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Abstract

We introduce the Maximum Sustainable Yield
problem for a multi-robot foraging and construc-
tion system, inspired by the relationship between
the natural resource growth and harvesting behav-
iors in an ecosystem. The resources spawn accord-
ing to the logistic model and are vulnerable to over-
harvesting. The robots must maintain sustainabil-
ity while maximizing productivity. The foraging
robots harvest different types of resources, which
enable a construction robot to build new foraging
robots. We design algorithms to perform robot con-
struction, assignment, and scheduling. We pro-
pose an adaptive algorithm to overcome the prob-
lem that resource growth model is often unknown.
We demonstrate that our algorithms are robust to
noises in the actuation and the environment. The
case where the observation noise could harm sus-
tainability is discussed.

1 Introduction

In a multi-robot foraging problem, a team of robots harvest
natural resources, such as fish, lumber, or minerals. This sim-
ple framework could extend to robot cleaning, search and res-
cue, landmine clearance, and planetary exploration [Winfield,
2009]. This paper addresses the environmental sustainability
issue. The natural resource growth models vary from a sim-
ple constant growth model to the Malthusian Model [Malthus,
1872] or a more sophisticated logistic model [Verhulst, 1838].
A challenging goal is to maintain ecological balance of a vul-
nerable resource base while achieving productivity with a lo-
gistic growth model. This optimal harvest rate is known as
the Maximum Sustainable Yield (MSY) [Hjort et al., 1933].
In this paper, we design and implement control algorithms for
a multi-robot foraging system to achieve MSY.

Several issues of [Song and Vaughan, 2013]’s work that
introduced the multi-robot MSY foraging problem remain to
be solved. First, it assumes that the logistic growth model
parameters are known, so that optimal number of foraging
robots can be calculated beforehand and the problem be-
comes task assignment. In reality, the parameters for a par-
ticular natural resource base is often unknown. Although
the foraging industry has obtained sophisticated population
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Figure 1: A fishing robot. To balance sustainability and pro-
ductivity, the robot must forage at an optimal rate called Max-
imum Sustainable Yield. [Artwork (©)Christine Larson]

growth models, the model parameters differ across natural re-
source bases so a single set of parameters will not generalize.
Explicitly estimating these parameters is not trivial [Oliver,
1964] and could be impractical for three reasons. First, re-
source population is often at equilibrium without interfer-
ence, which does not provide useful information for estimat-
ing the model. Second, some resources grow slowly hence
data collection for estimating the model is slow. In the fish-
ery and logging industry, it might take months or years for
fish or wood to grow. Perhaps the most practical reason is
simply the profit: the foraging companies often start harvest-
ing immediately upon discovering a resource base. For these
reasons, we analyze the mathematical properties of the lo-
gistic growth model, and develop an adaptive algorithm that
enables a foraging system to approximate MSY while har-
vesting, by implicitly pursuing the optimal harvest rate.

The foraging algorithm also must take noise into consid-
eration. The robots’ observation, actuation, and natural re-
source growth rate could all be noisy. We introduce these
noises into the system and study their consequences. We
show that the system sustainability is sensitive to a particular
type of noise when the model is unknown. At last, the system
might not have enough robots at the beginning. A foraging
company will sell harvested resources, buy more robots, and
harvest more. We simplify this businesses cycle by assuming
that collected resources can be used directly to construct new
robots, hence we introduce the robot construction problem.

2 Related Work

Lerman et al. study dynamic task allocation using multi-robot
foraging system [2006]. They define a mathematical frame-



work for the foraging domain, including important concepts
such as task, environment model, communication, observa-
tion and uncertainty. A formal analysis technique is provided
to evaluate task performances. We follow up their framework
and methodology closely.

People are particularly interested in the case where num-
ber of agents participate in foraging is very large, namely the
swarm robot system. Examples in the nature are ant and bee
colonies. Swarm robot foraging system has been studied by
[Alers et al., 2014; Ducatelle et al., 2010; Hoff et al., 2013;
Hoff III, 2011; Liu et al., 2007; Pini et al., 2013], from the
perspectives of task assignment, cooperation, decentralized
control, energy conservation, etc.

