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Abstract
Evaluating a scientist’s past and future potential im-
pact is key in decision making concerning with re-
cruitment and funding, and is increasingly linked
to publication citation count. Meanwhile, timely
identifying those valuable work with great poten-
tial before they receive wide recognition and be-
come highly cited papers is both useful for read-
ers and authors in many regards. We propose a
method for predicting the citation counts of individ-
ual publications, over an arbitrary time period. Our
approach explores paper-specific covariates, and a
point process model to account for the aging ef-
fect and triggering role of recent citations, through
which papers lose and gain their popularity, respec-
tively. Empirical results on the Microsoft Aca-
demic Graph data suggests that our model can be
useful for both prediction and interpretability.

1 Introduction and related work
Integral to the success of scientific research is the impact of
works. Paper citation and its derivatives e.g. g-index [Egghe,
2006], H-index [Hirsch, 2005; Acuna et al., 2012] have be-
come popular measures to gauge the journals, scholars, labs,
departments, and institutes [Fuyuno and Cyranoski, 2006],
despite their well-known lack of predictive power to future
impact [Wang et al., 2013]: current citations and the derived
metrics can only capture past accomplishments.

A candidate’s potential future impact e.g. his/her citation
count often plays a more important role for policy/decision
making concerning with recruitment, promotion and funding,
because the ultimate question is: Who will be the most suc-
cessful in this position, with this fellowship? When an early-
career candidate is selected for a tenure-track position, it is
an investment. In those institutions with low tenure rate, this
can amount to an outright bet on one scientist who acquire a
start-up package up to millions of dollars [Stephan, 2012].

The scientific literature is turning into an unbounded col-
lection such that it becomes intimidating to have a thorough
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comprehension on relevant papers even in one area. To find
frontier research materials, there is also a need for identifying
the pertinent and influential work in a setting where a plenty
of papers emerge each day, before they become widely recog-
nized. Also, researchers may re-think if their research is on
an exciting path or a dead end that will end the careers pre-
maturely. A (reliable) prediction model can serve as a self-
evaluation tool to streamline their research agenda.

We agree that the main way of predicting a researcher’s
future impact is peer-assessment, but also think that algorith-
mic approaches could be valuable complementary ways, es-
pecially for junior scientists representing a group closer to the
typical case in which algorithmic approaches will be applied
in real academic hiring decisions, under an appropriate mech-
anism. It is felt that ‘pipeline’ leaks in the later career deci-
sion points, especially confounded with the subjective gender
bias in academic career [Ginther and Kahn, 2004].

As a widely recognized metric [Wang et al., 2013] to sci-
entific impact, however, predicting an individual paper’s ci-
tation count over time is (arguably) very difficult. For in-
stance, a seminal work may start-up by a small number of
follow-up papers that builds up to a pioneering work within
a field, and it takes a long time before they generate greater
impact. Or a researcher may work on a hot topic, and publish
a novel method related to this topic, which immediately draw
the community’s wide attention. Or simply different papers
by the same author can have significant citation variation due
to various reasons such as the topic, timing, fields, etc. Such
heterogeneous citation curves call for advanced models.

We give an overview about the general problem – scien-
tific impact analysis and prediction, and then focus on the lit-
erature on (long-term) individual-level paper citation predic-
tion, which is (arguably) more challenging and has become
an emerging applied research topic [Wang et al., 2013]. Sci-
entific impact analysis and prediction Since predicting in-
dividual paper’s citation count looks very challenging, and
the skewed distribution of citations often obeys a power-
law [Dong et al., 2015] or log-normal form [Radicchi et al.,
2008], many researchers resort to other more accessible im-
pact analysis and prediction problems. For instance, [Pe-
tersen et al., 2014] perform a longitudinal analysis to mea-
sure the effect of the central author’s reputation on the paper
citation rate. [Pan and Fortunato, 2014] give a formal defini-
tion concerning the author-wise impact metric Author Impact
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Figure 1: Citation of 30 randomly selected papers over time.

