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Abstract
Person re-identification, as an important task in
video surveillance and forensics applications, has
been widely studied. But most of previous ap-
proaches are based on the key assumption that im-
ages for comparison have the same resolution and a
uniform scale. Some recent works investigate how
to match low resolution query images against high
resolution gallery images, but still assume that the
low-resolution query images have the same scale.
In real scenarios, person images may not only be
with low-resolution but also have different scales.
Through investigating the distance variation be-
havior by changing image scales, we observe that
scale-distance functions, generated by image pairs
under different scales from the same person or dif-
ferent persons, are distinguishable and can be clas-
sified as feasible (for a pair of images from the
same person) or infeasible (for a pair of images
from different persons). The scale-distance func-
tions are further represented by parameter vectors
in the scale-distance function space. On this ba-
sis, we propose to learn a discriminating surface
separating these feasible and infeasible functions in
the scale-distance function space, and use it for re-
identifying persons. Experimental results on two
simulated datasets and one public dataset demon-
strate the effectiveness of the proposed framework.

1 Introduction
Person re-identification (REID) is the task of visually match-
ing images of the same person, obtained in different periods
from different cameras distributed over non-overlapping loca-
tions of potentially substantial distances. It represents a valu-
able task in video surveillance scenarios [Li et al., 2015a;
Chen et al., 2015]. Since classical biometric cues, such as
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Figure 1: An example illustrating image resolutions with
different scales in the person re-identification task. Three
images of the same person are captured in three different cam-
era views in the dataset 3DPES. The resolutions of these im-
ages are significantly different. The person image captured
by camera b is relatively high-resolution, but the person im-
ages captured by camera c and camera f are relatively low-
resolution. Meanwhile, the resolutions of any pair of these
images are different. This situation is not investigated in pre-
vious person re-identification methods, where they assume
that all person images are high-resolution with the uniform
scale.

face and gait, are usually unreliable or even infeasible in the
uncontrolled surveillance environment [Zheng et al., 2011],
the appearance of individuals is mainly exploited for REID.
Previous research efforts for solving the REID problem have
primarily focused on the following two aspects: (1) feature
representation [Farenzena et al., 2010; Zhao et al., 2013;
An et al., 2015a], which aims at constructing discrimina-
tive visual descriptions that can easily distinguish different
persons in various cameras. (2) distance measure [Wang
et al., 2014a; Koestinger et al., 2012; Wang et al., 2016;
An et al., 2015b], which aims at learning a proper distance
metric by using a group of labeled training data.

Although REID is a challenging task, where the capture en-
vironment changes a lot in various cameras [Liu et al., 2013;
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Wang et al., 2014b], existing methods have shown effective
results on some public datasets. Person images in related
datasets are typically normalized to the same high-resolution
(HR) and with a uniform scale. So, most of approaches gener-
ally assume that the individual image scale is constant, with-
out considering low-resolution (LR) and scale mismatching.
However, this assumption does not conform to practical situ-
ations. As Fig.1, using 3DPES dataset [Baltieri et al., 2011]
as an example, illustrates, a more practical situation is that
person images are not only LR, but also holding differ-
ent scales. We name this kind of task Scale-Adaptive Low-
Resolution Person Re-identification (SALR-REID).

As far as we know, two pioneer researches investigated the
LR REID problem. In 2015, motivated by super-resolution
restoration works [Jiang et al., 2015; 2014], [Jing et al.,
2015] proposed a semi-coupled low-rank discriminant dictio-
nary learning approach, intending to uncover the relationship
between the features of LR and HR images. During the same
time period, [Li et al., 2015b] assumed that images of the
same person should distribute intrinsically in a similar struc-
ture in a latent space, and then optimized the cross-scale im-
age domain alignment simultaneously with discriminant dis-
tance metric modeling in a joint learning framework. In both
of these researches, given a LR probe image, the algorithm
is expected to match against normal or even HR gallery im-
ages. Specially, in [Jing et al., 2015], the probe images are
uniformly 1/8 down-sampled from the original HR images,
while in [Li et al., 2015b] the resized scale is a quarter of
the original HR scale in common. Based on the relatively
ideal assumption that scales of LR are the same, these two
approaches show their effectiveness in the LR REID prob-
lem, through introducing relationship between HR and LR
into traditional re-identification models. However, both of
these two researches have neglected the fact that the scales of
LR are always different. If there were 100 different scales in
the dataset, the methods need to construct 100 different rela-
tionships, and it cannot be guaranteed the 100 relationships
work perfectly matching.

