPs). An MWP is a set of sen-
tences T containing two kinds of numerical information: the
set of given values, denoted by C, and the set of unknown val-
ues, denoted by X. The former comes directly from T, while
the latter is to be determined by T and C.

Semantically, an MWP refers to its corresponding sym-
bolic representation, which we define as follows.

Definition 2 (Semantics of MWPs). An MWP is a set of
equations (in this work, we focus on linear equations) E,

whose variables are denoted by V- C X and the parameters
denoted by P C C.

Next, we formalize the notion of valid MWPs. A valid
MWP clearly should have one unique solution to E. In ad-
dition, each equation e € E should be dimensionally consis-
tent, i.e., its two sides should have the same dimensional unit.
The following properties model this intuition.

Focusing on only the semantic definition £ of an MWP
regardless of its dimensional units assignment, we specify the
first condition, correctness, for an MWP to be well-formed.

Definition 3 (Correctness). An MWP E is correct iff E is
(1) independent, i.e., Je € E.E \ {e} — e, where — denotes
algebraic derivation, (2) consistent, i.e., E is satisfiable, and
(3) exactly determined, i.e., |[E| = |V|.

Under the assignment of dimensional units, we specify the
other condition, well-typedness.

Definition 4 (Well-Typedness). An MWP E is well-typed iff
for each equation e € E, the expressions on both sides of e
evaluate to the same dimensional unit.

Finally, we can define the validity of an MWP.

Definition 5 (Well-Formedness). An MWP E is well-formed
iff it is both correct and well-typed.

2.2 Equation Generator

The purpose of the equation generator is to (1) synthesize an
equation, and (2) assign a dimensional unit to each quantity
in the equation such that well-typedness is maintained.

Before giving the details of generating well-typed equa-
tions, we define the semantics of binary arithmetic operations
when dimensional units are concerned.

Semantics of Binary Operations As Table 1 shows, we
consider three kinds of values: quantity (denoted by Q1_3),
offset (denoted by A;_3), and ratio (denoted by R;_3). This
classification of the values and dimensional units facilitates
narrative generation (to be discussed in Section 2.3).

Equation Generation Procedure Our procedure consists of
four steps: (1) semantic instantiation: instantiate the opera-
tional rules listed in Table 1 with dimensional units; (2) seed
equation synthesis: synthesize a random equation whose two
sides have a single variable each that is of the same dimen-
sional unit; (3) variable unrolling: randomly select a vari-
able in the equation and substitute it with two fresh vari-
ables w.rt. the instantiated rules of the dimensional units; and
(4) repeat/stop: repeat step (3) or terminate as needed (e.g.,
when having reached a desired complexity of arithmetic op-
erations).

Example 2. Below illustrates how to generate the underlying
equation for our running example:

(1) Synthesize a seed equation:
X(du) = Y (du)
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(2) Assign du the dimensional unit meters:
X (meters) = Y (meters)
(3) Unroll X via X (meters/hour) x Xa(hour) = X (meters):
X (meters/hour) x Xo(hour) =Y (meters)
(4) Unroll Y via Y1 (meters/lap) x Ya(lap) =Y (meters):
X (meters/hour) x Xo(hour) = Yi(meters/lap) x Ya(lap)

2.3 Narrative Generator

Given the synthesized equation, the narrative generator trans-
lates the equation into an MWP in four steps:

Step 1: Apply the binary expression tree First, the syn-
thesized equation is converted to a binary expression tree
(BET). We represent the equation using the postfix nota-
tion [Burks et al., 1954], where “=", and variables X7, X5,
Y1 and Y5 are respectively the root and leaf nodes of the
tree. The dimensional units of the intermediate nodes can be
retrieved from their corresponding variables in the equation
generation process.

Step 2: Supplement the keywords In general, the high-
level strategy we adopted for generating the narrative is to
(1) traverse each Atomic Expression Tree (AET) within the
given BET; (2) produce a sub-story for each AET indepen-
dently, and (3) concatenate the sub-stories into the complete
narrative. An AET, as its name suggests, refers to the smallest
tree units that can be segmented from the entire BET — each
AET consists of a parent node (the operator) and two child
nodes (the variables) in the synthesized equation.

The purpose of assigning keywords to nodes in a BET is to
help produce a sub-story from each AET. Specifically, given
the BET depicted in Figure 2a, there are three AETs — «, 8
and v — as annotated by their respective bounding boxes. It
is clear that, for each of the AETs, the generated dimensional
units alone are insufficient to express its sub-story. Thus, the
keywords assigned to each node in an AET are designed to
complement the existing information in the AET and make
its semantics complete.

