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Abstract

Words are central to text classification. It has
been shown that simple Naive Bayes models with
word and bigram features can give highly compet-
itive accuracies when compared to more sophisti-
cated models with part-of-speech, syntax and se-
mantic features. Embeddings offer distributional
features about words. We study a conceptually
simple classification model by exploiting multi-
prototype word embeddings based on text classes.
The key assumption is that words exhibit differ-
ent distributional characteristics under different text
classes. Based on this assumption, we train multi-
prototype distributional word representations for
different text classes. Given a new document, its
text class is predicted by maximizing the proba-
bilities of embedding vectors of its words under
the class. In two standard classification benchmark
datasets, one is balance and the other is imbalance,
our model outperforms state-of-the-art systems, on
both accuracy and macro-average F-1 score.

1 Introduction

Text classification is important for a wide range of web ap-
plications, such as web search [Chekuri et al., 1997], opinion
mining [Vo and Zhang, 2015], and event detection [Kumaran
and Allan, 2004]. Dominant approaches in the literature treat
text classification as a standard classification problem, using
supervised or semi-supervised machine learning methods. A
key research topic is the design of effective feature represen-
tations.

Words are central to text classification. Bag-of-words
models [Harris, 1954], such as Naive Bayes [Mccallum and
Nigam, 1998] can give highly competitive baselines com-
pared with much more sophisticated models with complex
feature representations. The main intuition behind is that
there is typically a salient set of words that signal each
document class. For example, in news the words “coach”,
“sport”, “basketball” occur relatively frequently in sports, and
the words “chipset”, “compiler” and “Linux” are relatively
unique for information technology.
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More sources of information have been explored for text
classification, including parts of speech [Lewis, 1995], syn-
tax structures [Post and Bergsma, 2013; Tetsuji et al., 2010]
and semantic compositionality [Moilanen and Pulman, 2007].
However, such features have demonstrated limited gains over
bag-of-words features [Wang and Manning, 2012]. One use-
ful feature beyond bag-of-words is bag-of-ngrams. Wang and
Manning [2012] show that bigram features are particularly
useful for sentiment classification. Bigrams offer a certain
degree of compositionality while being relatively less sparse
compared with larger n-gram features. For example, the bi-
gram “abnormal return” strongly indicates finance, although
both “abnormal” and “return” can be common across dif-
ference classes. Similar examples include “world cup” and
“large bank”, where bi-grams indicate text classes, but the
words do not.

One intuitive reason behind the strength of bigrams is that
they resolve the ambiguity of polysemous words. In the above
examples the words ”return”, ”cup”, and ”bank” have dif-
ferent meanings under different document classes, and the
correct identification of their word sense under a ngram con-
text is useful for identifying the document class. For exam-
ple, when the word ”bank” exists under a context with words
such as ”card” and ”busy”, it strongly indicates the ”finance”
sense. This fact suggests a simple extension to bag-of-word
features by incorporating context and word sense informa-
tion. We propose a natural extension to the skip-gram word
embedding model [Mikolov et al., 2013] to this end.

Word embeddings are low-dimensional, dense vector rep-
resentation of words, first proposed in neural language mod-
els [Bengio et al., 2003]. Traditionally, embeddings are
trained during the training of a neural language model as a
part of the model parameters. Mikolov et al. [2013] define
specific objective functions for efficient training of word em-
beddings, by simplifying the original training objective of a
neural language model. The skip-gram model trains word
embeddings by maximizing the probabilities of words given
their context windows. Two sets of embeddings are defined
for the same word as a target word and a context word, re-
spectively. The probability of a target word is estimated by
the cosine similarities between the target embedding and the
content embeddings of its context words. This offers a way to
estimate word probability via the embedding probability that
readily integrates context information.
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To further integrate word sense information, we make a
simple extension by training multi-prototype target word em-
beddings, with one distinct vector trained for a word under
each class. The context vectors of words remain the same
across different classes. Here by associating word senses with
document classes, we make the assumption that each word
exhibits one sense in each document class, and the sense of
a word differs across different classes. This assumption is
highly coarse-grained and does not correspond to the defi-
nition of word senses in linguistics. However, it empirically
works effectively, and we find that the definition of sense here
can capture subtle differences between word meanings across
different document classes.