For the new SALR-REID problem, the practical task is that
given a HR probe image, the algorithm is expected to match
against LR gallery images with different scales. So, tradi-
tional models, efficient and effective to re-identify gallery im-
ages with the same scale, may result in a significant loss of
performance when the resolutions of gallery images are low
and the scales vary unsteadily. In addition, traditional features
using different resolutions, such as wavelet [Mallat, 1989]
and SIFT [Ng and Henikoff, 2003], are proved not proper
for the REID task with low-resolution images.

Since the feature distance of a probe-galley image pair
varies with the resolution of the galley image, an important
aspect of the problem is to understand how the feature dis-
tance of the image pair changes when the gallery image scale
goes down gradually. In this way, we map the association of
the gallery image scale and the distance of the probe-galley
image pair, then generate a scale-distance function (SDF) for
each image pair. Inspired by [Martinel et al., 2015], which
attempts to classify the feasible and infeasible warp functions
to re-identify different image pairs, we propose to classify
different SDFs formed by different image pairs, instead of

exploiting the feature distance metric model.
Actually, we observe that SDFs can be separated as feasi-

ble (positive) and infeasible (negative) ones as well. The fea-
sible functions are generated by image pairs from the same
targets, while the infeasible functions are generated by those
from different targets. These feasible and infeasible functions
comprise the scale-distance function space (SDFS). The ob-
servation in detail, which demonstrates a visual proof of the
discriminating power of the feasible and infeasible SDFs, is
described in Sec.2. The proposed work explores this discrim-
inating power in the SDFS for SALR-REID. First, a SDFS
composed of the collection of feasible and infeasible SDFs is
built. Second, parameter vectors are obtained by the model
fitting method to represent SDFs. Third, a random forest of
decision trees is learned by the trained parameter vectors to
discriminate whether a test pair of query-gallery images is
feasible or not.

To summarize, the contributions of this paper are the fol-
lowings. (1) We raise a new issue, Scale-adaptive Low-
resolution Person Re-identification, which has not been inves-
tigated before as far as we know. (2) We observe the discrimi-
nating power of the feasible and infeasible SDFs respectively
generated by positive and negative image pairs. (3) Then, the
SALR-REID problem is addressed by mapping a SDF onto
the SDFS and classifying it as either the feasible or infeasible
SDF. Experimental results on two simulated datasets and one
public dataset demonstrate the effectiveness of the proposed
framework.

2 Motivation
As the image resolution affects the feature distance, we at-
tempt to comprehend the distance variation rule as the reso-
lution changes.

To investigate the issue, we made a preliminary ex-
periment. Four images were selected from the VIPeR
dataset [Gray et al., 2007]. They were respectively denoted
as I1, I2, I3, I4, where I1 acted as the probe image, and the
other three acted as the gallery images. To simplify the pro-
cess, an easy and uniform method was used to obtain the
feature distance of every image pair. At first, we divided
each image, regardless of its resolution, into 24 patches (3
columns * 8 rows). For each patch, 64 dimension HSV fea-
ture were extracted. Then, each image was represented by a
1536 dimension feature, and the feature distance of an image
pair was calculated by Euclidean distance. In this way, we
could easily obtain a sequence of feature distances between
the probe image I1 and one of the gallery images I2 � I4,
when we down-sampled the gallery image step by step. We
used d to denote each Euclidean distance, and k to represent
the scale ratio of the down-sampled gallery image resolution
to the original one. To visualize the changes of d with k, we
drew curves with sequences of k � d value pairs in Fig.2,
where the horizontal axis represents the scale ratio, and the
vertical axis stands for the transformation value of distance.
It should be noted that, to make observation easier, the dis-
tance was transformed by d

0
= exp(d ⇤ k). We named each

curve as the scale-distance function. Fig.2(a) shows the three
SDFs respectively generated by I1 and I2 � I4. We found
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(a) (b) (c)

Figure 2: In the above three figures, the horizontal axis represents k, the scale ratio of the down-sampled gallery image
resolution to the original probe image resolution, and the vertical axis denotes the transformation value of the distance of
image pair. The transformation formulation is d

