Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

WikiWrite: Generating Wikipedia Articles Automatically

Siddhartha Banerjee'
"The Pennsylvania State University
University Park, PA, USA
sbanerjee @ist.psu.edu

Abstract

The growth of Wikipedia, limited by the availabil-
ity of knowledgeable authors, cannot keep pace
with the ever increasing requirements and demands
of the readers. In this work, we propose Wiki-
Write, a system capable of generating content for
new Wikipedia articles automatically. First, our
technique obtains feature representations of enti-
ties on Wikipedia. We adapt an existing work on
document embeddings to obtain vector representa-
tions of words and paragraphs. Using the repre-
sentations, we identify articles that are very similar
to the new entity on Wikipedia. We train machine
learning classifiers using content from the similar
articles to assign web retrieved content on the new
entity into relevant sections in the Wikipedia arti-
cle. Second, we propose a novel abstractive sum-
marization technique that uses a two-step integer-
linear programming (ILP) model to synthesize the
assigned content in each section and rewrite the
content to produce a well-formed informative sum-
mary. Our experiments show that our technique is
able to reconstruct existing articles in Wikipedia
with high accuracies. We also create several arti-
cles using our approach in the English Wikipedia,
most of which have been retained in the online en-
cyclopedia.

1 Introduction

Wikipedia extensively covers articles on many topics; how-
ever, not all categories on Wikipedia have enough articles.
The number of red-linked articles!, i.e., entities that are re-
ferred to from other articles but have not actually been au-
thored, keeps increasing. A list of articles that are red-linked
from over 20 or more other Wikipedia articles exists.
Existing methods [Sauper and Barzilay, 2009; Banerjee
et al., 2014] generated Wikipedia articles that needed sub-
stantial edits from human editors. In this work, we attempt
to address three drawbacks of these works. First, all exist-
ing methods for Wikipedia article generation assume that the

"https://en.wikipedia.org/wiki/Wikipedia:Red_link
*https://en.wikipedia.org/wiki/Wikipedia:Most-wanted_articles

Prasenjit Mitra'*
*Qatar Computing Research Institute
HBKU, Doha, Qatar
pmitra@ist.psu.edu

Wikipedia categories® are known. Furthermore, even if the
category information is known, articles often belong to mul-
tiple categories that are often not equally important. Learning
from several categories may result in a mish-mash of sections
from different categories being chosen resulting in a less pol-
ished article. In some cases, categories do not provide much
information, for example, 1959 births or Living people in Oc-
tavio Solis* article. The second issue, copyright violations,
imply that content on the entity retrieved from the web can-
not be directly copied into Wikipedia [Banerjee et al., 2014].
To tackle the issue of copyright violation, we proposed an ab-
stractive summarization system [Banerjee and Mitra, 2015c]
using sentence fusion to generate novel sentences before aug-
menting content into Wikipedia stubs. Despite our efforts,
several copyright violations were reported because the system
simply used the original words from the source documents
without any paraphrasing. The third issue arises because we
choose information from multiple documents. Sentences se-
lected (and paraphrased) from multiple documents must be
ordered such that the resulting article is coherent. Existing
summarization systems for Wikipedia did not tackle coher-
ence. Balancing all the above mentioned factors simultane-
ously in a single end-to-end system is hard. To the best of our
knowledge, these three issues have not been addressed by any
existing Wikipedia article generation system.

In this work, we propose WikiWrite, a system to author
new articles on Wikipedia automatically. We obtain the vec-
tor representations of the red-linked entities using a paragraph
vector model [Le and Mikolov, 2014] that computes continu-
ous distributed vector representations of varying-length texts.
Subsequently, we identify existing Wikipedia articles that are
semantically close (or similar) to the red-linked entity in this
vector space using cosine similarity. We emulate the struc-
ture of similar articles to construct the article for a red-linked
entity. We identify the important sections and assign rele-
vant web-content (assuming information is available) to the
sections. To the best of our knowledge, our work on auto-
matic Wikipedia article construction is the first to learn con-
tent templates from similar articles without requiring any in-
formation on Wikipedia categories and thus, is fundamen-

3https://en.wikipedia.org/wiki/Help:Category
“https://en.wikipedia.org/wiki/Octavio_Solis — page as of 27th
January’ 2016

2740

tally different from all the other work done in the area of
automatic Wikipedia article construction. Furthermore, our
model jointly optimizes the ordering of sentences (coherence)
along with the informativeness and linguistic quality of the
summary (of the content assigned to the sections in the arti-
cle). We compute the coherence score between any two sen-
tences using transition probabilities of word-pairs (nouns and
verbs) between the sentences. The transition probabilities are
learned from pairs of adjacent sentences that exist in the sim-
ilar articles. We also propose an optimization model to find
a suitable set of lexical and phrasal transformations for para-
phrasing the generated summaries.

