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Abstract

Capturing place semantics is critical for enabling
location-based applications. Techniques for assign-
ing semantic labels (e.g., “bar” or “office”) to un-
labeled places mainly resort to mining user activ-
ity logs by exploiting visiting patterns. However,
existing approaches focus on inferring place labels
with a static user activity dataset, and ignore the
visiting pattern dynamics in user activity streams,
leading to the rapid decrease of labeling accuracy
over time. In this paper, we tackle the problem of
semantic place labeling over user activity streams.
We formulate this problem as a classification prob-
lem by characterizing each place through its fine-
grained visiting patterns, which encode the visit-
ing frequency of each user in each typical time slot.
However, with the incoming activities of new users
in data streams, such fine-grained visiting patterns
constantly grow, leading to a continuously expand-
ing feature space. To solve this issue, we propose
an updatable sketching technique that creates and
incrementally updates a set of compact and fixed-
size sketches to approximate the similarity between
fine-grained visiting patterns of ever-growing size.
We further consider the discriminative weights of
user activities in place labeling, and seamlessly in-
corporate them into our sketching method. Our
empirical evaluation on real-world datasets demon-
strates the validity of our approach and shows that
sketches can be efficiently and effectively used to
infer place labels over user activity streams.

1 Introduction

Semantically understanding human activity is a key ingredi-
ent when developing human-aware applications. One criti-
cal aspect of this understanding is semantic place labeling,
which aims at assigning semantic labels to locations. For
example, it is often more useful to know that a place is
a bar rather than knowing its GPS coordinates only. By
understanding the semantics of previously visited places,
one can enable various location-centric applications such as
personalized location based services [Yang et al., 2013a;
2013b] and user activity inference [Yang er al., 2015b].
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The recent rise of Location Based Social Networks (LB-
SNs), such as Foursquare!, made large-scale spatiotempo-
ral user activity data become more accessible. In LBSNs,
users share their real-time activities with their social circles
by checking in at Points of Interest (POIs), such as a given
bar or French restaurant. In practice, the semantic labels
of POIs in LBSNs are not always available due to a va-
riety of reasons, such as the users’ unwillingness to label
them, or some lack of information from service providers.
The basic intuition behind automatically inferring POI labels
is that POIs of the same type usually share similar visiting
patterns, which are encoded by users’ check-ins. For ex-
ample, [Cheng er al., 2011a] defines the traffic pattern of a
POI as the aggregated check-in frequency in each time slot
during a typical time period (e.g., 168 hours in a week),
and uses such traffic patterns for place labeling. In that
context, most of the recent contributions [Ye et al., 2011;
Falcone et al., 2014] try to select the most representative fea-
tures from a static dataset of check-ins in order to train dedi-
cated classifiers.

However, as an intrinsically online data source, LBSNs
continuously capture user activity data (7 million check-
ins/day on Foursquare [Blog, 2015]), which makes the exist-
ing place labeling approaches inadequate. Specifically, user
dynamics in LBSNs (e.g., check-ins from newly registered
users) make features selected on static datasets become less
efficient for new POlISs, leading to a rapid decrease in accuracy
(see for example Figure 4(b) below for an empirical evalua-
tion of this effect). Moreover, the high computational costs of
existing approaches (e.g., random walks in [Ye er al., 2011])
make them ill-suited for streaming data.

Motivated by those facts, we introduce in this paper a novel
approach for semantic place labeling over activity streams by
leveraging data sketching techniques. Specifically, instead
of using coarse-grained traffic patterns that encode tempo-
ral dynamics [Cheng et al., 2011al] only, we consider fine-
grained visiting patterns encoding both temporal and user
dynamics, captured by the cumulative check-in frequencies
of each user-time pairs during a typical time period. Our
study shows that such finer-grained patterns yield more ac-
curate labels (see Figure 4(a) for details). With large num-
bers of check-ins, however, the size of the resulting fine-
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grained visiting patterns makes the classification become
impractical. One key idea to overcome this limitation is
to apply sketching techniques [Aggarwal and Philip, 2010;
Bachrach et al., 2009] in order to maintain a set of compact
and fixed-size sketches of the original fine-grained visiting
patterns while still preserving their similarity.