This is where the benefits of incorporating dimensional
units become evident. Because each dimensional unit is in
one-to-one correspondence with the type of quantity it desig-
nates, e.g. mile/hour specifies speed, mile specifies distance,
minutes specifies time, efc. Consequently, the dimensional
units of all three nodes within an AET collectively establish
the skeleton of the corresponding sub-story (we defer the de-
tailed discussion to Step 4).

For example in the a-AET, mile/hour, mile and minutes
constitute the core description of a running activity. A sim-
ple approach to complete its sub-story is to add a subject, i.e.,
whoever took the activity of running. Additional descriptive
words may be incorporated to make the narrative more inter-
esting.

Formally, the sequence of keywords assignments for each
AET is similar to a postorder tree traversal. An AET will
not be processed unless both of its child nodes are either leaf
nodes of the entire BET or intermediate nodes that have al-
ready been assigned with keywords. For the example BET, its
three AET's will be traversed in the following order: «, 5 and
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~. The assignment of each type of AET is directed by a prede-
fined rule according to the instantiation of the corresponding
operational rule listed in Table 1. For example, within the a-
AET, it is meaningless to multiply John’s running speed by
David’s running time — the subjects of mile/hour and hour
should be consistent.

Note that the keywords are not randomly assigned, but
rather selected from the existing vocabulary classified by their
types. The vocabulary for keywords of subjects, in particular,
is further split into sub-categories such as people’s names,
animals, fictional characters, efc., which we will explain in
detail in Step 3. Figure 2b shows the output of the current
step in generating the running example.

Step 3: Perform auxiliary tasks An additional task in gen-
erating a sub-story for an AET concerns numerical values,
i.e., known values that serve as the conditions or a designated
unknown value that serves as the question of an MWP. In
other words, the goal of this step is to assign values to all the
leaf nodes, except one that is left for the student to answer.
One challenge is how to generate values that fit the context
(e.g., it is not sensible for a person to run a hundred miles
per hour). Our approach is to associate a valid range of val-
ues (w.r.t. dimensional unit) for each sub-category where a
subject keyword is chosen. The intuition is that each sub-
category aggregates elements having common characteristics.
Additional constraints are synthesized to restrict all vari-
ables to be positive, the minuend to be greater than the sub-
trahend, efc., and prefer integers over decimals or fractions.
Finally, we employ Z3 [De Moura and Bjgrner, 20081, an off-
the-shelf state-of-the-art SMT solver, to resolve the synthe-
sized constraints and discover appropriate values for each of
the variables. Among all assigned variables, one will be kept
as unknown to generate an MWP’s question. Figure 2¢ shows
the outcome of this step in generating the running example.

Step 4: Put everything together At this point, keywords
have been assigned to each node and numerical information
has been distributed to leaf nodes of a BET. We can now gen-
erate each AET’s sub-story and synthesize the entire narra-
tive.

As briefly introduced in Step 2, the dimensional units for
all three nodes within an AET suffice to comprise a skeleton
of the sentences expressing its sub-story. The skeleton can
be viewed as a verbal template containing slots to be filled
with items, which are keywords and values in this case. In
order to increase the diversity of the story expressions, we
design multiple verbal templates w.r.z. each type of AET, i.e.,
the combination of dimensional units of all three nodes.

To decide which template to instantiate at runtime, we con-
sider the combination of keywords assigned to each node
within an AET. In particular, each blank in a template needs to
match the keywords assigned to each of the respective nodes
within an AET. If there are multiple suitable candidates, one
will be randomly chosen among them. Utilizing the tech-
niques for generating sub-stories for AETSs, our system tra-
verses the entire BET in the order that it assigns keywords
and finally concatenates the sub-stories into a complete story.



(a) 1%': Generate the BET from equation.

(b) 2": Assign the BET with keywords.

B-AET denotes Eric
running activi

B-AET denotes Eric’.
running activi

(c) 3. Fill the BET with values.

Figure 2: The first three steps of narrative generation.

Example 3 outlines the concrete steps that the system takes to
produce the narrative of the MWP shown in Example 1.

Example 3. We illustrate how to first generate a sub-story for
each AET using templates (where |} denotes instantiation by
filling the slots with keywords, values, or both), and then how
to concatenate the sub-stories into an entire narrative for our
running example.

