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Abstract
Hierarchical phrase-based translation systems
(HPBs) perform translation using a synchronous
context free grammar which has only one uni-
fied non-terminal for every translation rule. While
the usage of the unified non-terminal brings free-
dom to generate translations with almost arbitrary
structures, it also takes the risks of generating low-
quality translations which has a wrong syntactic
structure. In this paper, we propose tree-state mod-
els to discriminate the good or bad usage of trans-
lation rules based on the syntactic structures of
the source sentence. We propose to use statisti-
cal models and context dependent features to es-
timate the probability of each tree state for each
translation rule and punish the usage of rules in the
translation system which violates their tree states.
Experimental results demonstrate that these sim-
ple models could bring significant improvements
to the translation quality.

1 Introduction
Phrase-based models [Koehn et al., 2003], hierarchical
phrase-based models (HPBs) [Chiang, 2005] and syntax-
based models [Yamada and Knight, 2001; Liu et al., 2006]
are three major types of statistical machine translation mod-
els. Besides the decoding constraints and algorithms, the ma-
jor differences among the three types of systems are the se-
lections of translation equivalences, i.e. translation rules.

Phrase-based translation models use consecutive words
as translation rules (called phrases). Great improvement is
achieved over word-based models due to the ability of re-
solving word-level reordering inside the phrases. However,
despite of the many efforts of modeling reordering opera-
tions [Tillmann and Zhang, 2005; Galley and Manning, 2008;
Xiong, 2006], phrase-based models are still relatively weak at
the phrase-level reordering.

Syntax-based translation models benefit from the reorder-
ing of larger translation units using synchronous context free
grammars (SCFGs). Several consecutive words, if corre-
sponding to a complete syntactic structure, could be repre-
sented by a syntactic non-terminal and reordered as a single

element [Yamada and Knight, 2001; Liu et al., 2006]. To en-
sure the correspondences between translation rules and syn-
tactic structures, syntax-based models usually constrain the
translation rules to be consistent with a given monolingual
syntactic structure. This constraint severely limits the number
of extracted translation rules, which harms the overall trans-
lation quality.

HPBs [Chiang, 2005] enjoy the benefit of phrase level re-
ordering by using SCFGs. On the other hand, HPBs use a
single unified non-terminal, which represents any consecutive
words, bringing in the benefit of phrase-based models. How-
ever, while the usage of the unified non-terminal brings free-
dom to generate translations with arbitrary structures, it also
takes the risks of generating low-quality translations which
has a wrong syntactic structure.

One way of constraining the extracted rules is by consid-
ering the proper boundary of the rules using a discriminative
model [Xiong et al., 2010; He et al., 2010; Cui et al., 2010;
Zhang et al., 2014]. The probability that a given rule has
proper boundaries could be added to the translation model as
a feature. These models usually use little syntactic informa-
tion. And because there is no labeled data for proper rule
boundaries, these discriminative models are usually trained
with instances extracted using heuristics, which may not be
reliable in case of noisy alignment.

Another way of constraining the rules is to use syntactic
information, which might be more reliable compared to the
above boundary information. However, previous researches
mainly emphasize on selecting translation rules that are a
complete constituent in a given syntactic structure [Chiang,
2005; Marton and Resnik, 2008; Liu et al., 2011]. The prob-
lem with these methods is that, many reasonable rules are
actually not a complete constituent. For example (Figure 1),
in the translation of ”China faces even more painful choices”,
”China faces” is very reasonable to be a phrase because the
singular-plural form agreement should be ensured between
the subjective ”China” and the verb ”faces”. However, in syn-
tactic trees, the verb usually first forms a verb phrase (VP)
constituent with the objective. In this case, ”China faces” is
not a complete constituent and will be punished when it is
used in translation.