0
= exp(d ⇤ k), where d is the feature distance between two images, and

d

0 is the transformation form. (a) Three scale-distance functions. I1 - I4 are four images in the VIPeR dataset [Gray et
al., 2007]. I1 and I2 are from the same person, and I1, I3 and I4 are from different persons. Each curve describes how the
transformed distance between each probe-gallery image pair changes with the scale of gallery image resolution. We name this
curve scale-distance function. (b) The distribution of scale-distance functions. 100 randomly chosen samples of feasible and
infeasible scale-distance functions are averaged to get the mean scale-distance functions (in bold line). The shaded areas show
the corresponding spread of the variances (as ± standard deviation value). This figure shows that feasible and infeasible scale-
distance functions, respectively for same persons and different persons, can be discriminative and used for re-identification. (c)
New testing probe-gallery image pairs in the distribution. I5 - I7 are three images in the VIPeR dataset, where I5 is the HR
probe image, and I6 and I7 are LR with different scales. I5 and I7 are from the same person, while I5 and I6 are from different
persons. As I6 and I7 are down-sampled gradually, we draw the part of scale-distance functions. This figure shows that the
scale-distance function generated by I5 and I7 is more likely to be the feasible one, while that generated by I5 and I6 is more
likely to be the infeasible one.

that, even though for each curve, the transformed distance
value decreases with the ratio k, the three functions can be
separated for different image pairs.

Furthermore, we randomly selected 100 image pairs of the
same persons and 100 image pairs of different persons from
the VIPeR dataset. Then, 100 SDFs for the same persons and
different persons were respectively obtained, following the
SDF generation method described above. As Fig.2(b) shows,
the red bold line stands for the mean SDF for different per-
sons, and the red shaded area demonstrates the correspond-
ing spread of the variance. Meanwhile, the blue bold line and
shaded area together represent the SDFs for the same per-
sons. We name the SDFs for the same persons as feasible
ones, and that for different persons as infeasible ones. This
figure shows that feasible and infeasible SDFs can be discrim-
inative and used for re-identification. The proposed method
explores this discriminating power of the feasible and infea-
sible SDFs in the SDFS for SALR-REID. Directly exploiting
general feature-distance models may not be possible to dis-
criminate persons well enough in this kind of resolution mis-
matching situation. So we computed the SDF between a pair
of resolution mismatching images in the actual experimenta-
tions to deal with these challenges. Discrimination between
the two classes of SDFs is further enhanced in a classification
framework which finds a complex discriminating surface in a
higher dimensional SDFS. In Fig.2(c), an example was intro-
duced to show how to match I6 and I7 with different low reso-
lutions against the probe image I5. In the same way, we grad-
ually down-sampled the gallery images and calculated their

distances, then formed two SDFs. We can see from the figure
that the SDF generated by I5 and I7 lies in the blue shaded
area, and is more likely to be the feasible one. In comparison,
the SDF generated by I5 and I6 lying in the red shaded area
is more likely to be the infeasible one.

Observing the rule above, to better re-identify persons, we
propose to learn a discriminating surface separating these two
sets of functions in SDFS, and then classify a test function as
feasible or infeasible.

3 Our Approach
The overall scheme of the proposed person re-identification
process is shown in Fig.3. It is divided into two stages. In
the offline training stage, given positive and negative train-
ing pairs we learn a discriminative model in the SDFS to
get the probability indicating whether a sample SDF comes
from the same person or not. For each image pair, parameter
vector valued SDFs are computed by the SDF representation
module. The set of all feasible and infeasible SDFs forms
the SDFS. Given the SDFS, a decision surface discriminat-
ing the two sets of SDFs is learned using a Random Forest
(RF) [Breiman, 2001]. In the online re-identifying stage, test
image pairs are input to the SDF representation module to
compute the SDFs. Finally, the RF classifies the SDFs in the
SDFS as feasible or infeasible.