Under the above assumptions, the probability of a class
given a document can be calculated from the probabilities
of the embeddings of each word under this class. Since the
probability of each word embeddings is calculated separately,
we call this model a bag-of-embeddings model. Training re-
quires text corpora with class labels, some of them are ob-
tained from naturally labeled [Go et al., 2009] and some are
hand-labeled [Lewis, 1995]. The bag-of-embeddings model
is conceptually simple, with the only parameters being word
embeddings. We show that maximum-likelihood training for
document classification is consistent with the skip-gram ob-
jective for training multi-prototype word embeddings.

Experiments on two standard document classification
benchmark data show that our model achieve higher ac-
curacies and macro-F1 scores compared than state-of-
the-art models. Our method achieves the best re-
ported accuracies for both the balanced and the im-
balanced datasets. The source code of this paper is
released at https://github.com/hiccxy/Bag-of-embedding-for-
text-classification.

2 Related Work

Text classification has traditionally been solved as a standard
classification task, using supervised learning approaches such
as Naive Bayes [Mccallum and Nigam, 1998], logistic re-
gression [Nigam et al., 1999], and support vector machines
[Joachims, 1998]. Word features, and in particular bag-of-
words features, have been used for classification. There have
been research efforts to incorporate more complex features
into text classification models. Lewis [1995] uses parts-of-
speech and phrase information for text categorization; Tetsuji
et al. [2010] use dependency tree features for sentiment clas-
sification; Post and Bergsma [2013] integrate syntax into text
classification models by explicit features and implicit kernels;
Moilanen and Pulman [2007] model semantic composition-
ality for sentiment classification. Wang and Manning [2012]
show that bag-of-words and bigram features can give compet-
itive accuracies compared with such more complex features.

Distributed word representations [Bengio et al., 2003;
Collobert et al., 2011; Mikolov et al., 2013] have been typi-
cally used as additional features in discrete models for semi-
supervised learning, or as inputs to neural network mod-
els. For text classification, word embeddings have mostly
been used as inputs to neural models such as recursive ten-
sor networks [Socher et al., 2011], dynamic pooling network

[Kalchbrenner et al., 2014] and deep convolutional neural
network [Santos and Gatti, 2014]. There has also been work
on directly learning distributed vector representations of para-
graphs and sentences [Le and Mikolov, 2014], which has been
shown as useful as the above mentioned neural network mod-
els for text classification. Such neural network result in vector
representation of text data. Along this line, Tang et al. [2014]
is the closet in spirit to our work. They learn text embed-
dings specifically for end tasks, such as classification. We
also learn word embeddings specifically for text classifica-
tion. However, rather than learning one vector for each word,
which Tang et al. [2014] do, we learn multi-prototype em-
beddings, with certain words having multiple vector forms
according to the text class. In addition, we have a very sim-
ple document model, with the only parameters being word
vectors. The simplicity demonstrates the effectiveness of in-
corporating text class information into distributed word rep-
resentation.

Our work is also related to prior work on multi-prototype
word embeddings [Reisinger and Mooney, 2010; Huang et
al., 2012; Tian et al., 2014]. Previous methods define word
prototypes according to word senses from ontologies, or in-
duce word senses automatically. They share a more linguistic
focus on word similarities. In contrast, our objective is to
improve text classification performance, and hence we train
multi-prototype embeddings based on text classes.

3 Method

3.1 The Skip-gram Model

Our bag-of-embeddings model extends the skip-gram model
[Mikolov et al., 2013], which is a simplification of neural
language models for efficient training of word embeddings.
The skip-gram model works by maximizing the probabilities
of words being predicted by their context words.

In particular, two sets of embeddings are defined for each
word w, when w is used as the output target word and as the
input context word, respectively. We use ~v(w) and ~u(w) to
denote target (output) embedding vector and context (in-

put) embedding vector of w, respectively.
Given a target word w and a context w0 of w, the prob-

ability of ~v(w) given ~u(w

0
) is defined based on the cosine

similarity between ~v(w) and ~u(w

0
), as follows,

P (~v(w)|~u(w0
)) =

e

~v(w)·~u(w0)

P
w002V e

~v(w00)·~u(w0)
,

where V is the vocabulary.
The model can be regarded as a crude approximation of a

language model estimating the probability of a sentence s =

w1w2...w|s| by

P (s) =

|s|Y

i=1

P (~v(wi)|t(wi, s)),

where t(wi, s) is the context of wi in s, which typi-
cal includes T words before wi and T words after wi.
P (~v(wi)|t(wi, s)) is estimated by predicting ~v(wi) using
each word w

0 in t(wi, s).
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P (~v(wi)|t(wi, s)) =

Y

w02t(wi,s)

P (~v(wi)|~u(w0
))

=

Y

w02t(wi,s)

e

~v(wi)·~u(w0)

P
w002V e

~v(w00)·~u(w0)

(1)

This approximation does not give a highly accurate lan-
guage model, but can be used to train word embeddings ef-
ficiently. The resulting embeddings can be used as input to
train more sophisticated neural language model or to solve
other NLP tasks [Mikolov et al., 2013].

