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Abstract
Existing open-domain human-computer conversa-
tion systems are typically passive: they either syn-
thesize or retrieve a reply provided with a human-
issued utterance. It is generally presumed that hu-
mans should take the role to lead the conversation
and introduce new content when a stalemate occurs,
and that computers only need to “respond.” In this
paper, we propose STALEMATEBREAKER, a con-
versation system that can proactively introduce new
content when appropriate. We design a pipeline
to determine when, what, and how to introduce
new content during human-computer conversation.
We further propose a novel reranking algorithm Bi-
PageRank-HITS to enable rich interaction between
conversation context and candidate replies. Ex-
periments show that both the content-introducing
approach and the reranking algorithm are effec-
tive. Our full STALEMATEBREAKER model out-
performs a state-of-the-practice conversation sys-
tem by +14.4% p@1 when a stalemate occurs.

1 Introduction
Automatic human-computer conversation is believed to be
one of the most challenging problems in artificial intelli-
gence (AI). For decades, researchers have developed var-
ious systems based on human-crafted rules [Webb, 2000;
Varges et al., 2009], information retrieval methods [Misu and
Kawahara, 2007; Yan et al., 2016], or natural language gen-
erators like neural networks [Shang et al., 2015]. In these
systems, the computer either searches or synthesizes a reply
given an utterance (called query) issued by a user. It is gen-
erally presumed that “humans” should play a leading role in
human-computer conversation. Hence traditional AI conver-
sation is a passive process: what a computer does is just to
“respond.”

In human-human conversation, however, both participants
have the duty to play a leading role in a continuous dia-
logue session. The phenomenon is supported by the statistics
of conversation data collected from an online forum1 (Fig-
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Figure 1: In a multi-turn human-human conversation started
by User A, we plot the percentage at which each user should
take the role of conversation leading. In other words, we de-
tect how likely a stalemate occurs to a particular user.

ure 1). Our observation is that, shortly after the conversation
begins, both parts are likely to be the stalemate breaker. If
only one side keeps finding something to talk while the other
side responds in an unmindful way, the conversation becomes
less attractive and is likely to end pretty soon. Therefore, in
human-computer conversation, the computer side should also
be initiative and introduce new content when necessary.

The problem of content introducing is also raised from in-
dustry. Although real-world conversation will end sooner or
later, industrial conversation systems shall always try to at-
tract users for commercial purposes (except when users ex-
plicitly terminate a session). Thus, stalemate breaking is of
particular importance to industrial conversation products.

Existing mixed-initiative dialogue systems are typically
designed in vertical domains. For example, Ferguson et
al. [1996] develop a rule-based system, named TRAINS-95,
in the transportation domain; Glas et al. [2015] leverage pre-
defined topics in a museum-guiding system. Such design
methodology, however, hardly applies to non-task-specific,
chat-style dialogues. Since users are free to say anything,
it is virtually impossible to specify rules or design templates
for open-domain conversations. Moreover, the content to be
introduced is nearly certain in those task- or goal-oriented ap-
plications [Seon et al., 2014], whereas the nature of open-
domain conversations shows that a variety of replies are plau-
sible, but some are more meaningful, and others are not.
Consequently, open-domain conversations are different from
task-specific dialogues; the same thing holds for content in-
troducing in these two scenarios.

In this paper, we propose STALEMATEBREAKER, a con-
versation system that can proactively introduce new con-
tent during human-computer conversations. We first detect
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whether a stalemate occurs by keyword filtering like “. . . ” or
“Errr,” so that our system knows when the stalemate-breaking
mechanism should be triggered. To determine what to intro-
duce, we backtrack previous utterances (called context) in a
dialogue session and apply named entity recognition in the
context. The detected entities are searched for more related
entities in a large knowledge graph. All these entities are
used to retrieve candidate replies in a conversation database.
We believe named entities highly reflect users’ interest and
provide informative clues for content introducing. We then
propose a Bi-PageRank-HITS algorithm to address how to
introduce. By matching the relationship between the context
and candidate replies (containing the entities) in a reinforced
co-ranking manner, we obtain a ranked list, indicating the rel-
evance of each candidate reply. In this way, our system is well
aware of when, what, and how to proactively introduce new
context in a continuous human-computer conversation.