Factor (AIF) and perform empirical study to verify its capa-
bility to capture the trends and variations of the impact of the
scientific output of scholars in time. However, they are pre-
scriptive methods with no capability of prediction.

For scientific impact prediction, [Dong et al., 2015] for-
mulates and addresses the classification problem of whether a
paper will influence an author’s h-index within a pre-defined
timeframe, whereby various factors/features are fed into the
classification model including publication topic, venue, au-
thor’s affiliation etc. Similarly, [Acuna et al., 2012] present
an approximate formula obtained from linear regression with
elastic net regularization, to estimate the future h-index of life
scientists of which the factors relate to current h-index, num-
ber of written papers of authors, years since first published ar-
ticle etc. [Penner et al., 2013] identify the flaws of the above
linear regression model and empirically show this model tend
to overestimate the scientist’s future impact. Specifically,
they suggest that h-index, or other cumulative metrics are in-
appropriate targets of regression based predictive models in
that they contain trivial correlation by construction (see ‘Dis-
cussion’ in [Penner et al., 2013]). In contrast, in this paper,
our point process based model does not suffer from this lim-
itation, and directly estimates the transient citation counts at
any future time point or period. [Stern, 2014] empirically
study the social science top-ranked journals and discover that
‘half of the papers in the top 20% in 2012 were already in the
top 20% in the year of publication (2006)’.
Paper citation prediction As shown in Fig.1, individual
level paper citation prediction is challenging. A line of meth-
ods formulate the paper citation prediction problem into a
regression task, and examine which covariates are effective
input features. [Yan et al., 2011; Chakraborty et al., 2014]
extract author-centric attributes (e.g. productivity, co-author
network, influence), paper-specific features (e.g. team-size,
reference count), and venue-centric features (e.g. venue rank)
to build a supervised regression model. [Yu et al., 2012] study
the problem of predicting the linkage i.e. citation between a
pair of papers. However, their approach is based on link pre-
diction and cannot predict the dynamic citation count at any
time point. In the seminal Science paper [Wang et al., 2013],
the authors propose a point process based behavioral model
which tries to capture the dynamics of the individual paper
citations. Its intensity function is a multiplication of three
factors: i) fitness term, which is paper’s intrinsic value being
different from paper to paper; ii) the aging effect over time;
iii) the reinforcement term indicating the well-documented

fact that highly cited papers are more visible and are more
likely to be cited again than less-cited contributions. They
employ maximum likelihood estimation for individual paper
to infer its set of parameters, which is at the risk of over-fitting
as also observed in [Wang et al., 2014b]. To mitigate this is-
sue, [Shen et al., 2014] adopt a Bayesian treatment by using a
conjugate prior for the fitness parameter µd. This prior is not
paper-specific nor flexible to capture paper’s arbitrary profile.

Despite the recent advances in scientific impact prediction
and more specifically, paper citation prediction, it is still un-
clear and even controversial on the reliability and bound of
prediction accuracy of a long-term citation prediction model
– see the comments [Wang et al., 2014b] and response [Wang
et al., 2014a] published in the Science communication papers
(http://www.science.com/) after the pioneering work [Wang
et al., 2013] and improvement [Shen et al., 2014].
Contribution of the paper This paper is aimed to provide
in-depth findings on a recently released real-world dataset.

Specifically, we propose a novel point process model for
long-term paper citation prediction, which is also quite gen-
eral in applicability. Our approach captures the Matthew ef-
fect [Merton, 1968] (or accumulated advantage, richer get
richer and the poor get poorer) and the recency effect of past
citations. In particular, it can help better address the common
but unresolved ‘second-acts’ scenarios in [Wang et al., 2013]1

(a.k.a. ‘Sleep Beauty’ [Ke et al., 2015]). The covariates w.r.t
the author and paper are also incorporated in the intensity
function to improve interpretability and mitigates overfitting.