We conduct multiple experiments to evaluate the efficiency
of our proposed technique. First, we compare the accuracies
of our section assignment task with other comparable sys-
tems. Second, we reconstruct existing articles on Wikipedia
by retrieving content from the web and compare the content
in the system generated articles and the actual articles on
Wikipedia. Third, we create 50 new articles in the English
Wikipedia. The results of our experiments suggest that Wiki-
Write can generate basic versions of new articles reasonably
well. More than 90% of the automatically generated articles
on Wikipedia have been retained, often with minor changes
made by the reviewers. Our classifier works significantly bet-
ter than other comparable classifiers (~29% improvement) in
assigning content to relevant sections.

2 Related Work

Previous work on Wikipedia content generation relied heav-
ily on manually annotated information of Wikipedia cat-
egories [Sauper and Barzilay, 2009; Banerjee and Mitra,
2015c]. Articles in Wikipedia consist of sections. Sauper
and Barzilay [2009] retrieved content from the web on ar-
ticles belonging to the category of diseases by using the
most frequent section titles as keywords to retrieve rele-
vant web-snippets (excerpts). The most informative excerpts
were selected using a perceptron-based framework and pop-
ulated into the Wikipedia article. In a recent work, Banerjee
and Mitra [Banerjee and Mitra, 2015¢; 2015b; 2015a] pro-
posed WikiKreator where contents in the Wikipedia sections
were represented by topic-distribution features using Latent
Dirichlet Allocation (LDA) [Blei et al., 2003]. The features
were used to train classifiers and predict sections for new con-
tent retrieved from the web. However, the number of classes
were restricted to only the 10 most frequent sections. Lim-
iting to only a few important sections in a category resulted
in missing out on appending relevant sections® to the stubs.
In contrast to previous work, our approach does not require
information on Wikipedia categories.

In our prior work, we proposed an abstractive summariza-
tion framework [Banerjee ef al., 2015] to summarize news ar-
ticles and extended that system to populate new information
in stubs on Wikipedia. The summarization framework used

SFor example, Society and culture is an important section in
the article on Parkinson’s disease; however, it is not one of the
most frequent sections in the articles within the diseases category
on Wikipedia.

2741

Missing Article Entire Wikipedia
~ Word/ entity vectors #
| Similar Articles] Vector Representations
P ‘ Words and Documents
~ <) aragraph
‘ Query ‘ Section : vectors
—m Representations
o
l A N
N it oofn oo om
{ Web Content ‘ { Classifiers ‘
\ < Paragraphid the cat sat
Le and Mikolov, 2014
p . N Automatically
. q Summarization construc
‘ Section Assignment . . » constructed
N J With Paraphrasing Wikipedia Article

Figure 1: WikiWrite: Our Proposed Framework

an integer-linear programming (ILP) formulation that opti-
mizes informativeness and linguistic quality jointly. How-
ever, editors removed content appended by WikiKreator on
grounds of incoherence. Copyright violation issues were also
reported where long sequences of text were retained from the
original sources. Recent work on summarization [Parveen
and Strube, 2015] has focused on integrating various compo-
nents (importance, non-redundancy and coherence) for sin-
gle document extractive summarization. In contrast, we pro-
pose an integrated framework for multi-document abstractive
summarization.

3 Proposed Approach

Our goal is to construct articles for notable® Wikipedia enti-
ties that do not have corresponding articles. Figure 1 shows
our proposed framework of WikiWrite. As can be seen
from the figure, we use the entire Wikipedia to obtain D di-
mensional representations of words/entities’ as well as docu-
ments using the paragraph vector distributed memory (PV-
DM) model [Le and Mikolov, 2014]. Similar articles are
identified using cosine similarity between the vector repre-
sentations of the missing entity and representations of the ex-
isting entities (entities that have corresponding articles). Con-
tent from the similar articles are used to train multi-class clas-
sifiers that can assign web-retrieved content on the red-linked
entity to relevant sections of the article. Furthermore, we pro-
pose a novel two-step ILP-based paraphrastic summarization
technique to generate short, concise and paraphrased sum-
maries for each section in the Wikipedia article.