(1) Generate the sub-story of a-AET using the template:
has been running at a constant
speed for hours.
3
Joseph has been running at a constant
speed for 75 minutes.
(2) Generate the sub-story of S-AET using the template:
completed laps around
a -meters track.

Eric completed 50 laps around
a 400-meters track.
(3) Generate the sub-story of y-AET using the template:
and have traveled
the same distance.

Joseph and Eric have traveled
the same distance.
(4) Generate the question sentence using the template:
What’s ’s speed measured in
meters per hour?

What’s Joseph’s speed measured
in meters per hour?
(5) Concatenate the sub-stories in the order of «, 8 and ~.

2.4 Analysis and Discussions

In this section, we first show that the generated problems are
well-formed. Then, we discuss how to control the difficulty
levels of the generated MWPs, the capability of our genera-
tion procedure, and the configurability of the generated prob-
lems.

Well-Formedness of the Generated Problems According to
Definition 5, an MWP is well-formed iff it is correct and well-
typed. The generated problems are correct because (1) each
problem has a single equation, which is clearly independent;
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(2) each has a solution guaranteed by the SMT solver and thus
consistent; and (3) the number of equations and the number
of variables are both one, thus the problem is exactly deter-
mined. The generated MWPs are also well-typed because
given the well-typed seed equation, whenever a variable is
unrolled, well-typedness is preserved according to the opera-
tional rules listed in Table 1. Because the generated MWPs
are both correct and well-typed, they are well-formed.

Remark. It is possible for dimensional units to have mul-
tiple story interpretations. We cope with this by associat-
ing each subtree with a sub-story theme. Our current im-
plementation supports example themes such as people run-
ning, swimming and climbing, and vehicles moving between
an origin and destination for the same set of subtrees in Ex-
ample 1. During the generation process, our system ensures
that all subtrees adopt the same theme, thus all generated sub-
stories are compatible.

Also note that equations are randomly generated, but their
associated dimensional units are not. Rather, they are prede-
fined. We do not use nonsensical dimensional units in prob-
lem generation. It is also possible for dimensional units to
have multiple interpretations. Our system has full control
of the generation process. Whenever the variable unrolling
step introduces new dimensional units, the system controls
the precise interpretation of each, even when a unit may have
multiple interpretations.

Control of Difficulty Levels A simple approach for adjust-
ing the difficulty levels is to vary the complexity of the gen-
erated equations, ie., the more arithmetic operations, the
more involved the generated MWP. We also employ another
method to increase the difficulty level of an MWP by ma-
nipulating how to choose the unknown quantity for students
to calculate. Traditionally, the unknown quantity is selected
among the leaf nodes of a BET, and the reason for this phe-
nomenon is to make every other nodes necessary in the pro-
cess of solving the MWP. In other words, if the unknown
quantity is not selected from the leaf nodes, some nodes in
the BET will become irrelevant. Take the BET discussed in
Section 2.3 for example. If we make the node X as the un-
known quantity instead of one of X;, Xo, Y7 and Y5, the
sub-story generated from a-AET will become redundant in
the complete narrative, therefore creating a distraction that
may further challenge students. We will show in Section 3



Mnl.l‘S,Of(Xl,Xg,Yl,YQ) =
$/Lb, Lbs, $/Gal, Gals

units_of( X1,X2,Y1,Ys) =
L/hy, hr, L/hr;, hr

units_of( X1,X2,Y1,Ys) =
J/s, s, JI°C, °C

units_of( X1,X2,Y1,Ys) =

m, m, m, m

units_of( X1,X2,Y1,Ys) =
m/hy, hr, m, N/A

Rachel bought 4 pounds
of shrimp at the price
of 8% per pound in a su-
permarket. Kyle pumped
10 Gallons of gas into
his car at a gas station.
Rachel and Kyle hap-
pened to spend the same
amount of money. What
is the price of gas at the
gas station where Kyle
pumped gas?

A water pump can fill
up a tank at a rate
of 6000 liters per hour
for 10 hours. Another
pump can draw all the
water out from another
tank at full capacity for
8 hours. The two tanks
have the equivalent ca-
pacity. How much wa-
ter can the second pump
draw out per second?

A heater which can
transfer 60J heat per
second is set to operate
for 5 seconds. A kettle
boils water (heat ca-
pacity: 4179 J/°C for
lkg) within minutes.
The heater and the
kettle generate the same
amount of energy during
the respective time span.
What’s the temperature
increase of the water?