However, applying sketching techniques to our problem
faces two challenges. First, our approach needs to be incre-
mentally updatable, since the visiting pattern of a POI charac-
terized by check-ins continuously grows, which departs from
classical sketching techniques that focus on sketching com-
plete data instances. Ideally, the new sketch of a POI visiting
pattern should be incrementally computed from the former
sketch and the newly arrived data. Second, users’ activities
are not all equally important when labeling POIs. For ex-
ample, check-in data showing less obvious routines are less
discriminative for place labeling, and should be given a lower
weight during the classification [Wettschereck et al., 1997].
Considering streaming check-ins implies that such discrimi-
native weights might have to be dynamically recomputed over
time, and more importantly, to be incorporated in classifica-
tion with sketches.

To address those two challenges, we propose a data sketch-
ing method that creates and incrementally updates sketches
from streaming check-in data, while dynamically measuring
their discriminability and seamlessly incorporating the result-
ing weights into the sketching process. Specifically, we re-
sort to consistent weighted sampling techniques [Manasse et
al., 2010] to approximate the min-max similarity when cre-
ating the sketches, which has been proved to be an effective
similarity measure for nonnegative data [Li, 2015]. For each
incoming check-in at a POI, the sketch is directly updated
based on the former sketch and the cumulative frequency of
the newly arrived check-ins. To take into account the dis-
criminative weight of each user-time pair, we first estimate
the entropy weight for individual user-time pairs, and then
dynamically incorporate such weights when creating and up-
dating the sketches. In such a way, the discriminative weights
are seamlessly propagated to the sketches (see Section 3.2 for
details).

We evaluate our approach on two real-world LBSN
datasets collected from Foursquare in New York City and
Tokyo. Our empirical results (see Section 4) show that our
approach can not only efficiently create and update sketches
for the fine-grained visiting patterns of POlIs, but can also ef-
fectively preserve their similarity, yielding to very accurate
inferred labels.

2 Related Work

Existing work on semantic place labeling mainly leverage
three types of user activity data: diary data collected though
surveys, continuously sampled data from wearable sensors,
and self-reported activity data from LBSNs. Diary data, such
as [Krumm and Rouhana, 2013], are collected by asking par-
ticipants to fill out a questionnaire covering their visits in a
certain time period. Due to this labor-intensive collection
process, such datasets are however hard to maintain. Con-
tinuously sampled data from wearable sensors usually con-
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sist of fine-grained activity logs from various sensor read-
ings (e.g., GPS, accelerometer, Bluetooth, WiFi, etc.), such
as [Do and Gatica-Perez, 2014]. Although wearable sensors
can provide fine-grained and continuous samples of user ac-
tivity, obtaining large-scale datasets is difficult due to privacy
concerns [Shilton, 2009]. Finally, LBSNs have attracted mil-
lions of users reporting their daily activities by checking in at
POIs. Previous work on semantic place labeling using LBSN
datasets [Ye et al., 2011; Falcone e al., 2014] all try to manu-
ally select representative features of visiting patterns based on
static datasets, which are subsequently fed into a classifier for
inferring the labels. However, the streaming nature of check-
in data in LBSNs makes such features become rapidly less
effective over time. To the best of our knowledge, this paper
is the first attempt at addressing the semantic place labeling
problem over streaming activity data.