3.1 Entity Representations

Entities that are similar are mentioned in similar contexts in
other articles on Wikipedia. For example, the entity Sonia
Bianchetti did not have a corresponding article in the En-
glish Wikipedia (as of November, 2015). However, it has
been mentioned (red-linked) in 28 other articles in the con-
text of words such as referee, International Skating Union
(ISU), Judge, etc. Articles similar to Sonia Bianchetti pre-
dicted by the PV-DM model are Elemér Tertdik, Lawrence

®https://en.wikipedia.org/wiki/Wikipedia:Notability

"In our approach, we consider each multi-word entity such as
New York City as a single word to effectively compute their vector
representations.

Demmy, Josef Dédic, etc., all of whom happen to be refer-
ees/ skaters under ISU. Therefore, we can create an article on
“Sonia Bianchetti” by emulating the structure from the above
mentioned similar articles.

PV-DM: The PV-DM model is based on the principle that
several contexts sampled from the paragraph can be used
to predict the next word. Given a sequence of 7' words
(w1, we, ws,, wr), the task is to maximize the average log
probability. In the equation 1, c is the size of the context
(number of words before and after the current word to be used
for training). The conditional probability of w;; given wy is
given by the softmax function [Bridle, 1990] in equation 2,
where vy, ; and v,, refers to the output and the input vector
representations of the word w, respectively. W refers to the
total number of words in the vocabulary.

1 t=T
F= fz Y logp(wey|w) ()

t=1—c<j<c,j#0

ex 11,‘ vva
p(wt+j|wt) _ Wp(Wiygj .)
> exp(v), o)
w=1
We used the implementation of PV-DM from the gensim
doc2vec package [Rehtiek er al., 2011] to generate D di-
mensional vector representations for both the words and the
paragraphs of text simultaneously. The PV-DM model serves
two main purposes: (i) Identification of similar articles on
Wikipedia and (ii) Inference of vector representations of new
paragraphs retrieved from the web.

2

3.2 Section Content Generation

The content generation stage consists of two steps. First, we
need to retrieve informative pieces of text from the web that
are relevant to the entity and assign them into the appropriate
sections in the article. Second, we need to effectively sum-
marize and rewrite the assigned content.

Information retrieval

We employ query reformulation [Aula, 2003] to augment
keywords to the entity and create a modified query to retrieve
relevant documents from the web. The introductory sentence
of similar Wikipedia articles should contain similar keywords
that characterize the entities. Nouns have been found to char-
acterize domain specific texts surprisingly well [Riloff and
Lorenzen, 1999]. Therefore, we extract the two most frequent
nouns from the introductory sentences of the 20 similar arti-
cles as relevant keywords. To create an article on “Machine
learning”, the reformulated query — “Machine Learning” al-
gorithm intelligence (with quotes for exact matching of article
entity), is obtained by appending the two most frequent nouns
in the similar articles (algorithm and intelligence) along with
the entity name. Finally, we retain only the informative con-
tent (excerpts) using boilerplate detection [Kohlschiitter et al.,
2010] from the top 20 search results from Google using the
reformulated query. We assign each excerpt into the rele-
vant sections using a text classifier trained using content from
the articles similar to the red-linked entity. The section titles
from the articles represent the classes and the corresponding

textual content in the sections (their PV-DM representations
as features) as the instances. However, semantically simi-
lar sections might have different titles. For example, articles
in the Diseases category on Wikipedia contain sections on
Symptoms as well as Signs and Symptoms. Both these sec-
tions should be assigned to the same class by a text classifier.
To tackle such cases, we apply repeated bisection clustering
(RBR) [Zhao and Karypis, 2002] using PV-DM features with
the section titles as the labels. Finally, we retain only clusters
that have an intra-cluster similarity of at least 0.5. We set the
most common section title in each cluster as the class label of
that cluster.

Paraphrastic Summarization

We refer to our content summarization approach as para-
phrastic because we include an additional step on rewriting
(paraphrasing). First, an ILP model is proposed that selects
and constructs a summary by maximizing coherence, infor-
mativeness and linguistic quality simultaneously. Thereafter,
we propose a paraphrasing step to determine the most optimal
set of lexical and phrasal transformations to rewrite sentences
in the summary.

Novel sentence generation: We follow a word-graph con-
struction approach [Filippova, 2010] to generate new sen-
tences. Our prior work [Banerjee and Mitra, 2015¢] also dis-
played the effectiveness of generating such sentences using
shallow syntactic features based on words and their parts-of-
speech (POS) tags. However, to improve grammaticality, we
use bigrams instead of unigrams. The bigrams in the sen-
tences represent the nodes in the word-graph. Edges are con-
structed between the nodes if the first word in the bigrams
are adjacent in any of the sentences. Traversing paths along
the graph generates new sentences. To create true abstractive
summaries, generated sentences that are very similar to the
original sentences (cosine similarity > 0.80) are discarded.
Furthermore, not all generated sentences are grammatical.
Therefore, the next step is to select only a few of the gen-
erated sentences in the summary using our ILP formulation.
ILP Formulation: We formulate the following ILP objective
function as shown in Equation 3.