A square-shaped dining
table has a side of 6 me-
ters. A rectangular rug
has a length of 9 meters.
The dinner table covers
the same area as the rug.
What’s the width of the
rug?

Joseph has been running
at a constant speed for 75
minutes. Michael who
has finished 5000 meters
only ran a quarter of
the distance Alexander
has done. Joseph and
Alexander have trav-
eled the same distance.
What’s Joseph’s speed
measured in meters per
hour?

Table 2: A series of independently generated MWPs, all of which are synthesized from the same equation in Example 1. For
each problem narrative, we highlight in bold the keywords of each node in the AETs.

that error rates for problems with more arithmetic operations
and distractions are higher than those without.

Capability of Our MWP Generation Procedure First, the
generation power is determined by the capability of our equa-
tion generator. Next for each generated equation, we discuss
the universe of the corresponding synthesized MWPs. Con-
sidering an equation in the representation of a binary expres-
sion tree, clearly for a random equation generation algorithm,
the sample space of the equations that can be generated is
exponential in the number of the arithmetic operators. Fur-
thermore, the universe of MWPs that can be generated from
an equation is determined by two factors: the assignment of
the dimensional units and the selection of the arithmetic op-
eration type.

For example, in Table 2 the first four columns show the
MWPs that are generated by adopting distinct sets of dimen-
sional units on the variables in the same example equation.
Although the MWP in the last column also has different as-
signment of the dimensional units from the example MWP,
more importantly it chooses a separate instantiated opera-
tional rule to unroll variable Y, in particular the second row
of the “Multiplication” section in Table 1, leading to Y5 being
a ratio.

Now, for a fixed arrangement on the dimensional units or
arithmetic operational types of a generated equation, we dis-
cuss the space of the MWPs. Assume the generated equation
has N AETs, each of which has the set of pre-defined tem-
plates TEM p, the set of MWPs that can be generated is S =
{E| X1 € TEM1,Xy € TEMs.. Xy € TEMN ANE =
X1NXeN....N Xy} (excluding the influence caused by the
different keyword assignments). In addition, assume there are
M ways of arrangements on a generated equation, then the
universe of MWPs that can be generated from one equation
equals to M x | S| approximately. According to the discussion
on the capability of the equation generator, the total number
of MWPs that can be synthesized from our generation algo-
rithm is 4V ~1 x M x |S|. Take the four-step equation MWPs
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for example, assigning the value of M and |TEM x| to be
around ten will result in the total number of MWPs being in
the range of millions.

Configurability of the Generated Problems The adjustable
difficulty levels of the generated problems together with the
capability of the generation procedure creates a platform that
can enable personalized workflow for each student. If a stu-
dent solves a problem correctly, the student may be presented
with a problem that is more difficult than the last problem. Or
if a student fails to solve a problem, the student may be pre-
sented with simpler problems to reinforce the core concepts.
Whenever the student wants to challenge a harder problem
again, she may be presented with similar problems to the one
she had trouble with earlier (by varying the assignment of di-
mensional units or the selection of the instantiated operational
rule on the same equation) to reassess her understanding.

3 Evaluation

This section presents two experiments to evaluate the perfor-
mance of our generation algorithm and the similarity of the
synthesized MWPs versus actual textbook MWPs.

We have adopted 43 dimensional units that measure speed,
price, temperature, area, volume, work rate, etc.

3.1 Performance

First, we focus on evaluating the performance of our MWP
generation algorithm. We classify the synthesized MWPs
into five categories according to the number of primitive arith-
metic operations involved in the equation. For each category,
we synthesize 100 problems and measure the time taken to
synthesize each. We have conducted our experiments on a
desktop with a 4th generation Intel Core i7-4770 processor
and 16GB RAM, running Ubuntu 12.04 LTS.

Figure 3a shows the measurement results as a boxplot.
We adopt the conventional style of plot where the bottom
and top of the box are the first and third quartiles, and the
marker inside the box denotes the mean. The two ends of the



o

o

%
|

Error Rate

. o g
02 l l
ritten

e

Error Rate
o e
Y

o

=

S
o

l

|
l

o

0 v , ‘ wi Generated ‘ wri
I« \

1 2 3 4 5
Number of Arithmetic Operations

F

Generated ‘ Written Generaled‘

3~4 >5 | <2 374 >5
Number of Arithmetic Operations

Without| With Without| With Without| With

Number of Arithmetic Operations

(a) Performance with varying difficulty.