Data sketching techniques were designed to handle mas-
sive data, particularly data streams. Their basic idea is
to maintain compact sketches allowing to approximate spe-
cific properties of the original data. Sketches can power a
wide range of applications, including enumerating different
kinds of frequency statistics of data streams [Cormode and
Muthukrishnan, 2005], or approximating the similarity of
high dimensional data (e.g., documents and images) [Wang
et al., 2014]. Sketching techniques have also been studied to
approximate various similarity measures, including the Jac-
card [Broder et al., 1998; Mitzenmacher et al., 2014], cosine
[Kutzkov et al., 2015], and min-max [Li, 2015] similarities.
In this paper, we leverage data sketching techniques to ap-
proximate the min-max similarity between fine-grained vis-
iting patterns from user activity streams. Different from ex-
isting sketching techniques for min-max similarity that are
all applied on complete instances [Manasse et al., 2010;
Toffe, 2010; Li, 2015], we focus on fine-grained POI visiting
patterns that are based on continuously updated data. There-
fore, we propose a new data sketching approach that creates
and incrementally updates sketches from streaming check-in
data, and also consider their discriminability in the sketching
process.

3 Sketch-Based Semantic Place Labeling

The basic idea behind our approach is to create a concise and
updatable sketch of the fine-grained POI visiting patterns over
user activity streams in LBSNs, for the purpose of inferring
place labels. For a specific PO, its fine-grained POI visiting
pattern is represented by a vector V € NIPI, where D is the
activity vocabulary including all user-time pairs. The size of
D is |U| - |T|, where U and T are the set of users and the
set of time slots in a typical time period, respectively. Each
element of V;, ¢ € D encodes the cumulative count of the
corresponding user-time pair ¢ on that POL. In this paper, we
define the time slot as hours and the typical time period as a
week (i.e., 168 hours in a week), which is a widely adopted
method in studying check-in patterns [Yang et al., 2015al.
With the increasing number of users, the size of D rapidly
grows. Therefore, in order to efficiently classify POIs (as-
signing semantic labels to POIs) based on ever-growing V,
our objective is to create and efficiently maintain a compact
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Figure 1: Overview of our approach

and fixed-size sketch S of V' to effectively approximate the
similarity between V' of different POIs, such that the classifi-
cation can be efficiently run based on S.

As illustrated in Figure 1, our approach takes user activity
streams from LBSNSs as input. For each check-in triplet (POI-
user-time), we first update the global discriminative weights
(see Section 3.2) of individual activities in D, i.e., user-time
pairs. Based on the discriminative weights, we then update
the sketches for each POI. In order to infer place labels, the
classical classification method can then be performed on de-
mand. In the following, we first present our updatable sketch-
ing method for approximating the min-max similarity, and
then discuss how to seamlessly incorporate the discriminative
weights in the sketches.

3.1 Updatable Sketching Method

In this section, we present our updatable sketching method
to approximate the min-max similarity, which is an effec-
tive measure of similarity for nonnegative data [Li, 2015].
Given two fine-grained visiting pattern vectors V¢ and V?,
their min-max similarity is defined as follows:

> iep min(Vy%, 149!
Yiep max(Vi2, V)
The proposed sketching method creates sketches S¢ and S®
of size K (K < |D|) for V® and V°, respectively, with the

property that their collision probability is exactly the min-
max similarity between V¢ and V?:

Pr(S¢ = 8% = Simpy (VE,V?) )

Simar (V2 V) = )

where j = 1, ..., K. The min-max similarity between V' and
V? can then be approximated by the Hamming similarity be-
tween S® and S°. The computation over S, which is compact
and of fixed-size, is much more efficient than that over V,
which is a large, ever-growing vector.

Sketch Creation

In order to create S from V', we borrow the idea of consistent
weighted sampling [Manasse et al., 2010], which was orig-
inally used for approximating min-max similarity for com-
plete data instances. Specifically, given a vector V, it applies
a random hash function h; on each (i, f), where ¢ € D and
f € {1,...,V;}, and obtains the corresponding hashed value
h;j(i, f). Note that the random hash function /; maps (i, f)
uniquely to h;(4, f), which follows a uniform distribution
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Figure 2: An example of sketch creation

over (0,1), i.e., h;(i, f) ~ Un(0,1). Then, one element of
S is returned as (i}, f/) = argminiep reqa,... v,y by (4, f).
The theoretical results show that:

Pr{(i™, i) = (if", ;)] = Simarnr (V4 V) (3)
In order to further reduce the size of the above sketches, a
recent study [Li, 2015] proposed that it is sufficient to only

keep ¢} in the above sketches, and also empirically proved
the following property:

Priif” = i) = Pri, i) = (57 /7] ()

Therefore, for a specific random hash function h;, we assign
Sj = ;. By applying K independent random hash functions
(7 = 1,...,K), we generate sketch S (with size K) from V'
(with arbitrary size).