K
F=>%wl-p;+X > coh;j;-arc; 3)
=1 aijEA

wPt = TP - Sim"™"(p;) - LQ(p;) @)
Let us assume that our bigram graph-based technique gen-
erates K new sentences. The binary variables p; (Vi €
[1...K]) represent the generated sentences while arc; ;
Vi € [1...K],j € [1...K],i # j) represents the transi-
tions between the sentences. w??, as shown in equation 4, is
the total contribution of the generated sentence p; computed
using the importance of the sentence ([P:), average intra-
sentence similarity (Sim ‘™" %(p;)) and the linguistic quality
(LQ(p;). We use the cosine similarity between the sentence
and the reformulated query to compute the importance of a
sentence. We compute linguistic quality using a trigram lan-
guage model score [Banerjee et al., 2015]. Therefore, Sen-
tences that are generated using similar initial sentences are
assigned higher weights using (Sim*"%(p;)), which com-
putes the average of the pairwise cosine similarities of the

2742

Adjacent Features New sentences
sentences (nouns and verbs)
Sentence 1 a b P d Sentence 1 a (f (g
Sentence 2 e f g Sentence 2 h ‘e [k

Sentence 3 h ; ‘P =p(ela) * p(hlg) * p(hlf) ‘

Figure 2: Local coherence estimation between sentences

sentences used to generate p;. coh; ; denotes the coherence
between two sentences p; and p;. The variable arc; ; should
be 1 if sentence p; should precede p; in the final summary,
otherwise it is 0. A is a scaling parameter that is set to 10
empirically.

Coherence (coh; ;): Text coherence has been studied vastly
in the NLP literature [Lapata and Barzilay, 2005]. We as-
sume that the global coherence of a paragraph is a combined
effect of the individual local coherences (coherence between
adjacent sentences). We compute local coherence by esti-
mating transition probabilities of the features from one sen-
tence to another following Lapata’s probabilistic structuring
approach [Lapata, 2003]. Local coherence can be determined
by multiplying the individual transition probabilities of the
features in the adjacent sentences. In this work, we restrict
the features to the set of nouns and verbs in the sentences. For
example, given three adjacent sentences as shown in figure 2,
we consider all the possible combinations of the features (al-
phabets a to i). For example, when there is a transition from
sentence 1 to 2, we consider combinations a — e,f,g; b —
ef,g, etc. In the entire set of the similar articles, we com-
pute the total frequency of transitions from a — e as well as
a — all other features. The transition probability of a to e is
simply computed as the ratio of the frequency of the transi-
tion from a to e to the frequency of a to all the features. The
final coherence score between two sentences is equal to the
product of the individual transition probabilities of the fea-
ture combinations.

We impose a number of constraints to solve the optimiza-
tion problem. First, we avoid redundancies between the sen-
tences in the summary and thereby introduce constraint 5. If
two sentences p; and p; have high cosine similarity (>0.5),
only one out of the two sentences can be included in the sum-
mary. Equations 6 constrain the arcs (variables that denote
order between the sentences) to generate a coherent summary.
The formulations to constrain the arcs have been adapted
from Nishikawa et al.’s [Nishikawa et al., 2010] prior work
on opinion summarization. An arc between two sentences
can only exist in the final summary if both the sentences con-
nected by the arc are also included in the summary. We in-
troduce two dummy sentences, ps and p. (they are always
1 as first and last sentences should always exist) that denote
the starting and the ending points of the summary. Conse-
quently, dummy arcs are also created that connect the start-
ing and ending sentences. Therefore, if arc, ; is 1, the final
summary should have sentence p; as the first sentence in the
generated summary. There should be only one starting and

2743

one ending arc to account for the first and the last sentence in
the summary. Furthermore, there should be just one incoming
arc and one outgoing arc from each sentence if the sentence
is selected in the summary.