We first divide the training data into positive pairs and neg-
ative pairs, where each pair of images come from different
cameras. We denote a probe-gallery image pair as (Ii, Ij).
Regardless of the resolution difference, we extract visual fea-
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Figure 3: The framework of our method. It includes the offline training stage and onine re-identifying stage. The scale-distance
function representation module takes each image pair, resizes one image scale step by step, obtains a series of distances,
generates the SDF, and transforms the representation to a parameter vector. In the figure, we use two dimension space as an
example to demonstrate SDFS. A random forest classifier is trained to discriminate between the feasible and the infeasible
SDFs in the SDFS. The trained classifier is used to classify the test SDFs.

ture x for each image I, with the same dimension m. Sec.2
gives an example, that can be named as a patch-based fea-
ture representation method, to represent different resolution
images with the same dimension.

3.1 SDF representation
To generate the scale-distance function, holding on the size
of Ii, we represent its visual feature as x

1
i , where the super-

script 1 stands for the scale ratio between the sampled im-
age resolution and the original image resolution. Then, we
down-sample Ij step by step, and thus obtain a series of vi-
sual features x1

j ,x
0.99
j ,x

0.98
j , ...,x

0.06
j ,x

0.05
j . Here, it should

be noted that the scale ratio stands for the ratio of two image
heights or widths. That is to say, if the scale ratio k = 0.5,
it means that the height and the width of the down-sampled
image I

0.5
j is half of those of the image Ii. In our approach,

we decrease the scale of the image Ij by 0.01 in each down-
sampling step. And the minimum scale ratio is 0.05, because
we find that the feature can not be extracted if the resolution
is too low. Generally, we obtain 96 different scales of each
image.

After obtaining a series of visual features from Ij , we cal-
culate a range of distances di,j(x1

i ,x
k
j ), k 2 [0.05, 1] between

Ii and the series of down-sampled Ij . Then each distance
di,j(x

1
i ,x

k
j ) is transformed into a new form d

0
i,j(x

1
i ,x

k
j ) =

exp(di,j(x
1
i ,x

k
j )⇤k), where k stands for the scale ratio. That

is to say, for each image pair (Ii, I
k
j ), the transformed dis-

tance d

0 varies with k. By this means, the SDF is generated
as the curves shown in Fig.3, where the horizontal axis stands
for the scale ratio k, and the vertical axis stands for the trans-
formed distance d

0. In the offline training stage, those posi-
tive pairs produce the feasible SDFs, and those negative pairs
produce the infeasible SDFs.

To separate these two kinds of functions, the model fitting
method is exploited to learn a set of parameters, and then we
use those parameter vectors to represent SDFs. We denote
f(·) as the model, w as the parameter vector of the model.

For each training image pair (Ii, Ij), K = 96 pairs of obser-
vation data (k, d0i,j(k)) are used for the model fitting process.
Let f be the uniform model from k to d

0
i,j , that is

d

0
i,j(k) = f(k,w), k 2 [0.05, 1]. (1)

Supposed that the dimension of the parameter vector w =

(w0, ..., wn, ..., wN�1) is N , the parameter vector wi,j for
image pair (Ii, Ij) is generated as

wi,j = argmin

w

1

K

X

k2[0.05,1]

|d0i,j(k)�f(k,w)|2+�

N�1X

n=0

|wn|

(2)
In the online re-identifying stage, different LR gallery im-

ages hold different resolutions. This resolution mismatching
makes it non-reliable to rank images directly. Following the
procedure in the offline training stage, the test gallery image
is resized from 1 to 0.05 step by step as well. Then, the SDF
representation module obtains a series of observation data. If
the resolution of gallery image is too low, the number of ob-
servation data may be limited for the regression process. So
we also up-sampled the gallery image by bilinear interpola-
tion method to get more observation data. Then, we get the
same number of observations in the re-identifying stage as in
the training stage. By regressing the observation data, a test
parameter vector for the probe-gallery image pair is gener-
ated.

In this paper, the fitting model we use is the polynomial
model as follows,

f(k,w) =

N�1X

n=0

wnk
n (3)

3.2 Training random forest classifiers
The parameter vector may not be discriminating enough be-
tween the feasible and infeasible SDFs. Thus, a classifier giv-
ing more importance to the more discriminative dimension is
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(a) SALR-VIPeR (b) SALR-PRID (c) CAVIAR

Figure 4: Example image pairs from three datasets. Each
column shows two images of the same identity from two dif-
ferent cameras with different resolutions, where images in
the bottom row are LR. (a) the SALR-VIPeR dataset; (b) the
SALR-PRID dataset; (c) the CAVIAR dataset.

desirable. A random forest (RF) [Breiman, 2001] is a popu-
lar and efficient classifier based on bootstrapped aggregation
ideas. It is a combination of many binary decision trees built
using several bootstrap samples. At each node of each tree
a subset of the SDF dimensions is randomly chosen and the
best split is calculated only within this subset. This random-
ization of the SDF dimensions effectively chooses the dimen-
sions according to their importance in separating the feasible
and the infeasible functions in the SDFS.