An important aspect of a foraging task is the resource
growth model, especially the logistic growth model [Verhulst,
1838]. Although the actual observed population could os-
cillate around predicted value, this model is still a powerful
tool to study population growth [Cook, 1965]. Hjort et al.
use logistic model to study fishery [1933]. They proposed an
ideal population size and optimal harvest rate solution which
is widely known as the Maximum Sustainable Yield (MSY)
[Hjort er al., 1933]. Resource population under logistic
model is very sensitive to harvesting activities [Clark, 1973;
Smith and Punt, 2001], hence maintaining MSY is challeng-
ing.

Our work extends [Song and Vaughan, 2013; 2012] that in-
troduce sustainable robot foraging problem with logistic re-
source growth. Their work is the first to apply the concept
of MSY to robot foraging. However, they assume the sys-
tem is deterministic and robots have complete knowledge of
the environment. They also assume that enough robots at the
beginning and focused on the task assignment and schedul-
ing. Their idea of reducing excess harvesting capacity by
making some robots go to sleep [Song and Vaughan, 2013;
2012] is a critical component in our approach. A recent work
of [Liemhetcharat et al., 2015] follows closely to their work
but emphasizes the productivity instead of sustainability with
heterogeneous agents.

3 Problem Definition and Model Analysis

3.1 Environment

Logistic Model The resource population growth can be mod-
eled by the Malthusian Model [Malthus, 1872] that assumes
no upper bound on population. However, natural resource
population does not grow without constraints due to the lim-
ited space and supply. The population grows asymptoti-
cally to an upper bound, namely the carrying capacity of an
ecosystem. Let P(t) denote the population at time ¢, P(0)
denote the initial resource population, and 4P denote the
resource growth rate. The logistic model [Verhulst, 1838] is:
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The constant b is generally very small comparing to k. How-
ever, as population grows, bP?(t) will have the effect of slow-
ing the growth down. The upper bound P, of population is
% as the infinite limit of P(t). In addition to the ecosystem’s
carrying capacity (upper bound), we also address a sustain-
ability issue (lower bound), denoted by Py, known as the min-
imum viable population [Shaffer, 1981]. If resource popula-
tion drops below F, the population will decline and extinct.
In order to simulate the system in a computer program, a
differentiable equation is used to discretize Equation 1:

AP(t) = kP(t) — bP%(t) 4)

where ¢ is the discrete time step.
Harvesting Harvesting with logistic model requires keep-
ing resource sustainable while maximizing productivity. The
highest harvest rate should be confined by the maximum
growth rate of the logistic model. The maximum value
of AP(t) and its corresponding population size P(t) can
be evaluated by taking derivative of Equation 4 and set
AP(t) =0:

k2 _ k
A2
The possible scenarios in harvesting are:
a. Overharvesting: when the harvest rate is too high, popu-
lation will drop below Py, and resource will be exploited.
b. Underharvesting: there are two cases of underharvesting.
Either we harvest and maintain population size to be smaller
than P* or larger than P*. In both cases, the resource growth
rates are less than A P* and thereby not productive.
c. Maximum Sustainable Yield (MSY): the optimal solu-
tion requires the foragers to adjust their harvesting rate to
make population reach the ideal size P*, and then harvest
at maximum growth rate AP*. This optimal state is named
MSY [Hjort et al., 1933].
Here we also introduce the foraging settings and notations.
The environment is defined as a set of resource patches, de-
noted by A = {A;, Ao, ...}. Each patch is a different type
of resource. A single unit of resource is called a puck. The
number of pucks grow according to the logistic model at ev-
ery time interval s. The maximum increment of pucks AP*

. k2 . k2 o
is %7 during s, and 3~ for a unit time.

AP* . (5)

3.2 Information Availability

To achieve MSY, one needs to calculate P* and AP*, hence
requires k and b. When k and b are provided, we say the
system is informed and call its control algorithm an informed
algorithm. Otherwise, the system needs to infer the relevant
information and be adaptive with an adaptive algorithm.