We build our proactive content-introducing system upon
a large conversation database for retrieval (9.8 million candi-
date query-reply pairs) plus an external knowledge graph (3.7
million tuples). We evaluate our system on conversation logs
from real-world users. Our approach outperforms several
strong baselines as well as a state-of-the-practice system.

2 Related Work
2.1 Dialogue systems

• Domain-specific systems. Automatic human-computer
conversation has long attracted attention in several vertical
domains [Bernsen et al., 1994; Rickel and Johnson, 2000].
In such task- or goal-oriented applications, researchers have
developed mixed-initiative systems to more effectively guide
users in conversation. Several examples include TRAINS-
95 for route planning [Ferguson et al., 1996], MIMIC for
movie show-time information [Chu-Carroll, 2000], and Au-
toTutor for learner advising [Graesser et al., 2005]. These
systems rely heavily on human-designed rules or templates.
Other systems may require intensive domain knowledge to
be initiative in conversation, e.g., museum guiders [Glas et
al., 2015], children companion systems [Adam et al., 2010;
Macias-Galindo et al., 2012], etc.

• Open-domain systems. Human-engineered rules may
also be applied to the open domain as Han et al. [2015]
do, but their generated sentences are subject to 7 predefined
forms and hence are highly restricted; they leverage exter-
nal knowledge bases to enhance content in the responses.
Recently, more and more studies and systems are tack-
ling the real challenges of the open domain: great flexibil-
ity and diversity. Retrieval-based methods “query” a user-
issued utterance in a large database of existing dialogues,
and return appropriate responses [Higashinaka et al., 2014;
Ji et al., 2014]. Generative methods—typically using sta-
tistical machine translation techinques [Ritter et al., 2011;
Sugiyama et al., 2013; Mairesse and Young, 2014] or neural
networks [Shang et al., 2015; Sordoni et al., 2015]—can syn-
thesize new replies, although the generated sentences are not
guaranteed to be a legitimate natural language text. Industrial
products like Siri of Apple, Xiaobing of Microsoft, and
Xiaodu of Baidu, are among state-of-the-practice systems;

they are increasingly affecting people’s everyday life.
To the best of our knowledge, existing open-domain

chatbot-like conversation are a passive process: the computer
only needs to “respond” to human inputs and does not take
the role of conversation leading. Instead, we propose a proac-
tive system, which can determine when, what, and how to be
proactive and to introduce new content into the conversation.

2.2 Random Walk-Based Ranking
Our system follows a retrieval-and-reranking schema to select
replies from a candidate pool. In this part, we briefly review
(re)ranking algorithms like PageRank and its variants.

In the field of information retrieval, research shows that
random walks over hyper-link graphs, i.e., PageRank, can
reflect the relationship between different web pages and
rank high important ones [Page et al., 1999]. Many stud-
ies are devoted to the application and extention of PageR-
ank [Haveliwala, 2002; Jeh and Widom, 2003]. Random
walks over bipartite graphs can model two heterogeneous
types of items, e.g., the HITS algorithm for queries and docu-
ments in a click-though graph [Kleinberg, 1999; Deng et al.,
2009]. Its variants have been widely used for ranking tasks
in the information retrieval community [Cao et al., 2008;
Song et al., 2012]. In our scenario, the matching between
user utterances and candidate replies can also be modeled as a
bipartite graph; to enhance their interaction, we extend exist-
ing models and propose Bi-PageRank-HITS, which is a novel
algorithm for reranking.