Training is achieved by maximizing the likelihood of raw
text using stochastic gradient descent, which is equivalent to
maximizing logP (~v(wi)|~u(w0

)) for all wi and w

0 in a cor-
pus. Because gradients to the probability in Equation (1) re-
quires summary over the vocabulary, the skip-gram model
uses a rough approximation to the noise contrastive estima-
tion (NCE) method (Gutmann and Hyvarinen, 2010), which
instead maximizes

log�(~v(wi) · ~u(w0
))

+

Pl
j=1 Ewj⇠Pn(w)[log�(�~v(wj) · ~u(w0

))]

(2)

Here � is the sigmoid activation function, Pn(w) is a dis-
tribution for negative samples, which is typically the unigram
distribution raised to the 3/4th power (Mikolov et al., 2013),
and l is the number of negative samples, set to a small num-
ber below 20. Equation 2 approximates the log probabil-
ity P (~v(wi)~u(w

0
)) by contrastive estimation between seen

words and negative samples from a noise distribution, where
l ! 1, the gradient closely approximates the gradient of
P (~v(wi)~u(w

0
)).

3.2 The Bag-of-embeddings Model for Text

Classification

The goal of text categorization is the classification of a given
document d 2 D into a fixed number of predefined categories
C, where D is the set of documents. Although according to
[Joachims, 1998], each document d can be in multiple, ex-
actly one, or no category at all, in this paper we simplify to
find the most likely class c 2 C for d. We find c by using

c = argmax

c2C
P (c|d)

We estimate the class probability P (c|d) by estimating the
probability of d’s vector form under c, denoted as ~v(d, c). De-
noting the words in d as w1, w2, ..., w|d|, where wi 2 V ,
~v(d, c) consists of the class-specific target embedding se-
quence of w1, w2, ..., w|d|.

~v(d, c) =

⇥
~v(w1, c),~v(w2, c), ...,~v(w|d|, c)

⇤

As a result,
P (c|d) = P (~v(d, c)|d)

= P (~v(w1, c),~v(w2, c), ...,~v(w|d|, c)|d)
Further by assuming that the class-specific target embed-

dings are conditionally independent i.e. bag-of-embeddings,
it follows that

Figure 1: Illustration of Embeddings.

P (c|d) = P (~v(w1, c)|d)P (~v(w2, c)|d)...P (~v(w|d|, c)|d)

Now following the skip-gram model, assume that the prob-
ability of ~v(wi, c) depends only on the context window
t(wi, d) = wi�T , wi�T+1, ..., wi�1, wi+1, ..., wi+T (i.e. 2T

is the context window size), we have

P (~v(wi, c)|d) = P (~v(wi, c)|t(wi, d))

We use the skip-gram model to estimate this multi-
prototype embedding probability. In particular, denot-
ing the context embedding of a word w as ~u(w),
P (~v(wi, c)|t(wi, d)) is estimated by

P (~v(wi, c)|t(wi, d))

⇡
Q

w02t(wi,d)
P (~v(wi, c)|~u(w0

))

From the above equation, it can be seen that the bag-of-
embeddings model is similar to the skip-gram model in the
definition of target and context embeddings. However, it is
different in that the target embeddings are class-dependent,
and each word can have different target embeddings in dif-
ferent classes. On the other hand, each word has a unique
context embedding across classes.

Figure 1 gives an illustration of this difference. Now given
P (~v(wi, c)|t(wi, d)), the document probability

P (c|d) = P (~v(d, c)|d)

/
Y

wi2d

Y

w02t(wi,d)

e

~v(wi,c)·~u(w0)

Correspondingly,

argmax

c2C
P (c|d)

= argmax

c2C

P
wi2d

P
w02t(wi,d)

~v(wi, c) · ~u(w0
)

(3)

The last equation corresponds to the estimation of the log
probability, which is more efficient than the estimation of the
conditional probability.