In this paper, we propose a new angle of viewing the prob-
lem. Inspired by the practice of lexicalized reordering models
in phrase-based systems [Tillman, 2004], we model the corre-
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IP

VP

NP

Xuan ZeDeTong KuGeng Jia

VV

Mian Lin

NP

NR

Zhong Guo

choicespainfulmoreevenfacesChina

Figure 1: An example of Chinese to English translation with
the source side syntactic structure. The inner structure of the
objective NP is omitted for simplicity. Chinese characters are
represented in the Pinyin form. The translation correspon-
dences are marked with alignment links between Chinese and
English words. The phrase ”Zhong Guo Mian Lin - China
faces” is not a good phrase from the syntactic perspective,
because it crosses the boundary of the VP structure.

spondence between a translation rule and its syntactic struc-
ture by three states: Match, Cross, Partial. Our intuition is
to use every rule in the most likely tree state as it is extracted
from the training data. We firstly perform a maximum like-
lihood estimation for the probability of every rule be applied
in a given tree state. During translation, the probabilities of
these three states are used as features to favor the rules that
are in the same state as they are originally extracted during
the extraction phase.

To incorporate context features, such as boundary words,
part-of-speech tags, to improve the probability estimation, we
employ statistical models such as the maximum entropy mod-
els and the neural network based models. We define forward
and backward n-gram features to emphasize the boundary
word information, and use distributional word representations
to alleviate the data sparsity issue. Experiments show that
both context features and the distributional word representa-
tions improve the tree state estimation. With the predicted
tree state probability, the translation system is able to select
suitable translation rules and obtains significant better trans-
lation results.

2 Related Work
This paper focuses on the problem of selecting rules based
on the source side information. Early approaches are based
on firing binary features according to a syntactic tree. Chi-
ang [2005] tried to add a feature into the system to favor
phrases that form a constituent of the tree. Marton and
Resnik [2008] used separate features for every syntactic la-
bel and for rules matching a constituent and rules crossing a
constituent, respectively. Our method is based on the prob-
ability estimated from training data, and does not have bias
towards rule matching or crossing any constituent.

Liu et al. [2011] implemented models using syntactic la-

bels as information source and expanding the crossing case
of every syntactic label into three cases: missing left part,
missing right part and both. Their approach trains 88 classi-
fiers for different labels, which is not only expensive to imple-
ment, but also difficult to integrate using standard minimum
error rate training (MERT) [Och, 2003]. Our method uses
much simple tree states and could be easily implemented in
current systems.

Some approaches make selection decisions based on the
boundary of the rule. Xiong et al. [2010] built classifiers
on whether the current word is a correct boundary; He et
al. [2010] extended the model to include 4 classes: the be-
gin, middle and end of a rule, and single word rule. Zhang et
al. [2014] built the classifiers on the rules instead of words.
These methods all relies on heuristics in the rule extraction
process; while our method gets information from more reli-
able syntactic analysis results.

The application of a translation rule could be considered
from both the source side and the target side [Cui et al., 2010].
These methods could also be applied upon our current work.

3 Definition and notations
3.1 Syntactic Tree
In computational linguistics, context free grammars are used
to represent the syntactic structure of sentences. Formally,
a syntactic phrase structure grammar G is defined by the 4-
tuple hV,⌃, S,Pi. In the tuple, V is the set of non-terminals,
which represent the syntactic categories, e.g. NP, VP, IP, etc.;
⌃ is the set of terminals, which is the vocabulary set of a
given language; S is the start symbol, which usually repre-
sents a complete sentence; P is the set of production rules.
Each production rule p 2 P is of the form V ! �, where
V is the element of V , indicating the syntactic category of
p; and � is a string of non-terminals or a string of terminals,
indicating how a larger syntactic constituent is composed of
smaller ones. These grammars are usually learned automati-
cally from a large set of labeled syntactic trees, for example,
PennTreebank1.

Under a given syntactic grammar G, for any source lan-
guage sentence s = s1, s2, ..., sn, the syntactic parsing tree
T (s) is built up of a series of production rules p1, p2, ..., pk.
Each of these rules p covers a certain part of s, e.g. s

i

, ..., s

j

,
denoted as span(p) = (i, j).