3 The Proposed Approach
3.1 Architecture
Figure 2 shows the overall architecture of our STALEMATE-
BREAKER system; Figure 3 further illustrates the process
flow of content introducing. Our system comprises mainly
four steps:

Stalemate detection. The system is built upon a conven-
tional retrieval-based conversation system, which is typically
passive. The proactive content introducing starts from stale-
mate detection. We apply keyword matching of meaningless
expressions like “. . . ” or “Errr.” In total, we have nearly a
hundred filters. Although simple, the approach works in a
pragmatic way and is not the main focus of this paper. In
future work, we would like to apply learning-based sentence
modeling (e.g., Mou et al. [2015]) for stalemate detection.

Named entity detection. Once the content-introducing
mechanism is triggered, our system backtracks previous ut-
terances in the current conversation session, and detects all
named entities within a window. Currently, we keep four ut-
terances, i.e., two turns, as context. We believe recently men-
tioned named entities highly reflect users’ interest; hence we
search related entities in a knowledge base for introducing
new content. Concretely, the knowledge base is composed of
tuples like he1, e2, wi, indicating the entity e1 is correlated to
e2 with a weight of w. Notice that the relation between e1

and e2 in this tuple is directed because weights are asymmet-
ric. For each entity in the current context, we search it in the
knowledge base and keep top (highest weighted) five returned
entities for further processing.
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Figure 2: Overview of our STALEMATEBREAKER system.
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Figure 3: Process flow of triggering content introducing.

In our work, the knowledge base we used was constructed
from query logs of an information retrieval system. Without
loss of generality, we can also exploit similar resources, e.g.,
ontologies [Xu et al., 2014] or information networks [Cao
et al., 2014]. Leveraging knowledge bases for content intro-
ducing, in fact, is also applied in Han et al. [2015]. How-
ever, they plug related entities to several predefined templates
for response generation, whereas we have further developed
complicated retrieval-and-reranking approaches.

It should be mentioned that if the conversation is not in a
stalemate or we could not recognize any named entity in pre-
vious several utterances, our system will return to the general
conversation mode. In other words, the proactive content-
introducing method can be viewed as an “add-on” mechanism
to a mature conversation system.

Candidate reply retrieval. We then use the entities and
conversation context to retrieve up to fifty candidate replies
from a large pool of collected dialogue data. A candidate re-
ply contains at least one entity. This process is accomplished
by standard keyword-based retrieval methods, similar to the
Lucene system.

Selection by reranking. Finally, the candidate replies are
reranked by a random walk-like algorithm. To enhance inter-
action between conversation utterances and candidate replies,
we further propose Bi-PageRank-HITS, a novel algorithm
that combines PageRank and HITS into a single framework.
(See next subsection.) The highest (re)ranked candidate is
selected as the reply.

3.2 Reranking Algorithm
In this part, we describe in detail the proposed Bi-PageRank-
HITS algorithm, which is a combination of PageRank [Page
et al., 1999] and HITS [Kleinberg, 1999; Deng et al., 2009].2

We formulate the utterances in context (called queries) and
candidate replies as a bipartite graph. Following the notations
in HITS, we denote queries as “hubs” and replies as “authori-
ties.” Then our random walk-style algorithm alternately ranks

2“HITS” is the acronym of hyperlink-induced topic search.

either side in the query-candidate graph (PageRank step) and
interacts between the two sides (HITS step).

Our intuition is that a high hub score indicates the query
is important, providing a clue for content introducing; the in-
teraction between two sides assesses the appropriateness of a
reply to all queries (reweighted by query importance). Then
another PageRank over authorities suggests high-quality
replies; such information is propagated back to queries in
a similar way. So on and so forth, the hub and authority
scores are iteratively computed in a reinforced fashion. After
convergence, we obtain an overall ranking list for candidate
replies. Because PageRank applies to both hubs and authori-
ties, the model in this paper extends our previous work [Yan et
al., 2012b; 2015], and we name the algorithm Bi-PageRank-
HITS. In the rest of this subsection, we present individual
PageRank and HITS steps and then describe how they are
combined.