In the offline training stage, the SDF representation module
produces positive parameter vectors from positive pairs, and
negative parameter vectors from negative pairs, as discussed
above. Then, the RF module exploits these vectors to train
random forest classifiers.

3.3 Re-identification in SDFS
In the online re-identifying stage, the trained RF classifies
a SDF as coming from the same target or not according to
whether it lies in the positive or the negative region. For ex-
ample, a new coming probe-gallery image pair first produces
a series of distances by down-sampling and up-sampling the
gallery image. Then, the SDF representation module trans-
forms the generated SDF into a parameter vector. The RF
module predicts the probability that the parameter vector is
positive, which is the probability that the gallery image and
the probe image come from the same target. Actually, the
computation of the proposed method can be divided into two
parts, (i) offline: changing the scale of a gallery image and
obtaining a series of visual features of scaled gallery images,
(ii) online: computing the visual feature of the query image,
and a series of distances. Therefore, the proposed method has
almost the same the online computation time as traditional
methods.

4 Experiments
In this section, we first demonstrate the influence brought by
the scale-adaptive low-resolution problem. Then, the pro-
posed method is evaluated. The evaluation is run on two sim-
ulated person datasets SALR-VIPeR and SALR-PRID, which
are based on the VIPeR dataset [Gray et al., 2007] and the
PRID450S dataset [Roth et al., 2014] respectively, and one
public dataset the CAVIAR dataset [Cheng et al., 2011].
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Figure 5: Evaluation on three different resolution situations
of the VIPeR dataset. The curves of evaluation on HR denote
that both the probe and gallery sets are HR. The curves of
evaluation on LR with the same scale denote that the gallery
set turns to be LR, and the scale of the resolution is the same.
The curves of evaluation on LR with different scales denote
that the gallery set is LR, but the scales of resolutions are
different. L2 stands for L2 distance. KISSME [Koestinger et
al., 2012] stands for a metric learning method.

4.1 Experimental Datasets
SALR-VIPeR. The widely used VIPeR dataset [Gray et al.,
2007] contains 1264 outdoor images obtained from two views
of 632 persons. Each person has a pair of images taken
from two different cameras respectively. View changes are
the most significant cause of appearance change. Other vari-
ations are also considered, such as illumination conditions.
However, resolution differences are ignored and all images of
individuals are normalized to a size of 128⇤48 pixels. Images
from camera A are set as the HR probe set, whose resolution
remains unchanged. While images from camera B are set as
the LR gallery set, which are down-sampled randomly to dif-
ferent scales. The scale ratios range from 0.1 to 0.25. Some
example images are shown in Fig.4(a).

SALR-PRID. The PRID450S [Roth et al., 2014] is a chal-
lenge dataset, particularly there is camera characteristics vari-
ation. It contains 450 singleshot image pairs captured over
two spatially disjoint camera views. All images are normal-
ized to 168 ⇤ 80 pixels. Different from the VIPeR dataset,
this dataset has significant and consistent lighting changes
and chromatic variation. Images from camera A are set as
the HR probe set, whose resolution remains unchanged, while
images from camera B are set as the LR gallery set, which are
down-sampled randomly to different scales. The scale ratios
range from 0.1 to 0.25. Some example images are shown in
Fig.4(b).