Figure 2 illustrates the sketch creation process. The left-
hand side of the figure shows the histogram of a fine-grained
visiting pattern V' with an activity vocabulary size |D| = 5.
By applying a random hash function %; on each (i, f), we
obtain the corresponding hash values (shown in the blue
cells), and then select the cell whose hash value is minimum:
(¢* = 2, f* = 3) with a corresponding hash value of 0.02.
We hence obtain the corresponding sketch element S; = 2.

Sketch Updating

As V incrementally grows with the incoming check-in data,
our sketching method needs to be updatable. To achieve this
goal, besides the sketch S, we also keep a vector ) (of size
K) storing the corresponding minimum hash values (e.g.,
Q; = 0.02 in the above example). For each new check-in
at a POI (i.e., for a user-time pair r), the corresponding V.
is increased by 1. In case of a new activity r ¢ D, we add
r in D, and augment V' to include V. = 1. Then, we only
need to apply the hash function h; on (r, V). By comparing
the new hash value h;(r, V;.) with that of the old sketch Q;,
we update S; = r, iff., h;(r,V,) < Q;. If S; is updated, we
also update () to its corresponding hash value, i.e., h;(r, V).
Figure 3 illustrates the sketch updating process following the
previous example. The incoming check-in is added to V, re-
sulting in a new V4 = 2. We thus apply h; only on (4,2). By
selecting the minimum hash value between ); = 0.02 and
hj(4,2) = 0.01, we update S; = 4, and the corresponding
Q; = 0.01. With K random hash functions, we maintain
a sketch S of size K and the corresponding minimum hash
values @ for each V.

Note that the above updating process requires to access
the former value of V.. As it is continuously growing, we
maintain each V' in a compact count-min sketch [Cormode
and Muthukrishnan, 2005], which is a fixed-size probabilis-
tic data structure (d rows and w columns) serving as a fre-
quency table of elements, with an estimated frequency error
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Figure 3: An example of sketch updating

of at most % with probability 1 — (3)?. We set the param-
eters d = 10, w = 50 to guarantee an error within 4% with

probability 0.999.

3.2 Discriminative Weight Consideration

All activities (user-time pairs) in D are not equally important
to infer place labels. For example, if a user frequently goes to
bars rather than other places on Friday night, we can label an
unknown place he visited on a Friday night as a bar with high
confidence. Traditionally, with a static dataset, we can mea-
sure such discriminability as a discriminative weight, which
can be easily incorporated in the inference process. However,
with user activity streams, the discriminative weight of ac-
tivities might dynamically change; more importantly, the ac-
tivity vocabulary D continuously grows. Therefore, we need
to dynamically measure the discriminability of the activities
and incorporate it seamlessly into the sketching process. To
achieve this goal, we first define the weighted min-max simi-
larity between fine-grained visiting patterns V' as follows:

ZieD Wi - min(V;a, Vzb)
ZieD Wi - maX(V;‘I’ Vzb)

where W; is the weight of activity ¢, ¢ € D. We note that
the discriminative weight W, here is a global feature weight,
which is different from the “weight” of consistent weighted
sampling, which represents the frequency of the data. In
this section, we further discuss how to seamlessly incorpo-
rate those weights in the sketching process, such that:

Pr(S§ = S ~ Simwan (Ve V?) ©)

where the approximate equality comes from Eq. (4). In the
following, we first describe how to compute the weights be-
fore turning to their incorporation in the sketching process.