PageRank step. For either side (e.g., queries) of the query-
reply bipartite graph, we use PageRank [Page et al., 1999] for
scoring. We do not consider the other side (e.g., replies) in
this step.

Considering the set of all queries (utterances in the conver-
sation context), we define a random walk over an undirected
graph G

q

= (V
q

, E

q

), whose nodes are the queries and edges
are the relationships between a query-query pair. The weight
of an edge i ! j is defined to be the “similarity” between
queries i and j, i.e., M

q,ij

= sim(q
i

, q

j

), where we use the
cosine measure as similarity based on two queries’ tf·idf vec-
tors.

To incorporate a prior distribution x over queries, we fol-
low Yan et al. [2012a] and define the PageRank formula as

q

(i+1) = (1� µ)[Diag(x)M>
q

]q(i) + µx (1)

Likewise, for the set of candidate replies, we have

r

(i+1) = (1� µ)[Diag(y)M>
r

]r(i) + µy (2)

where [·] denotes column normalization, that is to say, each
column is the transition probability of its corresponding node.
Superscripts indicate the number of iterations in a particular
PageRank step (called local iteration).

PageRank is inspired by the following intuition. A candi-
date reply is important if it is “voted” by many other candi-
dates. The prior (x for queries or y for replies) is initialized
as a uniform distribution, but may change to emphasize par-
ticular nodes suggested by the HITS step during interaction
between queries and replies.

HITS step. After the above step, we obtain PageRank
scores for either queries or candidate replies. To propagate
such information to the other side in the query-reply bipartite
graph, we perform another random walk with links between
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queries and replies representing the structural information of
hubs and authorities.

Formally, the bipartite graph G = (V,E) has vertexes
V = {V

q

[ V

r

}, where V

q

are queries and V

r

are replies.
We define the weight matrix by a relevance scoring function
�(q, r) between queries and replies. �(·, ·) was learned via a
learning-to-rank model similar to Burges et al. [2005] with
rich features including textual similarity, translation models,
as well as word2vec word embeddings [Mikolov et al.,
2013]. In other words, �(·, ·) returns the relatedness between
a query and a reply in the range (0, 1).

Moreover, since we would like to make use of PageRank
scores for queries or replies, the HITS links are judged by not
only the static relevance score �(·, ·), but also the informa-
tion given by PageRank. To be concrete, the (unnormalized)
weight matrix is given by either

W̃

ij

= �(q
i

, r

j

) · q
i

(query!reply) (3)

or W̃

ij

= �(r
i

, q

j

) · r
i

(reply!query) (4)
Here, q

i

and r

i

are the i-th element in the vectors q and r,
which are obtained in the PageRank phase by Equations 1–2.
If information is propagated from queries to replies, we use
the former equation for weight update, and vice versa.

The mutual-reinforcing relationship of hub and authority
scores can be expressed in matrix representation as follows.

x

(i+1) = ↵

x

·
⇥
W̃

⇤
y

(i) + (1� ↵

x

) · x̂ (5)

y

(i+1) = ↵

y

·
h⇥
W̃

⇤>i
x

(i) + (1� ↵

y

) · ŷ (6)

where x is query scores, y reply scores; superscripts denote
the number of local iterations in HITS update. Each column
of the weights is normalized to be a valid probability. More-
over, to compute the weight for y, the matrix ˜

W

> should be
first row-normalized (given by [ ˜W]>); otherwise, the effect
of the prior q

i

in Equation 3 is ruled out by column normal-
ization. Notice that the transition matrix is fixed in one step
of HITS, but they may also change as our algorithm proceeds
like the PageRank step.