CAVIAR. The CAVIAR dataset [Cheng et al., 2011] is
widely used for evaluating person re-identification, contain-
ing images of 72 individuals captured from 2 cameras in a
shopping mall. This dataset is suitable for testing SALR-
REID, as the resolution of images captured from the second
camera is much lower than that in the first camera (Fig.4(c)).
Among the 72 people, 18 were only captured in a single cam-
era view with no low resolution images, and they were thus
removed. The remaining persons were used in our experi-
ments, where a HR image of each person is selected to form
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(b) SALR-PRID
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Figure 6: Experimental results on three datasets. For each dataset, we compare the proposed method (SDF) with general feature
distance method (PCA feature+L2), and a distance learning method (PCA feature+KISSME). (a) the SALR-VIPeR dataset; (b)
the SALR-PRID dataset; (c) the CAVIAR dataset.

the probe set, and a LR image of each person is selected to
form the gallery set.

4.2 Experimental Settings
Feature Representation. In order to compare the distance
of two images with different resolutions, we represent each
image feature with the same dimension. As Sec.2 does, we
divide each image, regardless of its resolution, into 24 patches
(3 columns * 8 rows). For each patch, a 64 dimension HSV
feature is extracted. Then, each image is represented by a
1536 dimension feature. To accelerate the process and reduce
noise, we conducted principal component analysis (PCA) to
obtain a relatively low dimensional representation, i.e. 300
for the SALR-VIPeR and SALR-PRID datasets, and 100 for
the CAVIAR dataset.

Settings. All datasets are randomly divided into training
set and testing set. Persons for training and testing are re-
spectively 532 and 100 (SALR-VIPeR), 400 and 50 (SALR-
PRID), and 44 and 10 (CAVIAR). The probe set consists of
all HR images per person. LR images are randomly down-
sampled and selected to construct the gallery set. The en-
tire evaluation procedure was repeated 5 times. Cumulative
Matching Characteristic (CMC) curves [Wang et al., 2007]
were used to calculate the average performance, and the value
of CMC@r indicates the percentage of the real match ranked
in the top r.

4.3 Observation on the Influence by
Scale-Adaptive Low-Resolution

In this subsection, we demonstrate that the traditional feature-
distance model will gradually lose its effectiveness, as the res-
olution of images transforms from HR to LR with the same
scale, then to LR with different scales. We evaluated on three
different resolution situations using the VIPeR [Gray et al.,
2007] dataset. Holding on the resolution of the probe set,
we respectively tested on the HR gallery set, the LR gallery
set with the same scale, and the LR gallery set with differ-
ent scales. The scale ratio of image resolution of the LR
gallery set with the same scale was 0.15, while that of the LR
gallery set with different scales ranged from 0.1 to 0.25. For
each situation, the L2 distance and a metric learning method
(KISMME [Koestinger et al., 2012]) were exploited to obtain

the distance of each probe-gallery image pair. We listed the
top-50 CMC curves of these three situations in Fig.5, each
generating two curves.

From the Fig.5, the conclusions are made as follows. (1)
Comparing L2 distance results in the three situations, we con-
clude that more resolution mismatching makes results worse.
(2) Comparing the results respectively on the HR and the LR
gallery set with the same scale, we conclude that the metric
learning method is suitable for resolution matching situation
or constructing the relationship of resolutions with two differ-
ent scales. (3) The promotion of the metric learning method
is limited, when it is exploited on the LR gallery set with dif-
ferent scales.

4.4 Evaluation on the Datasets
In this subsection, we prove that the proposed method is
suitable for the SALR-REID task. We evaluated the effec-
tiveness of the proposed method by comparing with general
feature-distance model regardless of resolution mismatching,
and the distance metric learning method KISSME, which tries
to construct the resolution relationship, on the SALR-VIPeR
dataseet, the SALR-PRID dataset and the CAVIAR dataset,
respectively. The obtained results are shown in Fig.6. As
can be seen, our approach has improvements on all the three
datasets for the SALR-REID task, compared with the PCA
Feature+L2 and PCA Feature+KISSME methods, and the ef-
fectiveness of the metric learning method is not obvious when
encountering this multiple resolution mismatching problem.

5 Conclusion
This paper raises a new issue, which has not been investigated
before as far as we know. Traditional features under multi-
resolutions and feature-distance models may not be proper for
this task, due to the resolution mismatching. We propose to
learn a discriminating surface to address the new problem, by
mapping a SDF onto the SDFS and classifying it as either the
feasible or infeasible SDF. Experimental results illustrate that
the traditional model has a significant loss of performance
when the resolutions of gallery images are low and the scales
vary unsteadily, and demonstrate the effectiveness of the pro-
posed framework.
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