We also provide an empirical analysis of the predictive
power and interpretability of the learned point process model
on the public Microsoft Academic Graph [Sinha et al., 2015].
Our method consistently outperforms the state-of-the-arts ap-
proaches [Wang et al., 2013; Shen et al., 2014].

We think more importantly, this work provides a new inves-
tigation on how effective algorithmic citation prediction can
be devised, regarding the recent arguments appear on Science
communication [Wang et al., 2014b; 2014a].

2 Model and algorithm
2.1 Model formulation
The received citation count of an individual paper d dur-
ing time period [0, T ] is characterized by a time-stamped se-
quence {tdi }ni=0 when a citation occurs – which we dub it as
event in the setting of point process in this paper: 0 = td0 
td1  ...  tdi  ...  tdn  T . The goal is to model and pre-
dict the future citation count over an arbitrary time window
given the historical citations and other available covariates.

It is clear that papers having been cited frequently tend to
accumulate more citations, especially for recent citations. It
is also clear that, with time, even the most novel paper loses
its popularity. Some papers, however, seem to have an inher-
ent ‘quality’ that can be interpreted as a community’s recog-

1The ‘second-acts’ e.g. the citation burst for superconductivity
papers after the discovery of high-temperature superconductivity in
the 1980s, or delayed impact, like the citation explosion to Erdős and
Rényi’s work 40 years after their publication [Barabási and Albert,
1999], following the emergence of network science [Redner, 2005].
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nition to the work. Building on a foundation of the above
observations, we derive our prediction model in three regards.
Intrinsic popularity The quality of the paper is its intrinsic
factor contributing to its popularity. To some extent, the qual-
ity can be measured by its paper/author-specific covariates,
such as the H-Index [Hirsch, 2005] of the author, the field
where the paper is published etc. In line with [Yan et al.,
2011; 2012; Chakraborty et al., 2014], we extract a set of co-
variates for each paper as listed in Table 1. We also plot three
of their scatters regarding with the citation count in Fig.2 and
some of them exhibit strong correlations. Therefore, we can
use these covariates to regress the associated coefficients of
the intrinsic popularity. Here the Lasso (`1 norm) can be used
to induce sparse coefficients to mitigate overfitting.
Impact decaying over time A general and common trend
is that the paper’s attractiveness fades away over time. This
can be explained by the fact that a topic goes through its life-
cycle and ends up with an out-of-dated status, or still being a
hot topic, but the novelty is incorporated in subsequent work
that dilutes its impact and relevance to other work.
Recency-sensitive citation triggering Previous methods
[Wang et al., 2013; Shen et al., 2014] ignore the time-stamp,
and aggregate all past citations to model the intensity, which
might be less effective to capture the citation dynamics – see
our experiments. We propose to use a self-triggering pro-
cess a.k.a. Hawkes processes [Hawkes, 1971; Hawkes and
Oakes, 1974] which favor more on recent citations and the
effect time-decaying window can be controlled by, for com-
putational effectiveness, a Laplace kernel [Yan et al., 2013;
2015]. The ‘recency-sensitive’ model can naturally address
those papers with spiking citation curve being still remain un-
resolved in [Wang et al., 2013; Shen et al., 2014].

Hence, we define the citation count intensity of paper d:

�d(t) = �sd(t)| {z }
Quality

e

�w1dt

| {z }
Aging

+↵d

X

i,ti<t

e

�w2d(t�ti)

| {z }
Triggering weighted by recency

(1)

where sd(t) = (1, sd1, sd2, ..., sdK) is a row vector encoding
the K paper-specific covariates for paper d and � is a column
vector for the coefficients. e�w1dt is the aging function ac-
counting for attractiveness decrease since its publication. ↵d

is the triggering strength of each citation before current time
point t, with the decaying effect e�w2d(t�ti). For point pro-
cess, the estimated citation count can in general be computed
by integrating Eq.1 over a specified future time period.