In the above equations, the first term is the standard HITS,
which is entirely determined by the linkage structure between
hubs and authorities. The second term indicates that, with a
certain probability, the hub and authority scores will be influ-
enced by their prior scores x̂ and ŷ. Such idea of combining
additional information of hubs and authorities is proposed in
Deng et al. [2009] and called Co-HITS.3

We define the prior score of a query to be proportional
to the averaged relevance (textual similarity) score to all
replies, i.e., x̂

i

/ 1
#r

0

P
r

0 sim(q
i

, r

0). Likewise, ŷ

i

/
1

#q

0

P
q

0 sim(q0, r
i

). The vectors x̂ and ŷ are also self-
normalized so as to be valid probabilities.

Iteration over PageRank and HITS. After performing
PageRank over one side (e.g., queries) of the bipartite query-
reply graph and propagating the information with HITS,
we shall perform another PageRank on the other side (e.g.,

3Precisely, our model uses the Co-HITS variant. But for simplic-
ity, we denote it as HITS, if not confused, for notational purposes.

Algorithm 1: Bi-PageRank-HITS
Input: Queries (utterances) and candidate replies
Output: Ranking list of replies for content introducing
begin

//Global iteration in Bi-PageRank-HITS
repeat

Update query priors
repeat

PageRank update over queries by Eqn. 1
until Local convergent;

Update HITS weights by Eqn. 3 (query!reply)
repeat

HITS update over query-reply bipartite graph
until Local convergent;

Update reply priors
repeat

PageRank update over replies by Eqn. 2
until Local convergent;

Update HITS weights by Eqn. 4 (reply!query)
repeat

HITS update over query-reply bipartite graph
until Local convergent;

until Global convergent;

HITS over
query-reply
graph

PageRank
over queries

PageRank
over replies

… 
HITS over
query-reply
graph

HITS over
query-reply
graph

PageRank
over queries

PageRank
over replies

One global iteration

Update HITS 
weights

Update prior 
of replies

Update prior 
of queries

replies). As mentioned, we use the results x or y obtained by
HITS as the prior information, and recompute the transition
weights in PageRank (Equation 1 or 2). Then, the informa-
tion is propagated back by HITS, and PageRank is applied
again for a better estimation.

As depicted in Algorithm 1, our Bi-PageRank-HITS al-
gorithm performs PageRank and HITS steps alternately and
computes the importance of a query/reply in a reinforced way.
Note that the transition matrix in each step of PageRank or
HITS is fixed, but they change dynamically during global it-
erations. Thus our model is different from the original PageR-
ank or HITS.

For convergence concerns, we have normalized all prior
distributions and all columns in transition matrices. There-
fore, the convergence of PageRank and HITS is guaranteed.
For alternation between the two steps, we shall empirically
analyze its convergence in Section 4.4. In practice, we termi-
nate our algorithm when the mean square difference between
two successive HITS scores in global iteration is less than a
threshold (10�6 in our study).

After convergence, we use replies’ HITS scores y for fi-
nal reply selection. Compared with PageRank scores r, HITS
scores convey more structural information between queries
and replies. A higher score indicates the reply is more appro-
priate for content introducing.

2848



4 Evaluation
4.1 Datasets and Experimental Setups
Our content-introducing open-domain conversation system is
built upon a large database of conversation data for retrieval.
We collected massive resources from (Chinese) forums, mi-
croblog websites, and community question-answering plat-
forms including Baidu Zhidao, Baidu Tieba, Douban forum,
Sina Weibo, etc.4 In total, we extracted nearly 10 million
query-reply pairs. Besides, we leveraged a knowledge graph
mined from Baidu search logs.

To evaluate the proposed STALEMATEBREAKER, we re-
sorted to human evaluation, following Ritter et al. [2011] and
Shang et al. [2015]. Objective scores like BLEU and tra-
ditional evaluation for dialogue systems (e.g., accuracy of
template classification) are less applicable to our scenario,
because open-domain conversation is highly diverse—one
query can have a lot of suitable replies that appear different to
each other. Human evaluation, on the other hand, conforms
to the ultimate goal of open-domain conversation systems. In
our experiments, we used 180 sessions from real-world user
conversation logs. For each entity in the context (4 previous
utterances in the session), we sought 5 most related entities in
the knowledge graph, and for each related entity, we retrieved
top-10 candidate replies (containing the entity).