The parameters u(w) and v(w, ci) in Equation 3, which is
used for predicting, are trained in a supervised way described
in the following subsection.

3.3 Training

Given a set of labeled documents D =

{(d1, c1), (d2, c2), ..., (dN , cN )}, the bag-of-embeddings
model is trained by maximizing its likelihood function
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P (D) =

NY

k=1

Y

wi2dk

Y

w02t(wi,dk)

P (~v(wi, ck)|~u(w0
))

By using stochastic gradient descent, maximizing P (D)

consists of iteratively maximizing each P (~v(wi, ck)|~u(w0
)).

This is consistent in form to the objective of the skip-gram
model, which maximizes the probability of each word given
each context word. The only difference is that the tar-
get word vector depends on the label class in the bag-of-
embedding model. We follow the skip-gram model and train
P (~v(wi, ck)|~u(w0

)) using a simplification of NCE by nega-
tive sampling, where the objective is

log�(~v(wi, c) · ~u(w0
))

+

Pl
j=1 Ewj⇠Pn(w)[log�(�~v(wi, c) · ~u(wj))]

Consistent with the skip-gram model, � is the sigmoid
function, and Pn(w) is a noise distribution of words. Note,
however, that in this equation, the context word w

0 is sampled
instead of the target word, because it is relatively more diffi-
cult to find a distribution of negative examples that includes
the class label. Pn(w) being unigram distribution to the 3/4th
power, and all parameters setting are the same as Mikolov et
al. [2013] except the iteration number1. This is because our
corpus is much smaller than theirs. For the parameters, we set
l = 5, the iteration number to 5, the size of context window
to 10 and the dimensions of word vector to 100.

3.4 Correlation with Skip-gram and Bag-of-words

The bag-of-embeddings model is closely related to the skip-
gram model and bag-of-words model. Compared with the
bag-of-words model for document classification, the bag-of-
embeddings model also makes the Naive Bayes assumption,
by treating the target embedding vector of each word in the
document as being independent of each other. On the other
hand, it is different from the bag-of-words model in that the
model integrates context information. Rather than predicting
the text class using unigram alone, it relies on the distribu-
tional similarity between each target word embedding and
the context embeddings of words in a context window. With
respect to feature space, the bag-of-embeddings model is a
much richer model with hundreds of dense parameters to rep-
resent each word. Our experiments show that it outperforms
a bag-of-words model significantly.

The parameters of the bag-of-embeddings model are tar-
get and context embedding vectors. This is closely related
to the skip-gram model. The main difference in terms of
embeddings is that the bag-of-embeddings model integrates
document class information, training multiple-prototype em-
beddings for each word. The training methods of the skip-
gram model and the bag-of-embeddings are shown in Fig-
ure 2(a) and 2(b), respectively. Compared with the skip-gram
model, the target embeddings of the bag-of-embeddings con-
tain class labels. On the other hand, the context embeddings

1Empirically, the sampling method gives highly competitive ac-
curacy when the iteration number is greater than 10 and the perfor-
mance is very stable.

Figure 2: Skip-gram model vs. bag-of-embeddings model.

remain single-prototype, which serves to connect the embed-
dings space for target word between different classes. One
additional difference between the bag-of-embeddings model
and the skip-gram model is that the former is designed for
document classification, but the latter is specifically designed
to train embeddings.

In our experiments we find that the classification accuracies
can be improved by 0.2% to 0.5% by adding w itself into
the targets in Figure 2(b), and therefore take this variation in
choose the context window t(wi, d).

4 Experiments

We evaluate our models on two multi-class text classification
datasets, one is imbalanced and the other is nearly balanced.
The experimental setup is as follows.

4.1 Experiment Setup

Data Sets We choose the twenty newsgroup (20NG)2 test
[Lang, 1995] for multi-class classification. We use the “by-
date” data, which consists of 11,314 training instances and
7,532 test instances, which are partitioned (nearly) evenly
across the classes. For training, the largest class has 600 in-
stances and the smallest class has 377 instances.

For imbalanced classification, Lewis [1995] introduced the
Reuters-21578 corpus3. We choose this benchmark dataset
as follow Debole and Sebastiani [2005] and perform the R8
evaluation requires that each class should have at least one
training and one test example and only the most frequent eight
categories (i.e. R8) are evaluated. R8 consists of 5,485 doc-
uments for training and 2,189 for testing. For training, the
largest class has 2,840 instances and the smallest class has 41

2http://qwone.com/˜jason/20Newsgroups/
3http://www.daviddlewis.com/resources/testcollections/

reuters21578/
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Table 1: Overall results.