3.2 Machine Translation with SCFGs
In machine translation research, synchronous context free
grammars (SCFGs) are used to model the process of trans-
lation. SCFGs generate strings in both languages in the
same time during deduction, thus ensure the correspon-
dence between languages. SCFGs are defined by the 5-tuple
hV,⌃1,⌃2, S,Ri, where V is the set of non-terminals; ⌃1

and ⌃2 are terminals in the source and target language, re-
spectively; S is the start symbol. The synchronous produc-
tion rule r 2 R is in the form V ! h�,↵,⇠i, where V is
the element of V; � and ↵ are source and target side of the

1http://www.cis.upenn.edu/ treebank/
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rule, respectively. Each side of the rule is composed of non-
terminals in V or terminals in the corresponding language. ⇠
is the one-to-one correspondence between the non-terminals
in � and ↵.

When translating a given sentence s, the translation deriva-
tion D is built up of a series of synchronous production rules
r, each of which covers source side span span

s

(r) and gen-
erates a target side span span

t

(r). Translation rules, which
describe the translation correspondence between a source
side string and a target side string, are usually automatically
learned from a large parallel corpus and evaluated by some
probabilistic models. As stated before, HPBs uses a spe-
cial kind of SCFG, which has only one unified non-terminal
X

[Chiang, 2005].

4 Tree-State Models
The proposed tree-state models define three syntactic states
for each translation rule when it is applied during translation.
We first define the three tree states, then introduce probabilis-
tic models for estimating the probabilities for these states.

4.1 Tree States
When a hierarchical translation rule r is applied during the
translation of sentence s. The following three syntactic states
of r are defined by considering the relation between the span
of r and the span of a production rule p of the syntactic tree
T of s.
Match The span of r matches the span of p.
Cross The span of r intersects with the span of p.
Partial The span of r is part of the span of p.

Formally, we define the three tree states as follows:

8span
s

(r) = (i, j), if 9p 2 T, span(p) = (i0, j0) s.t.
8
><

>:

i = i

0 and j = j

0 r is Match
i

0

< i  j

0

< j or i < i

0  j < j

0 r is Cross
other cases r is Partial

4.2 Tree-State Probabilities
Using random variable X to denote the tree state of a hier-
archical translation rule r, and x to denote the value of the
tree state, we define the tree-state probability of r, P

ts

(X =
x|r, C(r)), to be the probability of r being applied in a given
tree state x, which depends on the rule r and its context C(r).

Given a translation derivation D, the tree-state probability
of D is the product of tree-state probabilities of every r in D

(Equation 1). The tree state of r is determined by a syntactic
tree of the translated source sentence.

P

ts

(D) =
Y

r2D

P

ts

(X = x|r, C(r)) (1)

P

ts

(D) gives a probability of all hierarchical translation
rules in D be applied in their current tree states. Thus it could
be used as an estimation of how well the current translation
agrees with the parallel data, where all the translation rules
are extracted. We add P

ts

(D) as an additional feature to dis-
criminate different translations in a HPB system.

5 Probability Estimation
Because r is extracted from a large set of parallel sentences,
P

ts

could be estimated according to the context and tree state
of r in original sentences. We propose to use the following
methods for the probability estimation.

5.1 Maximum Likelihood Estimation
The most fundamental method for estimating the tree state
probabilities is Maximum Likelihood Estimation (MLE). The
occurrence counts of the tree state and context for each r

could be recorded during the rule extraction phase and used
for estimation (Equation 2).

P

ts

(X = x|r, C(r)) =
count(x, r, C(r))P
x

count(x, r, C(r))
(2)

In practice, because the context of each rule is too sparse to
enumerate, our MLE omits the context part and only accumu-
late the count by the rule itself (Equation 3).

P

ts

(X = x|r) = count(x, r)P
x

count(x, r)
(3)

The process of MLE is straightforward as in the estimation of
lexicalized reordering models [Tillman, 2004].