2.2 Discussion on peer methods
As an emerging problem, the most relevant work to ours is
the Reinforced Poisson Process (RPP) model as presented in
[Wang et al., 2013] and [Shen et al., 2014], whereby the lat-
ter adds a conjugate prior on the fitness of an individual to
the former work [Wang et al., 2013] published in Science
studying the problem of long-term individual citation dynam-
ics. We also mention the form of Hawkes processes [Hawkes,
1971; Hawkes and Oakes, 1974] as our model is partly origi-
nated from this type of point process. We also solve the learn-
ing problem via a tailored ADMM based algorithm.

Table 1: Paper/author/venue-centric covariates in our model.

Type Covariates Description Rank

Author-wise

hindex H-index of anthor 1
authorrank rank of author 2

noca number of co-authors 5
insitrank rank of author’s institute 6

producibility publications by author 7
authordiv diversity of author’s topic 8
authorcen centrality of authors 10
teamsize number of authors of papers 14
insitnum number of institute 17

Venue-wise

venuerank rank of venues 3
venuecen degree of centrality of venues 13
venuepub number of publications of venues 19
venuediv topic diversity of venue 21
venueaut number of authors of venues 22

Paper-wise

firstPA first order of preferential attachment 4
secPA second order of preferential attachment 9
topdiv topic diversity of the paper 11

filedhot topic hotness of the paper 12
refdiv topic diversity of reference 15

firstRef first order of reference 16
secRef seconde order of rerference 18
keydiv keywork diversity of the paper 20

Reinforced Poisson Process – RPP The seminal work pub-
lished in Science [Wang et al., 2013] begins to study the fun-
damental problem for the predictability of long-term citation.

Their point process model involves three individual paper-
specific parameters: the relative fitness �i capturing a paper’s
importance relative to to other papers; immediacy µi gov-
erning the time for a paper to reach its citation peak; and a
longevity parameter �i accounting for the decay rate of its
popularity. By solving a master equation associated with the
intensity function, they directly give the equation for the num-
ber of citations cti(�i, µi,�i) at time t (see Eq.2 and Eq.3
in that paper). The parameters are then estimated by least-
square-fitting, given historical citation data for paper i.

To overcome the problem that maximum likelihood param-
eter estimation suffers from overfitting, especially for rel-
atively small sample size as we need to train one model
for each paper by its citations, [Shen et al., 2014] adopt a
Bayesian treatment by adding a conjugate prior on the rela-
tive fitness parameter µd via a gamma distribution, for each
paper and showcase superior results compared with [Wang
et al., 2013] for prediction accuracy. While it incurs some
doubts from more recent study [Wang et al., 2014b].
Hawkes Process The intensity of self-exciting Hawkes pro-
cess [Hawkes, 1971; Hawkes and Oakes, 1974] is given by:

�d(t) = µd + ↵d

X

j,tj<t

e

�w(t�tj).

Here a paper-specific parameter µd for paper d is used instead
of the parameterized linear regression term �sd by our ap-
proach, and other parameters have the similar meaning com-
pared to Eq.1. There are some recent studies/applications on
Hawkes processes, [Zhao et al., 2015] use this model to pre-
dict the popularity of Twitter, where popularity intensity is
determined by a stochastic infectiousness process (Cox pro-
cess). [Zhou et al., 2013] introduce the low-rank sparsity
on the infect matrix formed by the mutually-exciting Hawkes
model. [Luo et al., 2015] propose a multi-task learning varia-
tion for the mutually-exciting Hawkes model and [Yan et al.,
2015] adopt it for sales pipeline modeling.
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Figure 2: Covariates (x axis) – citation (y axis) scatter.