SimW]\fM(Va, Vb> =

®

Weight Computation

We leverage a widely used weighting function, i.e., entropy
weighting [Nakov et al., 2001]. (We note however that our
approach is not limited to any specific weighting function.)
Specifically, for a given set of place labels, C, we use entropy
weighting to empirically measure the uncertainty of place la-
bels when observing individual activities. For each activity ¢
in D, we compute its entropy weight WW; as follows:

Zlec Di,i 10gpl,z‘
log |C]

where p; ; is the probability that POIs with activity ¢ are la-
beled as I, | € C. Higher values of W; imply higher degrees
of discriminability for the corresponding activity . To cal-
culate p; ;, we maintain a vector F' for each place label of
size | D| to record the cumulative frequency of each activity in

Wi=1+ @)
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D. With each incoming check-in, we update F' accordingly.
l

Thus, we are able to empirically compute p; ; = ﬁ at
'ec Vi
any time. Particularly, for each incoming check-in 7, only the
corresponding WW; needs to be updated. To improve space ef-
ficiency, we also store ' in a compact count-min sketch data

structure similar as the one we used for V.

Weight Incorporation in Sketching

We further extend our previous sketching method to incor-
porate the discriminative weights W. Our previous sketch-
ing method samples one element (7, f) from V for each hash
function h;. The key idea of incorporating W in the sketch-
ing process is to get sample (4, f) with higher probability for
larger W;, since activity ¢ is more discriminative in the clas-
sification. In the simple case of positive integer weight for
W, for the same (4, f), it is sufficient to generate W; differ-
ent random hash values h}" (i, f), m = 1,...,W;, and select

the minimum hash value iAzj(i, f) =ming,—1 __w, b} (3, f).
In such a way, an activity ¢ with larger weight will have more
random hash values and thus have a higher probability to be
the minimum (i.e., sampled as S;), or vice versa. To extend
the above method for positive real weights, we follow the
idea of [Chum et al., 2008] and design a new variable fol-
lowing the same cumulative distribution function (CDF) with
ﬁj. The new variable can be generated directly from one ran-
dom hash value only and W;, rather than W, random hash
values. Specifically, since hj" ~ U n(0, 1), we compute the

CDF of ﬁj as:
Prih; <a]=1-(1-x)" (8)

for x € (0,1). We assume another random uniformly
distributed variable z ~ Un(0,1), and formulate its CDF
Priz<y|l=vy,y € (0,1) as:

Prlz<1—-(1-o)"]=1-(1-a)V )

where y = 1—(1—2)"7 is an invertible continuous increasing

function (x = 1 — “§/(1 — y)) over (0,1). By applying the
change-of-variable technique on Eq. (9), we obtain:

Pril— "W/ —-2)<z]=1-(1-2)"'  (10)
Since Egs. (10) and (8) show the same CDF, ij can be

obtained by h; = 1— "{/(1 — 2). As (1—2) ~ Un(0,1), the
computation can be simplified to h; = 1 — "/z. As we only
care about the ordering of those hash values, we can further
simplify the computations via a monotonic transformation,
and obtain: )

- —logz

h; = 11

j W, 1D

Using Eq. (11), we can efficiently compute the hash value

h; from one random hash value, rather than generating W;
different random hash values. More importantly, Eq. (11)
can take any positive real weight.

Based on the above derivation, we only need to modify the
hashing function in our previous sketching method to incor-
porate W. Specifically, for both sketch creation and updating,



Table 1: Dataset statistics

Dataset New York City (NYC) | Tokyo (TKY)
Check-in number 129,774 169,033
POI number 5,823 4,228
User number 6,981 2,495

we first update the current weight W, and then compute the
hash value for each (¢, f) using h; as follows:

J(i, ) = BLRT) (12)
where h; is the random hash function in Section 3.1.