5.2 Context Dependent Estimations
As the parameter space is too sparse, especially when the con-
text information is considered, we seek for feature-based es-
timation methods.

We start with a series of binary indicator features of word
and n-grams as the basic representation of the rule. Because
the order of words is crucial for discriminating different syn-
tactic structures, we design position-based n-gram features
which indicate the n-grams occur in different positions of the
rule (inspired by He et al. [2010]). We notice that previous
position-based features append absolute positions to n-grams
inside the rule, which may result in unnecessary sparseness.
For example, when the same word, say w, occurring at the
end of rules with different lengths, standard n-grams with po-
sitions will append different position information depending
on the length of the rule. However, the most important in-
formation to be identified is actually the same for these rules,
which is that w occurs at the end.

As an alternative, we describe the n-gram information in a
special manner which does not depend on the absolute posi-
tion of the n-gram to the beginning of the rule, but depends
on the relative position to either one of the rule boundaries.
Our n-gram feature starts from a given position and goes to-
wards the center of the rule. When the starting position is at
the left part of the rule, we append a position according to
the left boundary of the rule. This is the same with previ-
ous position-based n-grams, which we call forward n-grams.
However, when the starting position is at the right part of the
rule, we append the position according to the right boundary
of the rule instead of the left one. Reversed from the order of
the text, each n-gram is built from the starting position to the
center of the rule (backward n-grams).

We could also use n-grams to describe the boundary and
context of each rule. So an n-gram may start from outside of
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the rule and go across the rule boundary. But if the n-gram
goes across the other boundary of the rule, we mark the rest
words as out-of-rule (#OOR#). For example, for a forward
4-gram starting at two words before a single word translation
rule (w

i

), the feature is f-bigram-i-2:w
i�2 w

i�1 w

i

#OOR#.
We also use the Part-of-Speech (POS) n-grams as a back-

off for word n-grams, in order to cover the rare word cases.
These n-grams describe the context before the rule, the
boundary information of the rule and the context after the
rule, etc. Because the tree state information exists only on
the source side of the rule, our features are all defined on the
source side.

The detailed description of features for the rule r is listed
below, assuming span

s

(r) = (i, j).
Forward n-grams N-grams starting at the position i-3, i-2,

i-1 and i, respectively. Each n-gram consists of the start-
ing word and its next n-1 words.

Backward n-grams N-grams starting at the position j, j+1,
j+2 and j+3, respectively. Each n-gram consists of the
starting word and its previous n-1 words.

POS n-grams POS n-grams obtained in forward and back-
ward order.

To generate a set of training instances that are feasible for
the training of discriminative models, we perform a random
sampling during the rule extraction phase on all possible rules
to sample a given portion of them. The random sampling is
expected to get a tree-state distribution similar with the MLE.

5.3 Maximum Entropy Models
One common practice of modeling problems with a large set
of binary indicator features is using the maximum entropy
models [Berger et al., 1996]. The probability of each rule in
a given tree state is defined in Equation 4.

P

ts

(X = x|r,C(r)) = p

�

M
1
(x|r, C(r))

=
exp[

P
M

m=1 �m

h

m

(x, r, C(r))]
P

x

exp[
P

M

m=1 �m

h

m

(x, r, C(r))]

(4)

Where h

m

is the m

th indicator feature and �

m

is the corre-
sponding weight. The model could be efficiently trained by
L-BFGS algorithms [Malouf, 2002].

Comparing to the MLE method which performs estima-
tion on the count of the whole rule and context, feature-based
models, such as the maximum entropy models, decompose
the whole event into a series of binary features. Because the
single features occur much more frequently than the whole
event, the data sparseness is alleviated. As a result, the model
gives a more robust estimation, especially for rare rules.