Vi,j € [1...K]i# j,pi+ pjif sim(pi, p;) > 0.5. (5)

E arcs; =1 E arcie =1 E arcng arc;Vj

Z arci; + Z arcj; = 2p;Vj (6)

K
Z lipi S Lmaw (7)
i=1

Equation 7 is used to limit the summary in each section to a
maximum of L,,,, words. To avoid cycles in the final arc se-
lection, we use the constraints as used for headline generation
in earlier work [Deshpande et al., 2007]. Th final sentences
represented by the solution of the ILP are ordered based on
the final state of the arc; ; variables. The sentence that has
the highest similarity (IP¢) with respect to the reformulated
query is used as the introductory sentence in the article.
Sentence Rewriting: We rewrite each sentence by apply-
ing modifications to words and phrases in the sentences.
First, we identify the candidate set of possible modifications
that can be used to rewrite a sentence from the Paraphrase
database (PPDB) [Ganitkevitch et al., 2013]. The set of
possible modifications 7" for a sentence can be denoted as
{t1,t2.t3,... |7 }. For example, two possible modifications
are possible for the sentence: The NSSP initiative will lead to
significant economic benefits for both countries.

e significant economic => considerable economic
e economic benefits => financial advantages

We assign a readability score to each transformation using a
trigram language model score of the textual content within a
window size of 2 words in either direction of the modifica-
tion. For example, the readability score (LQ), for the first
modification can be computed using the sequence — “lead to
considerable economic benefits for”. To determine the best
possible transformations, we maximize the following objec-
tive function:

R(t1, ... typ)) = ZLZ'I Sim(seqo, seq;) - LQ(seq;) - t; (8)

where seq; and seq, refer to the sequence of words af-
ter and before applying the i*" transformation, respectively.
Sim(seq,, seq;) computes the cosine similarity between the
semantic representation (using PV-DM) of the old and new
sequences. The parameter Sim(seq,, seq;) prevents exces-
sive deviation in meaning from the original sentence during
rewriting. We also constrain overlapping modifications using
equation 9. For example, the word economic in the example
can be transformed using only one of the competing modifi-
cations.

Vi, € (LT, 5 #5t; +ty <1
if intersect(t;,tj) >0 (9)

The intersect function checks if the two modifications ¢; and
t; affect any common words or not. Only one of the overlap-
ping modifications can be applied. The above sentence, is
therefore paraphrased as:

The NSSP initiative will result in major financial advantages
for the two countries.

4 Experimental Results

We conducted several experiments to evaluate the efficiency
of WikiWrite. First, we evaluate WikiWrite’s accuracy
in assigning content to relevant sections. Second, we eval-
uate the quality of the articles generated by WikiWrite.
Third, we generate new articles (for the red-linked entities)
on Wikipedia using our approach and measure the retention
rate® of the content.

Data Characteristics: Wikipedia regularly dumps all the
data in regular intervals. We used the dump dated 2nd June,
2015 in our experiments. The total size of the corpus (only
article contents) was close to 50 GB (~12 GB compressed).
We limit to articles that contained at least 20 words. Our cor-
pus finally contained 4.8 million articles. Furthermore, the
corpus contained 15,500 red-linked entities that were refer-
enced at least 20 times from other articles.

Baselines: We compare the performance of WikiWrite
with two existing systems for Wikipedia article generation.
The first baseline, Perceptron-ILP, proposed by Sauper and
Barzilay [2009], uses a perceptron-based ranking algorithm
to select informative excerpts in the article. The second base-
line, WikiKreator [Banerjee and Mitra, 2015c¢], was primar-
ily designed to improve stubs!®. The query was reformulated
by extracting keyphrases from the introductory sections of the
articles. However, the introductory content is not available
when generating completely new articles. Therefore, to have
a fair comparison, we provide the same excerpts (from web
sources) to both WikiKreator and WikiWrite.

Both the baselines require information on the Wikipedia
categories. Specifically, content from comprehensive arti-
cles'! within the entire category are used to train the systems.
Selection of a single category among a list of categories (that
each article is assigned to) is particularly challenging. There-
fore, we use the comprehensive articles from all the cate-
gories to train the baselines and select only the most frequent
sections (top 10) from the entire set of articles.

Parameters: We use 100 dimensional vector representa-
tions (parameter D) for the entities and paragraphs of text!?.
For the classification task (assigning content into relevant
sections in the article), we experimented with several ma-
chine learning classifiers (Random Forest, Naive-Bayes and
Support Vector Machines). Random Forest (RF) [Breiman,
2001] performed the best in our classification task on exist-
ing Wikipedia articles and hence we report only the results

8Percentage of generated articles retained on Wikipedia

“https://archive.org/details/enwiki-20150602

Yhttps://en.wikipedia.org/wiki/Wikipedia:Stub

T Articles that are not tagged as stubs on Wikipedia.