The key observation here is that it is unnecessary to fit
k and b directly as in [Oliver, 1964] to achieve MSY. The
robots only need to know when resource population is near
P*. Recall P* is associated with the maximum growth rate
AP*. Since the growth rate can be observed by the forag-
ing robots, the task becomes detecting the maximum value of
AP(t). The unique behavior of the logistic model is that,
starting from P*, as P(t) decreases, AP(t) decreases; as
P(t) increases, AP(t) also decreases. We assume that the
resource population is at the equilibrium (upper bound) or



close at the beginning. As robots start to forage, P(t) will
decrease monotonically; AP(t) will increase monotonically
until AP* is reached, and decrease afterwards. Therefore,
the stop condition that indicates a patch reaches MSY can be
detected when both P(t) and AP(t) decrease, which we re-
fer as the simultaneous decrease event. This phenomenon
makes it possible to stop increasing harvesting power without
completely knowing the logistic model. Later we will show
how to detect such an event in practice.

3.3 Multi-Robot Foraging System
The foraging system includes the following components:
e Home: a place where collected resources are stored.

e A construction robot: stays at home and assembles new
foraging robots with collected resource pucks. The con-
struction time is denoted f.onstruct. 1t stores relevant
information for the patches and other robots.

Foraging robots: a team of robots is denoted R
{R1, Rs, ...}, where R; denotes the set of robots that
are assigned to patch A;. A foraging robot carries one
puck at a time. It takes time %j4pest tO harvest a puck,
tunload to unload the puck at home. The single trip time
d; for patch A; is the Euclidean distance between home
and A; divided by robot velocity.

Assume at the beginning there are only a few robots. To
achieve MSY, we need enough robots to harvest each resource
patch until its population reaches P*, and then these robots
should harvest at maximum growth rate A P*. Therefore, the
tasks for the construction robot are constructing new robots,
assigning them to the patches, and determining when to stop
constructing. The tasks for the foraging robots are harvesting
and sleep. They sleep because we might end up with slightly
more robots than MSY requires. The overharvesting problem
can be resolved by making robots sleep for ¢scep, at home.
The foraging robots assigned to the same patch need to con-
sistently collect relevant information, communicate with each
other, and adjust sleep time to approximate MSY. We do not
simply deactivate/activate extra robots to ensure a fair distri-
bution of work and rest time among robots.

4 Algorithms

Our goal is to design control algorithms for an autonomous,
multi-robot foraging system, in the described setting. We
present the informed and adaptive algorithms for the con-
struction robot and foraging robots. We use finite state ma-
chines (FSM) to control robot behaviors.

4.1 Informed Algorithm

Informed Algorithm for Construction Robot

Let n] be the optimal number of robots required by a patch
1. Since a robot carries one puck at a time, the harvest rate
should be the inverse of its round trip time, which is given by
Ttt; = tharvest + 2d; + tunload + tsicep- We then establish
the following equation:

n*

k2
rtt;  4bs

(6)
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Algorithm 1 Construction Robot Algorithm (Informed)

Require: information of the construction robot, foraging
robots and patches at time step ¢
return behavior of the construction robot at time ¢ + 1
fori:=1—|A|do
if |R;| > n} then
e; < true
end if
end for
fori:=1—|A|do
Vi ui/wi
end for
if not all entries in e are false and state = idle and
min(v) > 1 then
state < construct, timer < teonstruct
u+—u—w
end if
if state = construct then
if timer > 0 then
timer < timer — 1
else
a new robot is ready to go
i* < argmin{v; | e; = false}
i€[|Al]
assign the new robot to patch ¢*, append robot to R;
state < idle
end if
end if

Ideally, the sleep time of a foraging robot should be zero.
Given that the logistic parameters k and b are known, we have

2

4bs

The algorithm for an informed construction robot is shown in
Algorithm 1. The variables are defined below:

nr - (tharvest + 2dz + tunload) (7)

o state € {construct,idle} indicates the state of a con-
struction robot;

e € {true, false}"l, a boolean vector for the con-
struction robot, initialized to be false for all resource
patches. e; denotes whether patch A; has enough robots;

ue Z‘_fl) records the amount of pucks at home, where
u; is for the 7th type of resource;

W € Zl_fu) indicates the amount of pucks needed to con-
struct a robot, where w; is for the ¢th type of resource;

e timer indicates the remaining time of current state.