We note that the consistent weighted methods proposed by
[Toffe, 2010; Li, 2015] can take positive real number vectors
as input, so that the sketch for Eq. (5) can be directly ob-
tained by regarding V' o W as input, where o represents the
element-wise product. However, these sketching methods re-
quire to maintain three positive real number parameter matri-
ces in memory, each of size K  |D|. The ever-growing ac-
tivity vocabulary D makes these methods impractical in our
context.

>

4 Experimental Evaluation

In this section, we conduct a series of experiments to evaluate
our approach. We first describe our experimental setting, fol-
lowed by our results for assessing both the effectiveness and
the efficiency of our approach.

4.1 Experimental Settings

We evaluate our approach on a check-in dataset collected by
[Yang et al., 2015a; 2016] for about 18 months (from April
2012 to September 2013). Without loss of generality, we se-
lect check-in data from two big cities, New York City and
Tokyo, for our experiments. In our dataset, POIs are classified
by Foursquare into 9 root categories (i.e., Arts & Entertain-
ment, College & University, Food, Great Outdoors, Nightlife
Spot, Professional & Other Places, Residence, Shop & Ser-
vice, Travel & Transport), which are further classified into
291 sub-categories®. Table 4.1 summarizes the main charac-
teristics of our dataset.

In our experiments, we consider the POIs appearing in the
first 9-month check-ins as labeled training data, and the new
POIs in the last 9-month data (unseen in training data) as un-
labeled testing data. As inferring POI labels is intrinsically a
classification problem, we decided to leverage a KNN classi-
fier [Mitchell, 19971, which does not require building a model
from training data and can always takes the most up-to-date
training data for classification. Such properties fit our case
of rapidly growing visiting patterns well. It is important to
note that our sketching method is not bound to the KNN clas-
sifier, and can be used with any classifiers. We empirically
set KNN with the five nearest neighbors, and report the clas-
sification accuracy on both the 9 root categories (Lv1) and
the 291 sub-categories (Lv2). The classification is triggered
when 10 check-ins are observed for each POI tested.

*https://developer.foursquare.com/categorytree

In order to evaluate our approach, we compare it with the
following baseline methods:

e Coarse: We calculate the POI similarity based on their
traffic patterns [Cheng er al., 2011b] (coarse-grained vis-
iting patterns), which is represented by a vector with size
| 7| where each element is the frequency of check-in in
the corresponding time slot. Euclidean similarity is used
as similarity measure.

e Fine-Jaccard: We regard fine-grained visiting patterns
as binary vectors, and measure their Jaccard similarity.

o Fine-MinMax: We measure the min-max similarity of
fine-grained visiting patterns (Eq. 1).

o Fine-MinMax-Weighted: We measure the weighted min-
max similarity of fine-grained visiting patterns (Eq.5).

o Sketch-Jaccard: We use min-hash sketching [Broder et
al., 1998] to approximate Fine-Jaccard.

o Sketch-MinMax: Our method without discriminative
weight (i.e., approximation of Fine-MinMax).

o Sketch-MinMax-Weighted: Our method with entropy
weight (i.e., approximation of Fine-MinMax-Weighted).

4.2 Place Labeling Performance

In this section, we evaluate the effectiveness of our approach.
We first compare our approach to the baselines, and then show
the classification accuracy of different methods over time. Fi-
nally, we study the impact of the sketch length on the classi-
fication accuracy.

Comparison with other approaches

In this experiment, we compare our method to the baseline
approaches by fixing the sketch length to 50 for all sketching
methods (the impact of sketch length is studied below). Fig-
ure 4(a) plots the average accuracy for both datasets on the
two level categories. We observe that coarse-grained visiting
pattern yields the worst results. Based on the fine-grained vis-
iting patterns, classification with weighted max-min similar-
ity achieves the best results, which shows the effectiveness of
this similarity measure. Our sketching method outperforms
all other sketching baselines. Particularly, compared to Fine-
MinMax-Weighted, our sketching method can effectively ap-
proximate the weighted min-max similarity with only a small
loss in classification accuracy (e.g., about 3.3% on average
for root POI categories).