12We run all experiments on a computer with i7 processor and 16
GB RAM. Setting D = 100 requires roughly 10 GB of memory.

2744

Table 1: Section Classification Results

Technique F1-score | Average Time
WikiWrite 0.622 ~2 mins
WikiKreator 0.481 ~10 mins

using RF. L,,,4., the maximum number of words in each sec-
tion is dynamically set to the average number of words in the
sections that were clustered together using RBR(see 3.2).

4.1 Reconstructing existing articles

Reconstructing articles using the baseline systems consume
significant amount of time because of the requirement of
learning from all articles within a category. Tasks such as pre-
processing of the articles, topic models (in WikiKreator),
etc. are resource intensive. Therefore, to ensure the repeata-
bility of such experiments, we restrict to 1000 randomly se-
lected fairly popular articles (that are mentioned at least 20
times in other articles) for the reconstruction experiment. The
content in these 1000 articles were not used in training in any
of the systems. We evaluate two different aspects — (i) Clas-
sification: Assigning content into appropriate sections and
(i1) Content Selection: Retaining important content from the
web sources in the final article.

Classification: The classification task implies prediction of
the section title given the content in the section. The contents
in the sections of the randomly selected articles are consid-
ered to be the instances. We consider the section titles (la-
bels) on Wikipedia to be the ground truth. In WikiKreator,
training is performed using articles within all the categories as
mentioned in the actual article on Wikipedia. On the contrary,
no information on categories is required for WikiWrite. The
classifier (RF) learns from 500 most similar articles computed
using cosine similarities of the vector representations (from
PV-DM). We do not compare with Perceptron-ILP for the
classification task as the system does not involve any classifi-
cation.

As can be seen from the table 1, we compute the aver-
age Fl-scores and also show the average time required to
classify the sections in each article. WikiWrite outperforms
WikiKreator on this classification task as can be seen from
the F1-scores. WikiWrite is able to assign content to sections
more effectively by learning from similar articles rather than
restricting to only the most frequent sections in the categories.
Furthermore, WikiWrite is able to assign the sections signif-
icantly faster (~5X times) than WikiKreator (LDA [Blei et
al., 2003] requires significant time to run).

Content Selection: We also evaluate the proportion of
the Wikipedia articles that can be constructed using knowl-
edge from the web. The content in the existing articles on
Wikipedia is considered as the ground truth. We construct
articles for the same 1000 randomly selected Wikipedia en-
tities as described earlier. To evaluate the effectiveness of
our query reformulation technique, we also create a modified
system (WikiWrite (Ref)) that uses only the references listed
in the Wikipedia article to reconstruct the article. We evalu-
ate the article content using ROUGE [Lin, 2004]. ROUGE
scores have been found to be useful in measuring summariza-

Table 2: Content Selection Results

Technique ROUGE-1 | ROUGE-2
WikiWrite 0.441 0.223
WikiWrite (Ref) 0.520 0.257
WikiKreator 0.371 0.183
Perceptron-ILP 0.342 0.169

Table 3: Statistics of Wikipedia stub content addition

Statistics WikiKreator WikiWrite
No. of stubs appended 40 40
Entire edit retained 15 32
Modification of content 5 5
Content Removed 20 3
Avg. change in size 287 bytes 424 bytes
Avg. no of edits 3.82 1.39

tion quality and also has been used in earlier Wikipedia ar-
ticle generation evaluation. We report ROUGE-1 (unigram
matches) and ROUGE-2 (bigram matches) recall scores in
our results. To account differences in article length, we re-
strict ROUGE comparison to the first 200 words in each sec-
tion. The length constraints for summary generation in both
the systems is set to 200 words, accordingly.

As can be seen from the table 2, WikiWrite outperforms
both WikiKreator and Perceptron-ILP according to both
the ROUGE scores. WikiWrite (Ref) performs better than
WikiWrite because we use more reliable and verified ref-
erences from the Wikipedia articles. All the systems ex-
cept Perceptron-ILP consist of a summarization component.
Therefore, even with the same or similar web sources, the
systems equipped with summarizers retain more informa-
tive (higher ROUGE scores) content. Perceptron-ILP, on
the contrary, generates articles using entire excerpts obtained
from the web in each section. As a result, ROUGE scores
obtained using Perceptron-ILP are lower than the other sys-
tems. Furthermore, using entire excerpts currently makes it
ineligible for Wikipedia article generation because of copy-
right violation regulations.