We hired workers on a Chinese crowdsourcing platform
to annotate all retrieved results with 1 Point (appropriate)
or 0 Point (inappropriate). A candidate reply was annotated
by 3 workers in an independent and blind fashion. We re-
garded the majority voting as the “ground truth” indicating
whether the reply is appropriate for content introducing. We
also evaluated the kappa score:  = 0.768, showing high
inner-annotator agreement [Fleiss, 1971].

Our website5 provides additional data statistics and rating
criterion.

4.2 Competing Methods
We compared the proposed proactive content-introducing
method with passive conversation systems. As our work is
an “add-on” mechanism to a deployed system, we presumed
that a stalemate had been detected in our evaluation. In other
cases, our proposed method does not corrupt the existing sys-
tem.

For fairness, our baselines (passive conversation systems)
were also aware of context information for candidate reply
retrieval, since an utterance like “Errr” itself contains little
substance. We also performed data cleaning like Pitler et
al. [2010] by removing candidates of low linguistic quality
such as extremely short ones or meaningless babblings.

Regarding ranking algorithms, we compared the proposed
Bi-PageRank-HITS with the following methods:

• Textual similarity. This method ranks candidate replies
according to textual similarity, predicted by a regression
model with human engineered features. It is a state-
of-the-practice system6 which our experimental environ-
ment was built upon.

4http://{zhidao.baidu|tieba.baidu|douban|weibo}.com
5https://sites.google.com/site/stalematebreaker/
6http://duer.baidu.com

Group Reranking Method p@1 MAP nDCG

No content
introducing

Textural similarity† 0.406 0.498 0.648
HITS 0.467 0.550 0.684
Reply PageRank 0.428 0.514 0.660
Co-HITS 0.472 0.552 0.686
Bi-PageRank-HITS 0.483 0.556 0.690

Entity-based
content
introducing

Textural similarity 0.511 0.551 0.742
HITS 0.494 0.542 0.733
Reply PageRank 0.467 0.436 0.660
Co-HITS 0.511 0.555 0.743
Bi-PageRank-HITS‡ 0.550 0.562 0.750

Table 1: Performance of our method and baseline systems.
†A state-of-the-practice system which our model is built
upon. ‡The full STALEMATEBREAKER system. Notice that
the MAP and nDCG metrics are not comparable outside a
group because the retrieved candidates are different.

• Reply PageRank. PageRank is a widely used ranking
algorithm [Page et al., 1999], and is, actually, a compo-
nent of the Bi-PageRank-HITS model.

• HITS. HITS is a link analysis algorithm suitable for
modeling bipartite graphs like web click-through data
[Kleinberg, 1999].

• Co-HITS. Co-HITS [Deng et al., 2009], a variant of
HITS, is another component of our Bi-PageRank-HITS
model. Details are described in Section 3.2.

4.3 Overall Performance
We first evaluated the performance using the p@1 metric,
which is believed to be the most direct judgment of conver-
sation systems [Wang et al., 2013; Shang et al., 2015]. It re-
flects exactly the “accuracy” of the highest-ranked reply. Fur-
ther, we applied mean average precision (MAP) and normal-
ized discounted cumulative gain (nDCG), as both our system
and baselines return a ranking list containing multiple candi-
dates. For details of our metrics, we refer interested readers
to Järvelin and Kekäläinen [2002] and Kishida [2005]. For-
mulas are also listed on our website.

Table 1 shows the performance of our STALEMATE-
BREAKER system as well as a variety of baselines.

The main result is that proactive entity-based content intro-
ducing is generally better (higher p@1) than passive conver-
sation systems regardless of the ranking algorithm. Although
passive systems can reply to important previous utterances in
the current conversation session to some extent (because the
baselines are also context-aware), they are more likely to re-
peat existing topics and be stuck in the stalemate.