Classification accuracy over time

We now study the classification performance of our ap-
proaches over time. Specifically, we report the place label-
ing accuracy for each of the 9 months, with a sketch length
K = 50. We also implement two baseline classifiers trained
only on static training data, i.e., Naive Bayes (Static-NB) and
KNN (Static-KNN). All methods in this experiment use fine-
grained visiting patterns. Figure 4(b) plots the results on
NYC dataset and the 9 root levels of categories. (Experi-
ments on the TKY dataset and on the 291 sub-categories show
the similar results). We observe that our method consistently
achieves good results by approximating the weighted min-
max similarity over streaming data accurately. However, the
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two classifiers based on static datasets show a rapid perfor-
mance decay, which can be explained by two reasons. First,
due to the high user dynamics (e.g., varying activity of users,
newly registered users) in user activity streams from LBSNs,
the fine-grained visiting patterns incrementally evolve. Sec-
ond, with the continuously incoming user activities, the dis-
criminability of user activities also dynamically changes. The
two baselines based on a static dataset fail to capture these
features, leading to rapid performance decay.

Impact of sketching length

To study the impact of the sketching length K on classifica-
tion accuracy, we vary K within {2, 5, 10, 20, 50, 100, 200}.
Figure 4(c) reports the average accuracy of our approach. We
observe that the accuracy increases with increasing values of
K, which implies that longer sketches can better characterize
the similarity between fine-grained visiting patterns. More-
over, there is no significant improvement when K gets higher
than 50, which means that sketches with X = 50 are suf-
ficient to characterize the similarity between V in practice.
Therefore, we set the K to 50 in previous experiments.

4.3 Runtime Performance

To evaluate the efficiency of our approach, we investigate
the execution time of both check-in data processing and
place label classification, w.r.t, the sketch length K, K =
{2,5,10,20,50,100,200}. All experiments were conducted
on a commodity PC (Intel Core i7-4770HQ@2.20GHz,
16GB RAM, Mac OS X) running MATLAB? version 2014b.
Figure 5(a) shows the KNN classification time (on log
scale). We observe that using sketches can dramatically re-
duce the classification time (with an order of 10,000x), since
the Hamming similarity between sketches of small size can be
much more efficiently computed than the weighted min-max
similarity between the fine-grained visiting patterns of larger
size. With short sketch lengths, we find little variance in the
classification time across different K. The time differences
between datasets are mainly caused by the different number
of training POIs and the size of the activity vocabulary D in
the two datasets. More training data and larger size of D im-
plies longer execution times for the KNN classification.
Figure 5(b) reports the processing speed on check-in
streams. We observe that the processing speed slightly de-
creases with increasing sketch lengths, since larger K val-
ues imply a larger number of random hash functions in the

3http://mathworks.com/products/matlab/
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sketching process. For K = 50, our test PC is able to process
about 3,200 check-ins/sec on both dataset, which can easily
accommodate the current Foursquare check-in stream where
the peak-day record shows 7 million check-ins/day [Blog,
2015] (about 81 check-ins/sec on average). Since the sketch
length K controls the tradeoff between the processing rate
and accuracy (see Figure 5(b) and 4(c)), in practice, one can
adjust K to improve accuracy at the expense of the processing
rate margin.

5 Conclusions

In this paper, we introduce a novel semantic place labeling
approach over user activity streams in LBSNs by leverag-
ing data sketching techniques. Specifically, by characterizing
POIs through their fine-grained visiting patterns, we propose
a sketching method to maintain a set of compact and fixed-
size sketches to approximate their min-max similarity. More-
over, in order to consider the discriminability of user activities
for place labeling, we introduce a technique to dynamically
measure such weights and seamlessly incorporate them into
the sketching process. Based on two real world datasets col-
lected from Foursquare, the evaluation results show that our
approach can efficiently create and update sketches of fine-
grained visiting patterns for the purpose of semantic place
labeling.

As future work, we plan to explore user social networks to
further improve the accuracy of the labeling, and consider the
concept drift problem [Li et al., 2012] over time.
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