At each time step, the construction robot decides whether
each patch has enough robots. If so, the construction robot
stops constructing robot for that patch. If not, and if there are
enough pucks to construct a robot at home, it starts to assem-
ble a new robot. Upon finishing, the new robot is assigned
to the patch with the scarcest resource in terms of demand to
construct a new robot. This can be calculated by finding the
minimum element in a vector v, which is the proportion of
the amount of pucks in storage and the amount required to
construct a new robot.



Figure 2: Foraging robot finite state machine

Informed Algorithm for Foraging Robots

The algorithm is shown as a state machine in Figure 2. The
states are toHome, unload, sleep, toPatch, and harvest.
The state transition is based on a timer variable, which
counts the remaining time for the current state. A robot will
always harvest its assigned patch. When a robot transits from
toPatch state to harvest, it measures the amount of pucks
P(t) to prevent destroying the resource. If P(¢) is less than
or equal to the logistic lower bound Fy, the robot will stop
harvesting.

It is critical that the solution of n] from Equation 7 may
not be an integer. A patch A; will have slightly more robots
than the optimal solution n}. To resolve the overharvesting
problem, when a robot arrives home, it updates sleep time
and go to sleep. Ideally, the average amount of pucks in any
patch must be close to P*. We calculate the increment of
the sleep time At for the moment ¢ as follows [Song and
Vaughan, 2013; 2012]:

Perror(t) =P — P(t) (8)
Perror(t> >0
Perror(t) <0 &)

KinPerror (t)
Atsleep = { Kdeperror(t)
0 Perror(t) =0

K, and K, are constants that represent increase and de-
crease rate. When a patch is underharvested (e; = false), its
assigned robots should not sleep, and tgce, = 0. Otherwise,
tsieep is updated by Atgeep:

tsleep — tsleep + Atsleep (10)

4.2 The Adaptive Algorithm

Adaptive Algorithm for Construction Robot

The algorithm for an adaptive construction robot is similar to
the informed one, but it cannot directly calculate the optimal
number of robots n}. The construction robot relies on the
foraging robots to collect information and decide when MSY
is reached. It updates e; to be true for patch A; if a foraging
robot in R; sends a signal for it to stop, and stops constructing
robot for that patch.

Adaptive Algorithm for Foraging Robots

In theory, the simultaneous decrease phenomenon signals
the time to stop building new robots. However, the events of
resource growth, robot harvesting, and robot observation are
all discrete, while the latter two are not uniformly distributed
over time. Although the macroscopic simultaneous decrease
pattern will follow the ideal situation, the observed P(¢) and
AP(t) can fluctuate, as shown in Figure 3. We assume that
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Figure 3: Determining stop condition.

all foraging robots assigned to a patch can broadcast their re-
cent collected patch information. Whenever a robot observes
a population growth at a patch, it shares the magnitude of
growth and the population size before the growth. The green
curve in Figure 3a shows observed population growth mag-
nitude for one patch, and the green curve in Figure 3b shows
corresponding population size. To detect the simultaneous
decrease, several 1D filters for signal processing can be used.
We use a Gaussian filter of ¢ = 10 with kernel size 20 to
smooth the observed data.

Therefore, the algorithm for the adaptive foraging robot is
different from the informed one. The behavior when a robot
arrives at the patch is shown in Algorithm 2. All foraging
robots assigned to the same patch share collected information
via the following five queues:

e () records the observed population size.

e (), records the growth magnitude, which is the green
curve in Figure 3a. If a robot detects its current observed
population P(t) is greater than the last entry of @, the
robot concludes that it observes a population growth. It
records the growth magnitude P(t) — @Q.back(), and en-
queues the value into Q.

e Q. records the smoothed growth magnitude, which is
the blue curve in Figure 3a. Whenever @), is updated, a
new smoothed value is calculated and enqueued.

e () records the population size before growth, which is
the green curve in Figure 3b. Whenever (), is updated,
Q.back() is enqueued into this queue.

e Q3 records a smoothed value of entries in @, which is
the blue curve in Figure 3b. Whenever () is updated, a
new smoothed value is calculated and enqueued.