By contrast, our STALEMATEBREAKER proactively seees
a knowledge base, retrieves candidate replies that contain
related entities, and reranks more appropriate ones. Thus,
entity-based content introducing methods yield higher scores
in terms of p@1, i.e., accuracy of the top-ranked reply.

Regarding the Bi-PageRank-HITS ranking algorithm, it
outperforms its base models, PageRank and HITS/Co-HITS,
as well as a feature-rich regression model based on textu-
ral similarity. The results are conservative in all metrics
(p@1, MAP, and nDCG) and in both introducing and non-
introducing groups, showing that our ranking algorithm is po-
tentially applicable to other tasks.
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Figure 4: Parameter analysis. (a) ↵
x

and (b) ↵
y

were tuned
from 0 to 1 with a granulairty of 0.1 given the other param-
eter was fixed (at the stationary point of grid search in the
parameter space).
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Figure 5: Convergence analysis of global iterations of Bi-
PageRank-HITS. 10 randomly chosen samples are plotted.

To sum up, the experimental results show that both our
entity-based content introducing and Bi-PageRank-HITS are
effective. When a stalemate occurs, the full STALEMATE-
BREAKER yields a +14.4% boost of accuracy (p@1) com-
pared with a state-of-the-practice system which our model is
built upon.

4.4 Analysis and Discussion
Parameter Settings. In our Bi-PageRank-HITS model, we
have three main parameters, µ in the PageRank phase, and
↵

x

,↵

y

in the HITS phase. µ was set to 0.15 following Yan et
al. [2012a] and not tuned in our experiment. For ↵

x

and ↵

y

,
we tried different values with a granularity of 0.1. The results
are shown in Figure 4. If ↵ is set to 0, the HITS update van-
ishes (the first term in Equations 5–6), and the system solely
depends on “prior” information. The result is worse than us-
ing HITS update.

When ↵ increases, we observe an interesting phenomenon:
queries and replies respond differently. For queries, i.e., con-
text utterances, the performance peaks when ↵

x

is small (Fig-
ure 4a). This suggests that textual information x̂ (based on
query-reply similarity) does recommend important queries.
On the contrary, textual information ŷ for replies is inimical:
the highest performance was achieved when ↵

y

= 1, where
ŷ was discarded. One plausible explanation is that, based on
textual similarity, the algorithm is likely to recommend sim-
ilar replies to the queries and be stuck in stalemate. In sum-
mary, the parameters we used were ↵

x

= 0.3 and ↵

y

= 1.
Convergence. In our Bi-PageRank-HITS, the convergence
of each local step (either PageRank or HITS) is guaranteed
because we have properly normalized the transition matri-
ces. We further empirically analyze the global convergence
by plotting the root mean square error between two succes-
sive HITS scores. Figure 5 shows the curves of 10 randomly

Table 2: Examples obtained by STALEMATEBREAKER.

chosen samples; the results indicate that Bi-PageRank-HITS
typically converges quickly in 3–5 global iterations. It works
well in practice.
Case Study. We illustrate two examples in Table 2 obtained
by Bi-PageRank-HITS. As seen, the (human) user doen not
know waht to say by “Err. . . ,” but our system can introduce
new content (entities like “WALL-E” and the TW play “Mar-
riage of the Fairy Princess”) to attract users.

5 Conclusion
In this paper, we addressed the problem of content introduc-
ing for stalemate breaking in open-domain conversation sys-
tems. We proposed a pipeline of content introducing based
on an external knowledge graph. To enhance the interaction
between queries (utterances in the conversation) and candi-
date replies (retrieved from a massive database), we further
proposed the random walk-style Bi-PageRank-HITS rerank-
ing approach. Experiments show the effectiveness of both our
content-introducing method and the ranking algorithm.
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