Compared with the above methods, especially [Wang et al.,
2013; Shen et al., 2014], the bullets of our approach are:

i) Introducing paper-specific covariates The paper-
specific covariates are involved via parameterizing the quality
term (see Eq.1). In RPP and Hawkes process, for each paper,
their quality term µd is modeled by one their own parame-
ter respectively, which we think is the main reason for over-
fitting. One shall note that in their methods, each of these
parameters is learned from its past citations of each paper in-
dependently. Meanwhile, the covariates are not used which
otherwise can play a bridge to cross-distributing the informa-
tion over training samples i.e. papers. For instance, for those
papers with very short observation window and with few ci-
tations, it is difficult to interpret and predict the behavior of
such papers without exploring the covariates used in Table 1.
In this sense, involving the informative covariates will mit-
igate the over-fitting problem and meanwhile help improve
the interpretability of our model. Note in the improved RPP
[Shen et al., 2014], they only impose a prior on the global dis-
tribution of µd, without using the covariates to parameterize
the prior and such valuable information is ignored.

ii) Modeling citation recency by self-exciting kernel We
account for citation recency by modeling triggering effect
in continuous time space. This feature is inspired from the
Hawkes process. To our best knowledge, this is the first
time for adapting this component in paper citation prediction.
More importantly, we find this recency-weighted triggering
model is more appropriate for the citation dynamics, espe-
cially for those ‘second-acts’ and ‘delayed-impact’ phenom-
ena that once appear in citation history [Redner, 2005].

iii) Additive intensity model We model the relation of the
first two components with the third one by an additive com-
position rather than multiplication used in [Wang et al., 2013;
Shen et al., 2014]. In general these two forms have their re-
spective strengths (see more details in Chapter 4 in [Aalen et
al., 2008]), in the analogous context of the multiplicative Cox
and the additive Aalen functions [Aalen et al., 2008].

Specifically, the additive model decouples the temporal ag-
ing from the triggering effect while the multiplicative couples
each other. We simplify the temporal aging term by a general
decaying kernel for the difficulty to capture various and un-
known citation life-cycle patterns. Our additive mechanism
can isolate the adverse effect by this coarse design. Moreover,
it is mathematically easier and more efficient to learn the ad-
ditive model than a multiplicative one [Vu et al., 2011]2.

2One technical issue is our additive model does not automatically
guarantee the non-negativeness of the first term in Eq.1. Thus we
normalize the covariates sd to [0,1] and make them almost always
greater than zero, and � are ensured to be positive according to Eq.8.

2.3 Model learning and prediction
The length of time interval between two consecutive citations
follows an inhomogeneous Poisson process. Therefore, given
that the (i � 1)th citation arrives at ti�1, the probability that
the ith citation arrives at ti follows

p(ti|ti�1) = exp

 
�
Z ti

ti�1

�(t)dt

!
�(ti)

Then the log-likelihood of time-stamped sequence is:

log

nY

i=1

�(ti)exp
✓
�
Z T

0

�(s)ds

◆
=

nX

i=1

log �(ti)�
Z T

0

�(t)dt,

By plugging Eq.1 into the above function and adding spar-
sity regularization ||�||1, for Gd(t) =

R t
0 gd(t)dt we reach:

L� =�
NX

d=1

⇢ nX

i=1

log

✓
�sde

�w1dt
+

X

tj<ti

↵dgd(ti � tj)

◆
(2)

� �sdGd(T )�
nX

j=1

↵dGd(T � tj)

�
+ �||�||1

where gd(t) = e�w(t�tj) is the triggering kernel in Eq.1.
Adding `1 norm renders Eq.2 non-differentiable. We ap-
ply the idea of Alternating Direction Method of Multipli-
ers (ADMM) [Boyd et al., 2011] to convert the optimization
problem to several sub-problems that are easier to solve. The
optimization problem in Eq.2 can be rewritten as the follow-
ing equivalent form by introducing an auxiliary variable z:

minL+ �||z||1 s.t.� = z. (3)

The corresponding augmented Lagrangian of the problem is:

L⇢ = L+ �||z||1 + ⇢u(� � z) +
⇢
2

||� � z||22, (4)

where u is the scaled dual variables corresponding to the
constraint � = z, and ⇢ is the penalty parameter, which
is usually used as the step size in updating the dual vari-
able. Solving the above augmented Lagrangian problem us-
ing ADMM algorithm involves the following sub-problem:

�l+1,↵l+1
=argmin��0,↵�0L⇢(�,↵, zl,ul

), (5)

zl+1
=S�/⇢(�

l+1
+ ul

), ul+1
= ul

+ �l+1 � zl+1

S�/⇢ is soft thresholding [Donoho and Johnstone, 1995].
To update � and ↵ in Eq.5 efficiently, we adopt EM frame-

work to solve this convex problem. The EM step is as follows.
Let pki denotes probability that feature k triggers event ti and
the pij denotes the probability that event ti triggers event tj .

We empirically iterate the expectation step (Eq.6, 7) maxi-
mization step (Eq.8, 9) until convergence:

pdki
(l+1)

=

�ksdke
�w1dti

�sde
�w1dt

+

P
tj<ti

↵dgd(ti � tj)
(6)

pdij
(l+1)

=

↵dgd(ti � tj)
�sde

�w1dt
+

P
tj<ti

↵dgd(ti � tj)
(7)

�(l+1)
k =

�B +

q
B2

+ 4⇢
PN

d=1

Pn
i=1 p

d
ki

2⇢
(8)

↵(l+1)
d =

Pn
i=1

Pi�1
j=1 p

d
ijPn

i=1 Gd(T � ti)
(9)
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Figure 3: MAPE and accuracy comparison by different observation time windows for training. Row 1-2: Computer Science
each column denotes results of papers in journal, conference, and IJCAI proceedings from 1969 to 1989 and the observation
window is 10 years and 7 years in each row respectively. Row 3: Biology, Physics, Chemistry with 10-year time window.

where B =
PN

d=1 sdkGd(T ) + ⇢(uk � zk). In fact, in
our tests, we always find our method converges to a station-
ary point though its convergence property is not theoretically
proved in the paper.

We update w1, w2 for paper d (below d is omitted for no-
tational simplicity) by gradient descent:

@L⇢

@w1
=

nX

i=1

�se�w1ti
(�ti)

�(ti)
� �se�w1TTw1 � (1� e�w1T

)

w1
2

(10)

@L⇢

@w2
=

nX

i=1

P
tj<ti

↵e�w2(ti�tj)
(tj � ti)

�(ti)
(11)

�
Pn

i=1 ↵e
�w2(T�ti)

(T � ti)w2 � (1� e�w2(T�ti)
)

w2
2

After learning the parameters, we simulate the Hawkes
process by Ogata’s thinning algorithm [Ogata, 1981] and es-
timate the predicted citations before time t, denoted by cd(t).

3 Experiments and discussion
3.1 Experimental settings
Dataset and compared methods We perform citation count
prediction on the real-world dataset: Microsoft Academic
Graph [Sinha et al., 2015] of which the papers are well col-
lected, complete and authorized. We select publications in
Computer Science, which consists of 3,539,403 papers au-
thored by 1,598,575 researchers. Two networks are con-
structed: the co-author collaboration network with 1,598,575
vertices and the other is citation network with time-stamped
directed link, indicating when the citation is received.

We further use papers published during 1969-1989 from
the so-called ‘main’ Computer Science venues (refer to
http://libra.msra.cn/), including 1,240 journals and 547 con-
ference series, resulting in a total of 47,293 papers. Similar to
the protocol in [Wang et al., 2013; Shen et al., 2014], we use
papers with more than 5 citations during the first 5 years after
publication as training data and predict their citations in the
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Figure 4: Objective function by iteration.

Figure 5: The learned intensity function over time by RPP
and ours. Black triangles denote citation events.

next 10 years. Other fields, Physics, Biology and Chemistry
are also evaluated. The improved RPP [Shen et al., 2014]
based on [Wang et al., 2013], the Hawkes model [Hawkes,
1971] are implemented and tuned to their best performance.