4.2 Generating Non-existing content in Wikipedia

We can compare different systems by generating articles us-
ing all the techniques and comparing the qualities of the ar-
ticles on Wikipedia. However, adding articles with subpar
content is not justifiable for the readers on Wikipedia. There-
fore, we do not generate articles on Wikipedia using all the
techniques. However, evaluating content addition to stubs is
often easier than article generation. The stubs are already in
the Wikipedia mainspace and are constantly monitored. In
contrast to stubs, drafts of new articles on Wikipedia require
adequate time (often weeks)'? before they are moved into (or
deleted from) the Wikipedia mainspace. We compare the
summarization algorithms of WikiWrite and WikiKreator
by adding content generated by both systems to randomly se-
lected stubs.

Phttps://en.wikipedia.org/wiki/Wikipedia: Articles_for_creation

2745

Table 4: Statistics of Wikipedia article generation

Statistics

Number of articles in mainspace 47
Entire edit retained 12
Modification of content 35
Average number of edits 11
Percentage of references retained 72%

Table 3 shows the results of our experiments of adding
content to stubs using both the techniques. As can be seen
from the table, content appended using our paraphrastic sum-
marization technique has been retained in more cases (80%)
than WikiKreator (~38%) that uses source words from the
documents. The results clearly show that paraphrasing plays
a very important role in avoiding issues of plagiarism and
grammaticality.

We also constructed 50 randomly selected articles using
WikiWrite that did not exist in Wikipedia. Table 4 shows
the current statistics'* of recently generated articles that have
been automatically created using WikiWrite. As can be seen,
47 articles out of the 50 have been moved into the Wikipedia
mainspace. The high retention rate of the articles shows
that WikiWrite can generate Wikipedia articles of reason-
able quality automatically. The entire content added by our
approach was retained only in 12 articles, all other articles
underwent at least a few edits. In some cases, the edits were
mostly used to resolve minor references. For example, the ar-
ticle on Dick Barbour' that we created using automatically
generated content has been retained with a minor change.
However, in certain cases, multiple edits (by other authors)
were made to improve overall quality of the article. For ex-
ample, Atripliceae'® has undergone extensive modification by
authors from its initial state. In certain cases, reviewers re-
ported issues related to the language and the tone of the ar-
ticles, for example, Talonid'”. As we are continuously im-
proving our bot, our initial entries in a few cases contained
syntactical Wiki mark-up errors, which we resolved manu-
ally. The edit history in such articles will show up as multiple
edits made by us. Three generated articles were removed on
grounds of using promotional (self-advertising) content. In
summary, WikiWrite generated content has been mostly re-
tained on Wikipedia and is undergoing modifications every-
day to continuously improve the quality of the articles.

5 Conclusions and Future Work

In this work, we proposed, WikiWrite, a system that can auto-
matically create new Wikipedia articles. We used an existing
framework to represent varying length texts on Wikipedia as
continuous vector distributions. The representations are used
to identify similar articles that currently exist on Wikipedia.
Classifiers are trained using content from the similar arti-
cles to assign web content into the relevant sections in the

1 Statistics as of January 25th, 2016
Shttps://en.wikipedia.org/wiki/Dick_Barbour
nttps://en.wikipedia.org/wiki/Atripliceae
"https://en.wikipedia.org/wiki/Talonid

new article. We also propose a novel summarization tech-
nique that handles coherence of sentences and also applies
paraphrasing. Our proposed summarization technique out-
performs other comparable methods for Wikipedia content
generation because of its ability to coherently summarize and
rewrite content retrieved from the web. Articles generated
using our system can be a good starting point for authors,
who can modify and polish the content to make it fit for the
online encyclopedia. We generated multiple articles using
WikiWrite and most of the articles have been successfully
retained. In the future, we will develop techniques to rewrite
sentences to meet the requirements of encyclopedic tone of
articles on Wikipedia.

References

[Aula, 2003] Anne Aula. Query formulation in web information
search. In ICWI, pages 403—410, 2003.

[Banerjee and Mitra, 2015a] Siddhartha Banerjee and Prasenjit
Mitra. Filling the gaps: Improving wikipedia stubs. In Pro-
ceedings of the 2015 ACM Symposium on Document Engineer-
ing, pages 117-120. ACM, 2015.

[Banerjee and Mitra, 2015b] Siddhartha Banerjee and Prasenjit
Mitra. Wikikreator: automatic authoring of wikipedia content.
Al Matters, 2(1):4-6, 2015.

[Banerjee and Mitra, 2015¢] Siddhartha Banerjee and Prasenjit
Mitra. Wikikreator: Improving wikipedia stubs automatically.
In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing of the Asian Fed-
eration of Natural Language Processing, ACL 2015, July 26-
31, 2015, Beijing, China, Volume 1: Long Papers, pages 867—
877, 2015.