Model
Dataset 20NG R8

AC MF1 AC MF1
BoW-SVM 79.0 78.3 94.7 85.1

TWE 81.5 80.6 - - - -
GoW-SVM - - - - 95.5 86.4

BoE 83.1 82.7 96.5 88.6

instances. The pre-processing is conducted by turning all let-
ters to lowercase, removing all the words which occurs less
than five times and replacing all punctuation with space.
Evaluation Metrics We use the standard accuracy (AC),
which is defined as the number of correctly predicted doc-
uments out of all test documents. Precision, recall and F-
1 score are also used. The macro-average F1- score (MF1)
takes into account the skewed class label distributions by
weighting each class uniformly.
Baseline Models We compare our models with several strong
baseline models, including Support Vector Machines, and
two state-of-the-art text representation models.

• SVM: We take a bag-of-words baseline using SVM,
which outperforms the Naive Bayes model. Follows
Wang et al. [2013], we use LIBSVM4 with a linear ker-
nel and optimize the parameter C 2 1e� 4, ..., 1e+ 4

by ten-fold cross-validation. Bag-of-words features are
used to represent the documents. It is denoted as “BoW-
SVM” in Table 1.

• TWE: Liu et al. [2015] employ latent topic models to as-
sign topics to each word in the whole corpus, and learn
topical word embeddings based on both words and their
topics (i.e. each word has different embeddings under
different topics). Three models are proposed, and the
best one TWE-1, regards each topic as a pseudo word
and learns topic embeddings and word embeddings sep-
arately. The model outperforms the paragraph vector
model of Le and Mikolov [2014].

• GoW: Rousseau et al. [2015] propose three graph-of-
words approaches to capture the distance dependency
between words. A linear SVM is used as classifier and
their best model served as our baseline. It is denoted as
“GoW-SVM” in Table 1.

4.2 Results

Table 1 summaries the performances of our model and the
baseline models, where “BoE” denotes our proposed bag-of-
embedding model. Our model outperforms the state-of-the-
art models TWE and GoW on the balanced and the imbal-
anced data sets, respectively. For both data sets, the bag-of-
embeddings model gives the best results that we are aware of
the in the literature.

Tables 2 and 3 show detailed comparisons between our
bag-of-embeddings model and the bag-of-words SVM on the
balanced and imbalanced data sets, respectively, where the
higher precision or recall is shown in bold. Our model gives

4https://www.csie.ntu.edu.tw/˜cjlin/libsvm/

Table 2: Class-level results on the balanced dataset.

Class Name SVM BoE
Pre. Rec. Pre. Rec.

alt.atheism 67.8 72.1 60.1 87.4

comp.graphics 67.1 73.5 67.2 78.4

comp.os.ms-windows.misc 77.1 66.5 70.3 74.6

comp.sys.ibm.pc.hardware 62.8 72.4 65.6 76.5

comp.sys.mac.hardware 77.4 78.2 76.8 81.8

comp.windows.x 83.2 73.2 87.1 83.5

misc.forsale 81.3 88.2 85.9 84.6
rec.autos 80.7 82.8 91.8 90.2

rec.motorcycles 92.3 87.9 94.4 94.0

rec.sport.baseball 89.8 89.2 96.8 92.7

rec.sport.hockey 93.3 93.7 97.2 96.2

sci.crypt 92.2 86.1 93.6 91.7

sci.electronics 70.9 73.3 85.3 64.9
sci.med 79.3 81.3 95.5 79.8
sci.space 90.2 88.3 90.5 86.6

soc.religion.christian 77.3 87.9 89.7 85.7
talk.politics.guns 71.7 85.7 77.1 90.7

talk.politics.mideast 91.7 76.9 95.4 88.8

talk.politics.misc 71.7 56.5 77.6 61.6

talk.religion.misc 63.2 55.4 74.1 62.1

Table 3: Class-level results on the imbalanced dataset. “Tr.#”
denotes the number of training instances and “Te.#” denotes
the number of test instances.