5.4 Neural Network based Models
Word embedding is an automatically learned mapping from
words into low-dimension vectors based on the context where
these words occur in. These vectors are demonstrated effec-
tive in evaluating the semantic relations between words. Sim-
ilar words or words with similar meanings will be mapped
to vectors that are close to each other [Mikolov et al., 2013].
In our practice, as an improvement from using two different

Data Usage Sentences
LDC TM train 8,396,924

Gigaword LM train 14,684,074
MT03 dev 919
MT04 test1 1,789
MT05 test2 1,083

Table 1: Experimental data and statistics.

n-grams representing similar words, we could use two em-
bedding vectors which may have close values. In this way,
similar words could have similar effects in determining the
tree state, further alleviating the data sparseness problem.

To better suit the architecture that learns the word embed-
ding, we use neural network based models which take the
embedding n-grams of the rule and context as the input and
estimate the likelihood of a given tree state. The input is the
concatenation of the embedding of the n-grams, ~e. The out-
put ~p is the vector of probabilities for each tree state, which
is calculated by Equation 5-7.

~p = f2(W2
~

h+~

b2) (5)

~

h = f1(W1~e+~

b1) (6)

f1(z) =
1

1 + e

�z

, f2(z) =
e

zm

P
k

e

zk
(7)

There are a weight matrix W , a bias vector~b and an activation
function f between the input and hidden layers, and between
the hidden and output layers, respectively. We denote them
by subscripts, such as W1 and W2. For the hidden layer and
the output layer we use sigmoid and softmax function as the
activation function, respectively.

We minimize the cross entropy loss between the output
node and the actual tree state of each instance. The training of
the neural networks could be performed by the standard back-
propagation method [Rumelhart et al., 1988] and the dropout
tricks [Srivastava et al., 2014].

Conditions Match Partial Cross Total Rules
len3 27.2% 35.6% 37.2% 0.58m

len10 18.7% 22.8% 58.5% 1.26m

Table 2: Statistics of the tree states extracted from training
data. (Total rules are the numbers in millions.)

6 Experiments and Results
6.1 Data and Preparation
We conduct experiments on a large scale machine translation
task. The translation model (TM) of the system is trained
on parallel sentences from LDC, including LDC2002E18,
LDC2003E14, LDC2004E12, LDC2004T08, LDC2005T10,
LDC2007T09, which consists of 8.3 million of sentence
pairs. We train a language model (LM) from monolingual
data which includes Xinhua portion of Gigaword corpus. We
use multi-reference data MT03 as the development data (dev),
MT04 and MT05 as test data. These data are mainly in the
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same genre, avoiding the extra consideration of domain adap-
tation.

The Chinese side of the corpora is word segmented using
ICTCLAS2. We use the Berkeley parser [Petrov and Klein,
2007] to obtain the POS tag sequence and the syntactic parse
tree for each Chinese sentence. The translation rules for the
HPB model are extracted from the parallel sentence pairs with
the alignment consistent constraint [Chiang, 2005]. With the
syntactic tree generated by Berkeley parser, the tree state of
each rule could be determined and used to train the proba-
bilistic models.

6.2 Statistics of the Tree States
We perform a random rule sampling by the ratio 0.001 on
all translation rules extracted from the parallel sentences. We
collect the tree state statistics in two conditions with the max-
imum length of the source side rules to be 3 and 10, which
correspond to the maximum length of phrases and hierarchi-
cal phrases in a HPB system, respectively (Table 2).

As shown in Table 2, only a small portion (27.2%) of
the extracted phrases match a complete syntactic structure.
When considering hierarchical phrases, the ratio goes down
to 18.7%. If the translation is restricted to using only Match
rules, much fewer rules could be used and that would result
in a drop in the translation performance [Chiang, 2005].

The results also show that when the length of the source
side rule increases, the distribution of different tree states
changes dramatically. Over 58.5% of the rules are in the state
Cross when the maximum length is 10; while for length 3, the
ratio is only 37.2%. This explains why Zhang et al. [2014]
uses separate classifiers for rules of different lengths. In our
experiments, instead of training one classifier for each spe-
cific length, we train two classifiers for phrases and hierarchi-
cal phrases, respectively.