The foraging robots can use (), and ()3 to detect the simulta-
neous decrease at its patch, and send a signal to construction
robot indicating that the stop condition is reached. However,
such detection is delayed due to the filtering window.
Comparing to the informed algorithm, Equation 11 is used
instead of 8 to update sleep time. Now P;...(t) is calculated

using the population size P before the simultaneous decrease:

Perror (t) =P- P(t) (11)



Algorithm 2 Foraging Robot Algorithm (Adaptive)

if state = toPatch and timer = 0 then
state < harvest
observe current resource amount P ()
if P(t) > Q.back() then
update Q,Q.Q3,@ g in order
if Qo[ 1] < Qo[~2) and Qa[-1) < Qs[-2] then
send a signal to construction robot, e; < true
P« Q.back()
end if
end if
Q.enqueue(P(t))
if P(t) > P, then
timer < tharpest, carryPuck < true
P(t)«+ P(t)—1
end if
end if

5 Experiments and Results

5.1 Experiment Setup

We compare the performance of the informed algorithm and
the adaptive algorithm. We implement a simulator using
Player/Stage [Gerkey et al., 2003]. The parameters are cho-
sen to be consistent with [Song and Vaughan, 2013].

e Resources: the number of patches |A| = 3. We use the
same logistic model parameters for all patches, &k = .4,
b = .004. The choice of k and b do not affect our main
conclusions. The base is located at (.5, .5). The patches
are located at (.1, .1), (.2, .8), and (.7, .7), so they require
different number of robots to harvest. The lower bound,
upper bound, and initial population are Py = 15, P, =
100, P(0) = 50, respectively. The resource growth time
interval s = 100. The MSY is reached when P* = 50,
AP* = .1 per unit time, or equivalently, A P* = 10 per
s time steps.

Construction robot: the construction time for a new
10bot teonstruct = 1200. The amount of pucks needed
to construct a new robot w = [3, 2, 1].

Foraging robots: tharvest = 10, tunicada = 8,
velocity = .004. The initial number of robots assigned

to each patch is 1.

Based on Equation 7, the optimal numbers of robots for the
patches are n] = 30.08, n5 = 23.01, n5 = 15.94. Thus,
the optimal solution allocates 31, 24, 16 robots to each patch.
The parameters we use for our algorithms are K;,, = 3.0,
Kj. = 2.0 for the informed sleep time adjustment. K;, =
3.0, K4, = .2 for the adaptive sleep time adjustment. Note
K. for the adaptive algorithm is small, that is, robots de-
crease their sleep time slowly. We want to be conservative to
prevent overharvesting in the adaptive setting.

5.2 Results

The total length of experiment is 20, 0000 time steps and we
record data every 200 steps. The goal is to show the correct-
ness of the informed algorithm, and that the adaptive algo-
rithm performs closely to the informed one under incomplete
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information. Figure 4a and 4b show the resource population
over time. Both algorithms converge near P* = 50, while
no patch’s population drop near Py, hence sustainability is
maintained. With P* = 50, the patch growth rate converges
to AP* = 10. Figure 4c and 4d confirm that the foraging
robots eventually deliver pucks at a rate that is on average
equal to the maximum patch growth rate, thus productivity is
meet.

We observe more fluctuations in the adaptive algorithm.
This phenomenon is expected since the informed algorithm
knows the model parameters and stop constructing robot im-
mediately when optimal number of robot is reached. Figure
4e illustrates the correctness of the informed algorithm, where
exactly 31,24, 16 robots are constructed. The adaptive algo-
rithm constructs 34, 26, 19 robots, which are slightly more
than desired due to the delayed detection of stop condition.
The extra robots cause excess harvesting capacity. Therefore,
in Figure 4b, before convergence, the population drops be-
low 50 due to overharvesting. Then the algorithm detects this
problem, stops constructing robots, and foraging robots start
to sleep, overharvesting is reduced and results gradually con-
verge to MSY. But since more robots are constructed in the
adaptive algorithm, it is more difficult to adjust sleep time to
maintain MSY; thereby we observe more fluctuations.