Class Tr.# Te.# SVM BoE
Name Pre. Rec. Pre. Rec.
acq 1,596 696 94.2 97.1 97.7 98.0

crude 253 121 93.3 92.6 97.4 94.2

earn 2,840 1,083 98.3 98.9 99.4 98.6
grain 41 10 100 70.0 75.0 90.0

interest 190 81 79.2 70.4 91.2 76.5

money-fx 206 87 75.3 63.2 81.3 89.7

ship 108 36 89.3 69.4 81.8 75.0

trade 251 75 86.4 93.3 80.2 97.3

higher precision for most of the classes, and higher recall for
nearly all the classes. This demonstrates the effectiveness of
the bag-of-embeddings model in leveraging context informa-
tion. The higher recall also shows the advantage of dense
features in reducing feature sparsity as compared with dis-
crete bag-of-word features.

4.3 Analysis

To better understand the mechanism of disambiguation by the
bag-of-embeddings model, we analyze the interactions be-
tween target and context vectors, and the correlation between
target embedding vectors under different classes. Figure 3 (a)
and (b) shows the probabilities of the words “win” and “runs”
as calculated using different context word embeddings, re-
spectively. We choose the most popular context words from
different classes by following Lacoste-Julien et al. [2008].
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Figure 3: Target embedding probabilities calculated by different context vectors.

Table 4: Nearest neighbors given a target embeddding in a
specific class, “tw”: target word, “wf”: target word frequency,
“No”: class number.

tw wf No neighbours

win 5 2 transmitting, editor,
monochrome, xm, xlib

win 261 3 windows, use, just, dos, program
win 33 4 windows, running, tue, dos, gates
win 7 5 tom, battle, runs, situation, viewed
win 5 8 metro,creator, sell, gen, wagon

win 5 9 chance, taught, single,
rider, demonstrating

win 188 10 team, pitching, won, games, game
win 276 11 vs, game, tired, leafs, series

runs 41 2 software, supports, platforms,
unix, workstations

runs 14 3 non, applications, windows, dos, use
runs 18 4 installed, set, hard, install
runs 13 5 cpu, wondered, week, dx, breaks

runs 5 8 deeper, theoretically,
stronger, lowly, steep

runs 18 9 through, just, bikes, bought, day
runs 234 10 scored, run, game, team, games
runs 13 11 bang, hitter, things, press, hype

The X-axis represents the target embeddings in the 20 classes
in Table 2, in the same order.

It can be seen from the Figure 3 that the same words
have highly different probabilities across different classes, re-
flected by the inner product of their class-sensitive target em-
bedding and a context word embedding. In addition, context
words have a large influence on the distributions. For exam-
ple, the word “win” has a large probability under the com-
puter graphics class when the context word is “image”, yet
large probabilities in the two sports classes when the context
word are “baseball” and “hockey”, respectively. This demon-
strates how word and context information interact in the bag-

of-embeddings model. In contrast, a bag-of-word model re-
lies on words themselves rather than word-context relations

for disambiguating document classes.
Within each class, the training of target embedding vectors

is essentially the same as the skip-gram model, and therefore
the embeddings trained for the classification model should ex-
hibit a certain degree of distributed similarities. Table 4 con-
firms the intuition. For example, under various classes, the
closest words to the word “win” include “windows”, “dos”
and “won”, which are synonyms or morphological variations
of the word, and “use”, “chance” and “game”, which are
syntactics or semantically related words in a distributed con-
text. In addition, the closest words of the same word dif-
fer when the class change, again showing the class sensitiv-
ity of the embeddings. For example, under class 3, namely
comp.os.ms-windows.misc in Table 2, the word “win” is
close to “windows”, “dos” and “program”. On the other hand,
under class 10, rec.sports.baseball, “win” is close to “team”,
“pitching” and “game”, demonstrating class-specific distribu-
tional similarity.

5 Conclusion and Future Work

We built a text classifier by using a Naive Bayes model
with bag-of-embeddings probabilities. Compared with bag-
of-word models, the bag-of-embeddings model exploits con-
textual information by deriving the probabilities of class-
sensitive embedding vectors from their inner product with
context words. Our model is conceptually simple, with only
parameters being embedding vectors, trained using a varia-
tion of the skip-gram method. Experiments on two standard
datasets showed that our model outperforms state-of-the-art
methods for both balanced and imbalanced data.

Future work includes two directions. First, we would con-
sider leveraging unlabeled data for semi-supervised [Tang et
al., 2015]. Second, we would exploit neural documents mod-
els, which contains richer parameters spaces by capturing
word relations, for potentially better accuracies.
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