Two metrics used in [Shen et al., 2014] are also used:
Mean Absolute Percentage Error (MAPE) It measures the
average deviation between predicted and true popularity over
N papers. Denoting with cd(t) the predicted number of cita-
tions for a paper d up to time t and with rd(t) its real number
of citations, MAPE is given by 1

N

PN
d=1

��� c
d(t)�rd(t)

rd(t)

���.
Accuracy It measures the fraction of papers correctly
predicted for a given error tolerance ✏. Hence the
accuracy of popularity prediction on N papers is
1
N

PN
d=1

���d :
�� cd(t)�rd(t)

rd(t)

��  ✏
���. [Shen et al., 2014] set

✏ = 0.1 on their dataset. We find in our test, our methods
always outperforms regardless ✏ and we set ✏ = 0.3.

3.2 Results and further discussion
MAPE and accuracy They are given in Fig.3 where each
column for the first two rows shows the results for Computer
Science papers published in journal, conference, and IJCAI
respectively. Our method (denoted by OURS) consistently
outperforms across different observation time window (7, 10
years). The third row on Biology, Physics and Chemistry re-
veal that our method performs robust across fields.
Time complexity The time cost for RPP, Hawkes and our
method is 0.355, 0.805, 0.860 seconds per iteration. How-
ever, our efficient EM framework renders OURS converges
with less iterations as illustrated in Fig.4. The total consump-
tion time for RPP, Hawkes and our method is 42.6, 24.1 and

Figure 6: Performance on the ‘second-acts’ papers. Two pa-
pers with solid [Kahn and Roth, 1971] and dashed [Eklundh,
1986] lines are used to exemplify the real and predicted cu-
mulative citation count over years – the first 10 years are used
as training window, and the next 10 years are for prediction.

17.2 minutes in average for training the Computer Science
models. This suggests our method is efficient and accurate.
Visual comparison We also compare the learned intensities
of RPP and our method. Fig.5 shows the learned intensity
distribution and citation events. Event intensity of RPP relies
strongly on the time decaying function while ours can flexibly
capture the triggering effect of recent citations.
Study on ‘second-acts’ papers We conduct experiments on
the so-called ‘second-acts’ phenomenon that papers receive
plenty of citations in their late-stage of life cycle. This type
of papers is also called in Sleep Beauty by [Ke et al., 2015].
There is a continuous spectrum of delayed recognition where
both the hibernation period and the awakening intensity are
taken into account. Fig.6 compares both the real and cumu-
lative predicted citations for sleep beauties type of papers,
where the observation window is 10 years. 249 papers are
chosen by setting i) less than 20 citations in the first 10 years
since publication, and ii) larger than 70 citations in the next
10 years. Note the MAPE is worse than the results in Fig.3
while the Hawkes model and our method performs relatively
better. We visualize real and predicted citations of two con-
crete examples: solid line indicates paper [Kahn and Roth,
1971], and dash line [Eklundh, 1986]. RPP increases linearly
regardless of the booming citations in the late stage (around
the end of the 10 year observation time window) while our
method follows the trend more timely and closely.
Interpretability of covariates By using the sparsity regular-
ization (set � = 2 in Eq.1), we can select the most important
and interpretable features. Table.1 ranks the covariates by the
amplitude of coefficients. The most important factors are au-
thor’s authority, such as H-index, author rank, and venue’s
rank, which relate to the novelty of the scientific works.

4 Conclusion
We present an individual paper citation prediction model.
Empirical results suggest that its utility for prediction and
interpretability. It also gives an independent study on the
argument for how effective algorithmic citation prediction
approaches can be devised among Science communication
[Wang et al., 2014b; 2014a]. We empirically find robust
methods is achievable for individual paper citation prediction
by appropriate modeling in line with [Wang et al., 2014a].
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