The productivity results are shown in Figure 4f, where the
total number of collected pucks is counted. The adaptive al-
gorithm performs comparable to the informed algorithm.

5.3 Effects of Noise

We further introduce noises into resource growth, robot ac-
tuation, and observation. The noises are Gaussian random
variables with mean zero and standard deviations equal 10%
of the affected variable (Equation 12). The patch population
now does not completely grow according to the logistic model
since noise is added to the growth amount. For actuation,
noise is added to variables tyqrvest, tunload, tsicep, and the
trip time d;. Noise is also added to the robot’s observation of
population size.

x4 2+ N(0,(0.1 % z)?) (12)

Results for the informed algorithm are shown in Figure 5a
and 5b. The informed algorithm is robust to the noise, al-
though the performance fluctuates more comparing to Figure
4a and 4c. An important finding is that the adaptive algorithm
is sensitive to noise. Figure 5c¢ and 5d shows an example of
failure to reach MSY, where the red patch is overharvested
and the population decreases to the minimum viable popula-
tion, and the other two patches are underharvested. By per-
forming a grid search over different combinations and sizes
of the noises, the adaptive algorithm is robust to noise in the
actuation and population growth. Problems arise from noise
added to the robots’ observations of population size. Recall
that the observed population size determines the stop condi-
tion. The incorrectly observed population size makes detect-
ing stop condition very difficult. By a grid search, the algo-
rithm can only accept a Gaussian noise with a standard de-
viation equals 1.5% of the observed population size with the
presence of other noises, as shown in Figure Se and 5f. Re-
sults suggest that, under incomplete model information, with
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Figure 4: The informed vs. the adaptive algorithm in terms of
patch population, puck delivery rate, number of robots con-
structed, and total number of pucks collected.

randomness in population growth, the accurate observation is
a key factor for the foraging system’s decision. It suggests
that monitoring the population size closely and accurately is
necessary to achieve MSY.

6 Conclusion and Future Work

The foraging industry today increasingly relies on automatic
operations. Biology and environmental studies communities
have presented models and rules to maintain sustainability.
However, the robots present new challenges: they are effi-
cient but potentially damaging. They require adaptive al-
gorithms to respond to uncertainties in the environment. In
this work, we extended the previous work of multi-robot and
multi-patch foraging system while resource growth model is
logistic. We have the following two main contributions.
First, we overcome the practical issue of unknown model
parameters for MSY foraging problem by developing an
adaptive algorithm which detects the simultaneous decrease
event. An alternative approach is to set industrial forag-
ing regulations. But they are often global (e.g., fishing off-
seasons for the entire bay area) and economically inefficient
since each area is unique. Our patch growth model captures
the individual differences. Manually estimating individual
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informed algorithm. Middle row: the effect of 10% Gaussian
noise on the adaptive algorithm. Bottom row: the effect of
1.5% Gaussian noise on the adaptive algorithm

growth models is expensive, and we show that the robots can
adapt on-line.

Second, we introduce multiple sources of noise into the
system and show that the foraging system could still achieve
MSY, but require accurate observation of population. The
implication is that the foraging algorithm is robust to noise
in robot actuation and resource growth. However, foraging
industry needs to closely monitor the population change to
maintain sustainability.

For future work, a robot failure, repair, and replacement
pipeline can be introduced, which requires the algorithms to
be robust to resulted sudden harvest rate changes. Also, in
the adaptive algorithm, we require foraging robots to broad-
cast collected information and send signal home. Instead of
broadcasting, the foraging robots can exchange information
when they meet on their way, as inspired by the communica-
tion behaviors of the insects. In addition, we plan to adopt a
more natural resource growth model. For example, the popu-
lation growth rate often has seasonal fluctuations and requires
foraging robots to detect and adapt to this phenomenon.
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