[Banerjee et al., 2014] Siddhartha Banerjee, Cornelia Caragea,
and Prasenjit Mitra. Playscript classification and automatic
wikipedia play articles generation. In Proceedings of the 22nd
International Conference on Pattern Recognition (ICPR),
pages 3630-3635. IEEE, 2014.

[Banerjee et al., 2015] Siddhartha Banerjee, Prasenjit Mitra, and
Kazunari Sugiyama. Multi-document abstractive summariza-
tion using ilp based multi-sentence compression. In Proceed-
ings of the international joint conference on artificial intelli-
gence (IJCAI, pages 1208-1214. IICAL 2015.

[Blei et al., 2003] David M Blei, Andrew Y Ng, and Michael 1
Jordan. Latent dirichlet allocation. the Journal of machine
Learning research, 3:993-1022, 2003.

[Breiman, 2001] Leo Breiman. Random forests. Machine learn-
ing, 45(1):5-32, 2001.

[Bridle, 1990] John S Bridle. Probabilistic interpretation of feed-
forward classification network outputs, with relationships to
statistical pattern recognition. In Neurocomputing, pages 227—
236. Springer, 1990.

[Deshpande et al., 2007] Pawan Deshpande, Regina Barzilay,
and David R Karger. Randomized decoding for selection-and-
ordering problems. In HLT-NAACL, pages 444-451, 2007.

[Filippova, 2010] Katja Filippova. Multi-sentence compression:
finding shortest paths in word graphs. In Proceedings of the
23rd International Conference on Computational Linguistics,

2746

pages 322-330. Association for Computational Linguistics,
2010.

[Ganitkevitch et al., 2013] Juri Ganitkevitch, Benjamin
Van Durme, and Chris Callison-Burch. Ppdb: The para-
phrase database. In HLT-NAACL, pages 758-764, 2013.

[Kohlschiitter et al., 2010] Christian Kohlschiitter, Peter
Fankhauser, and Wolfgang Nejdl. Boilerplate detection using
shallow text features. In Proceedings of the third ACM
international conference on Web search and data mining,
pages 441-450. ACM, 2010.

[Lapata and Barzilay, 2005] Mirella Lapata and Regina Barzilay.
Automatic evaluation of text coherence: Models and represen-
tations. In IJCAI, volume 5, pages 1085-1090, 2005.

[Lapata, 2003] Mirella Lapata. Probabilistic text structuring:
Experiments with sentence ordering. In Proceedings of
the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1, pages 545-552. Association for Com-
putational Linguistics, 2003.

[Le and Mikolov, 2014] Quoc Le and Tomas Mikolov. Dis-
tributed representations of sentences and documents. In Pro-
ceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1188-1196, 2014.

[Lin, 2004] Chin-Yew Lin. Rouge: A package for automatic
evaluation of summaries. In Text Summarization Branches
Out: Proceedings of the ACL-04 Workshop, pages 74-81,
2004.

[Nishikawa et al., 2010] Hitoshi Nishikawa, Takaaki Hasegawa,
Yoshihiro Matsuo, and Genichiro Kikui. Opinion summariza-
tion with integer linear programming formulation for sentence
extraction and ordering. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics: Posters,
pages 910-918. Association for Computational Linguistics,
2010.

[Parveen and Strube, 2015] Daraksha Parveen and Michael
Strube. Integrating importance, non-redundancy and coher-
ence in graph-based extractive summarization. In Proceedings
of the 24th International Conference on Artificial Intelligence,
pages 1298-1304. AAAI Press, 2015.

[Riloff and Lorenzen, 1999] Ellen Riloff and Jeffrey Lorenzen.
Extraction-based text categorization: Generating domain-
specific role relationships automatically. In Natural language
information retrieval, pages 167-196. Springer, 1999.

[Sauper and Barzilay, 2009] Christina Sauper and Regina Barzi-
lay. Automatically generating wikipedia articles: A structure-
aware approach. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Processing of
the AFNLP: Volume I-Volume 1, pages 208-216. Association
for Computational Linguistics, 2009.

[Zhao and Karypis, 2002] Ying Zhao and George Karypis. Eval-
uation of hierarchical clustering algorithms for document
datasets. In Proceedings of the eleventh international confer-
ence on Information and knowledge management, pages 515—
524. ACM, 2002.

[Rehdfek er al., 2011] Radim Rehdfek, Petr Sojka, et al. Gen-
sim—statistical semantics in python. 2011.