6.3 Probability Estimation
We use the sampled rules with their tree states as the training
instances for the probability estimation. We run the same rule
extraction process on the source and the first reference of the
MT03 data, and use the extracted rule and their tree states as
evaluation data for the probabilistic tree state models. The
estimation performance is evaluated by the classification ac-
curacy of instances on the evaluation data.

We use public available tools to train the maximum entropy
model3 and the neural network based models4. For the train-
ing of maximum entropy model, we filter features that occur
less than 20 times. We set the maximum iteration number of
the L-BFGS algorithm to 150.

For training the neural network based models, we compare
networks with one and two hidden layers. We set the num-
ber of hidden nodes in first hidden layer to be 512, and the
number of hidden nodes in the second hidden layer to be 128.
We perform mini-batched back-propagation training for 150
iterations, with a mini-batch size 1024 and a dropout rate 0.4.

2http://ictclas.nlpir.org/
3https://github.com/lzhang10/maxent
4https://cntk.codeplex.com/

We first use the maximum entropy models to compare sev-
eral different feature settings. As a direct variation of the
MLE, our first maximum entropy model uses only n-gram
features from the source side of the rule. The second model
uses the n-gram features from both the rule and the con-
text, augmented with positions (the forward and backward
n-grams). The third model uses POS n-grams along with pre-
vious context n-grams. We could see from Table 3 that the n-
grams with context and position information performs much
better than rule n-grams in both settings. The results indicate
that the tree state is determined not only by n-grams inside
the rule itself, but also by the context around the rule. Also,
using POS n-grams further improves the performance.

Our second experiment compares the performances of the
maximum entropy models and the neural network based mod-
els. As shown in the Table 4, neural network based models
show steady improvements over maximum entropy in accu-
racy. These improvements demonstrate the effectiveness of
distributional representations compared with the original n-
grams. In the comparison between neural network models
with different hidden layers, we choose the one with higher
evaluation accuracy (NN2) for the following experiments.

6.4 Machine Translation Experiments
We perform machine translation with the proposed proba-
bilistic tree state models. Our translation system is an in-
house implementation of the hierarchical phrase-based trans-
lation system [Chiang, 2005]. We set the beam size to 20. We
train a 5-gram language model on the monolingual data with
MKN smoothing [Chen and Goodman, 1996]. The transla-
tion quality is evaluated use 4-gram case-insensitive BLEU.
Significant tests are performed using bootstrap re-sampling
implemented by Clark et al. [2011].

Our baseline system is a basic HPB system. We also com-
pare our methods with three related researches. The first one
is the rule boundary method from Zhang et al. [2014], which
does not use syntactic information in deciding the boundary
(denoted as RB). The second one is a simple count based
model, which fires an indicator feature whenever a transla-
tion rule is in a given tree state (denoted as Count). The third
one is the well-known work of Marton and Resnik [2008], de-
noted as XP. In our experiments, the best performed feature
in XP is XP-Cross, which fires an indicator feature whenever
a translation rule is in a Cross state and intersects with one of
the following syntactic labels: IP, NP, VP, QP, CP, PP, ADJP,
ADVP, LCP, DNP.

As we can see from Table 5, using extra information to as-
sist the HPB systems always improve the translation perfor-
mance. The RB system gets a relatively small improvement
(+0.4 BLEU) compared to other systems because it uses no
syntactic information. Both the Count and XP system use
binary indicators for the tree states and achieve moderate im-
provements (+0.5 and +0.6 BLEU). With our proposed prob-
abilistic tree-state models (MLE, ME, NN2), the translation
quality could be further improved. This is because each rule
now gets an accurate probability estimation instead of a bi-
nary indicator. Compared to MLE (+0.6 BLEU), context de-
pendent methods achieve comparable or even higher trans-
lation quality because they build more accurate probabilistic
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features train-len3(%) eval-len3(%) train-len10(%) eval-len10 (%)
rule n-grams 71.60 68.83 78.73 76.40

context n-grams 88.39 85.53 83.09 81.48
+POS n-grams 91.16 90.54 85.06 84.55

Table 3: Classification accuracy of different feature groups of the maximum entropy model on the training and dev data.

models train-len3(%) eval-len3(%) train-len10(%) eval-len10 (%)
ME 91.16 90.54 85.06 84.55
NN1 97.40 90.89 95.68 88.42
NN2 96.94 91.29 95.07 88.86

Table 4: Classification accuracy of different models on the training and evaluation data. NN1 is a neural network model with a
single hidden layer of 512 nodes. NN2 is a neural network model with two hidden layer of 512 and 128 nodes, respectively.