(b) Textbook MWPs vs. generated MWPs.

(c) With and without distractions.

Figure 3: Evaluation results.

whiskers represent the minimum and maximum. As shown
in Figure 3a, the time taken to synthesize problems increases
slightly as the number of the arithmetic steps increases. On
average, our algorithm takes around one millisecond to syn-
thesize an MWP.

3.2 Problem Authenticity

This is the more important aspect of our evaluation. We have
conducted a pilot study to carefully assess the authenticity of
our synthesized MWPs from the actual textbook MWPs. By
authenticity, we mean that (1) the generated MWPs should be
indistinguishable statistically from the textbook MWPs, and
(2) problems that share the same underlying structure (i.e.,
solution length) should be similar in terms of their difficulty
level from the students’ perspective.

3.2.1 Study Design

We invited 30 seventh grade students from a local middle
school to participate in the study. We selected 24 textbook
problems from the Singapore Math curriculums [Publica-
tions, 2009a; 2009b; 2009¢] and generated the same number
of MWPs with an equivalent distribution of complexity. Dur-
ing the study, participants were given a single test containing
all 48 problems, mixed randomly. For each problem, partic-
ipants were not only required to solve but also to guess if it
was manually written (i.e. textbook MWP) or automatically
synthesized (i.e. generated MWP). The total duration for this
pilot study was one and half hour, occupying two class peri-
ods.

3.2.2 Study Results

In this section, we present the details of our results from the
following three aspects.

Verification of Statistical Indistinguishability First, for
each participant, we gather the numbers of problems that are
labeled real (i.e. actual textbook problems) and generated (i.e.
generated problems) conditions respectively. Then we run a
paired ¢ test on these two numbers across all the 30 partici-
pants, and found that there was no significant difference in the
scores for real (M=11.13, SD=4.6) and generated (M=11.13,
SD=3.7) conditions [t(29) = 0, p = 1]. These results suggest
that the source of the problems (real versus generated) does
not have an effect on human perception of provenance.
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To further strengthen our analysis, we have aggregated the
data into contingency tables, one for each participant, with
rows corresponding to the classification made by each partic-
ipant (written or generated), and columns to real and gener-
ated conditions. Next, to test whether their classifications are
independent from the conditions under which the problems
are produced, we applied the x? test of independence. Fi-
nally, to aggregate the results of the x2 tests (one per partici-
pant), we applied the Stouffer test using the weighted Z-score
method [Whitlock, 2005]. This allows us to lift the results
of the individual x? tests to the group level. The Stouffer
test statistic Z was calculated as 1.232 and the correspond-
ing p-value was 0.108. These imply that taken together the
data indicate that the generated MWPs are statistically indis-
tinguishable from actual textbook MWPs.

Comparison of Error Rates In the following discussion, we
split the two problem sets into three categories according to
the number of arithmetic steps in an equation (i.e. <3, 3 ~ 4,
and >4), and report the results for each category separately.
To measure the similarity of the two problem sets within each
of the categories, we run a two one-sided test [Schuirmann,
1987] for equivalence on the participants’ error rates. An im-
portant decision is how to define the zone of “clinical indiffer-
ence”, i.e. a range of effects that can be considered clinically
trivial. For this purpose, we randomly partitioned the text-
book MWPs within each category that a participant has been
tested on into two halves and summarized the participants’
error rates for each half. Next, we apply the two sided test to
compute the threshold error margin — anything less than this
value would make the two partitions dissimilar. However, the
two randomly partitioned problem sets from textbook MWPs
must be similar, so we can use the threshold error margin to
compute the similarity between the synthesized and the text-
book MWPs.

Figure 3b shows the error rates for the two problem sets
within each category. The error margins are computed
to be 0.087, 0.091 and 0.118 from the two random parti-
tions on the textbook problem set within each category re-
spectively. Then, a two-sided test was used to compare
each participant’s error rates across the two sets of prob-
lems within each of the categories. These tests show that
the error rate conforms significantly across the two sets of
problems [¢(58) = —2.672,p = 0.005] and [t(58) =



1.673,p = 0.049], [¢(58) = —2.234,p = 0.015] and
[¢(58) = 1.792,p = 0.039], [t(58) = —2.020,p = 0.024]
and [t(58) = 1.704,p = 0.047], indicating that the overall
difficulty of the synthesized MWPs is similar to that of the
textbook MWPs.

Controlled Measure of Problem Difficulty Apart from the
error rates reported from Figures 3b, a paired ¢ test was used
to compare each participant’s error rate across only the gen-
erated problems sets of “fewer than three” versus “three to
four” arithmetic operations, and “three to four” and “greater
than four” arithmetic operations. As expected, the error rate
for MWPs of three to four arithmetic operations was signif-
icantly higher than that of fewer than three arithmetic oper-
ations [¢(58) = 4.223,p < 0.001], indicating that the prob-
lems of three to four arithmetic operations were more dif-
ficult. Similarly, the error rate for the problems of greater
than four arithmetic operations was significantly higher than
the problems of three to four arithmetic operations [¢(58) =
6.171,p < 0.001], indicating that the problems of greater
than four arithmetic operations were more difficult.

We have conducted another user study where the same par-
ticipants were asked to complete another separate test set con-
sisting of 24 synthesized problems. Those problems are ran-
domly sampled from a corpus, where each problem is also
synthesized with redundant information in its story line. The
purpose of this study is to assess the impact of distractions
may have on the generated MWPs. Figures 3¢ shows that
problems created with distractions are indeed more difficult
than those created without distractions, using the same num-
ber of primitive arithmetic expressions.

A paired 7 test was used to compare each participant’s error
rates across the two problem sets with or without distractions
for the same number of arithmetic operations. For problems
with fewer than three versus three to four arithmetic opera-
tions, the error rate for problems mixed with distractions was
significantly higher than those without [¢(58) = 4.063,p <
0.001] and [¢(58) = 5.319,p < 0.001], indicating that prob-
lems with distractions were more difficult than those with-
out distractions. As for problems of more than four arith-
metic operations, the difference on error rates was insignif-
icant [¢(58) = 0.789,p = 0.433] because the participants’
error rates on MWPs with more than four arithmetic opera-
tions were already very high, leaving little room to perceive
the increased difficulty.

4 Related Work

This section surveys closely related work, which we group
into two categories: (1) automatic MWP generation and (2)
automatic MWP solving.

Automatic MWP Generation Singley et al. [Singley and
Bennett, 2002] developed the pioneer project on automatic
item generation of MWPs. Their approach can be viewed as
a simple template-based natural language generation system.
Deane et al. [Deane and Sheehan, 2003] proposed more com-
plex methods based on Frame Semantics [Fillmore, 1976].

More recently, Polozov er al. [Polozov et al., 2015] consid-
ered the same problem from the personalization angle — they
focused on generating problems with engaging story lines.

All the above efforts focus primarily on natural language
story generation. In contrast, as we have stated earlier, our
key insight is to leverage the important role that dimensional
units play in MWPs. Indeed, our work introduces an effec-
tive methodology that leverages dimensional units for gener-
ating authentic, diverse and configurable MWPs to aid educa-
tion and research. Our study with 30 students clearly demon-
strates the effectiveness of the presented approach.

Automatic MWP Solving Most previous efforts [Liguda
and Pfeiffer, 2012; Briars and Larkin, 1984; Fletcher, 1985;
Dellarosa, 1986; Bakman, 2007; Yuhui et al., 2010] on au-
tomatic MWP solving adopted a symbolic approach. The
basic idea was to parse an MWP’s natural language text by
applying pattern matching rules based on predefined heuris-
tics. Recently, statistical learning methods were proposed
in [Hosseini et al., 2014; Kushman et al., 2014]. Hosseini
et al. [Hosseini et al., 2014] considered solving homogeneous
addition and subtraction problems with verb categorization
learned from training data, while Kushman ef al. [Kushman
et al., 2014] used learning to solve a broader range of word
problems from the equations or simply final answers for the
training problems. In comparison, our work considers the or-
thogonal problem of automatic MWP generation. Besides its
educational benefits, our work also facilitates Al research on
MWP solving.

5 Conclusion

This paper has introduced an approach to effectively syn-
thesize MWPs.  Our evaluation results demonstrate the
performance of our synthesis algorithm and strong resem-
blance of the synthesized MWPs to actual textbook problems.
We expect that this work will benefit both general educa-
tion/training and research on automated MWP solving. Our
immediate future work is to reach out to potential user groups
that can benefit from our system. Other interesting directions
include the support of SI unit conversions and the application
of NLP techniques to enrich the generated sentence patterns.
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