Systems Dev Test1 Test2 TestAverage
HPB 34.2 34.2 35.2 34.7(-)
RB 34.3 † 34.6 35.5 35.1(+0.4)

Count 34.5 † 34.7 ‡ 35.7 † 35.2(+0.5)
XP 34.7 † 34.8 ‡ 35.7 † 35.3(+0.6)

MLE 34.7 † 35.0 ‡ 35.6 † 35.3(+0.6)
ME 34.5 34.8 ‡ 35.7 † 35.3(+0.6)
NN2 34.7 34.9 ‡ 36.1 ‡ 35.5(+0.8)

XP+NN2 34.7 † 35.1 ‡§ 36.2 ‡§ 35.7(+1.0)

Table 5: BLEU4 in percentage of different systems. † and ‡

mark results that are significant better than the baseline sys-
tem (HPB) with p < 0.05 and p < 0.01, respectively. §

marks results that are significant better than the XP system
with p < 0.01.

models that takes the context into account. The neural net-
work based models (NN2) brings a significant improvement
of +0.8 BLEU, which is the biggest improvement in all sin-
gle method systems. Moreover, combining the XP-Cross fea-
ture and our neural network based feature (XP+NN2) could
further improves the translation quality (+1.0 BLEU in all),
which is significant compared to both the HPB baseline and
the XP system.

6.5 Translation Analysis
We analyze the differences in translations with and without
the tree-state probability models. For each selected system,
we collect the rules used in generating the final translation
for each sentence, and analyze their tree states.

As in Table 6, compared to the baseline HPB system, the
XP system improves the translation quality by encouraging
the use of rules that match a syntactic structure and punishing
those cross a syntactic structure. As a result, XP system uses
much more rules in Match state (29.8% v.s. 25.2%) and much
less rules in Cross state (29.3% v.s. 36.7%). On contrast, the
NN2 system also improves the translation quality, but does
not show any preference to the Match state rules (25.1% v.s.
25.2%). The improvement comes from selecting the transla-
tion rules that have the consistent tree state as they are ex-
tracted from the training data. This explains why combining
these two features achieves an further improvement.

Systems Match Partial Cross
HPB 7.6 (25.2%) 11.6 (38.1%) 10.8 (36.7%)
XP 7.3 (29.8%) 10.1 (40.9%) 7.2 (29.3%)

NN2 5.6 (25.1%) 8.0 (36.0%) 8.7 (38.9%)

Table 6: Comparison of the number (and percentage) of rules
per sentence in different tree state during generating the trans-
lation.

7 Conclusion
In this paper, we discuss the relation between the source side
syntactic parse tree and the machine translation system us-
ing synchronous context free grammars. Instead of using the
syntactic structure as constraints to the rules, we propose to
use probabilistic models to estimate the probability of the tree
state for each translation rule. Instead of encouraging the use
of syntactic complete rules, we encourage the use of rules that
are consistent with the tree states they are extracted.

We propose features and models to estimate the tree state
probability of rules. These probabilities could be used to en-
hance a state-of-the-art machine translations system. Experi-
ments shows that the translation quality on multiple test sets
in a large scale machine translation task is significantly im-
proved by using our method.

Although our implementation is under the hierarchical
phrase based translation system, our approach should also be
applicable to the phrase-based system as well. In the future,
potential gains could be achieved by improving the probabil-
ity estimation using deep structure neural networks. It is also
interesting to investigate tree states under different syntactic
categories and their influences to the translation quality.
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