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Abstract
Recently, Word2Vec tool has attracted a lot of in-
terest for its promising performances in a variety
of natural language processing (NLP) tasks. How-
ever, a critical issue is that the dense word represen-
tations learned in Word2Vec are lacking of inter-
pretability. It is natural to ask if one could improve
their interpretability while keeping their perfor-
mances. Inspired by the success of sparse models in
enhancing interpretability, we propose to introduce
sparse constraint into Word2Vec. Specifically, we
take the Continuous Bag of Words (CBOW) model
as an example in our study and add the `

l

regu-
larizer into its learning objective. One challenge
of optimization lies in that stochastic gradient de-
scent (SGD) cannot directly produce sparse solu-
tions with `

1

regularizer in online training. To solve
this problem, we employ the Regularized Dual Av-
eraging (RDA) method, an online optimization al-
gorithm for regularized stochastic learning. In this
way, the learning process is very efficient and our
model can scale up to very large corpus to derive
sparse word representations. The proposed model
is evaluated on both expressive power and inter-
pretability. The results show that, compared with
the original CBOW model, the proposed model
can obtain state-of-the-art results with better inter-
pretability using less than 10% non-zero elements.

1 Introduction
Word embedding aims to encode semantic meanings of words
into low-dimensional dense vectors. Recently, neural word
embeddings have attracted a lot of interest for their promis-
ing results in various natural language processing (NLP) tasks
e.g., language modeling [Bengio et al., 2003], named en-
tity recognition [Collobert et al., 2011], and parsing [Socher
et al., 2013]. Among all the neural embedding approaches,
CBOW and Skip Gram (SG) [Mikolov et al., 2013a], imple-
mented in the Word2Vec tool, are two state-of-the-art meth-
ods due to their simplicity, effectiveness and efficiency.

However, for Word2Vec, a critical issue is that the dense
representations they derived are lacking of interpretability.
We do not know which dimension in word vectors represent

the gender of “man” and “woman”, and also do not know
what sort of value indicates “male” or “female”. This makes
dense representations as a black-box. Moreover, even if there
exists some dimension corresponding to the gender informa-
tion, such dimension would be active in all the word vectors
including irrelevant words like “parametric”, “stochastic”,
and “bayesian”, which is very difficult in interpretation and
uneconomic in storage.

Therefore, a natural question is that: can we improve the
interpretability of Word2Vec while keeping their promising
performances?

In this paper, we argue that sparsification is a possible an-
swer for this question. In other domains (e.g., image pro-
cessing and computer vision), sparse representations have al-
ready been widely used as a way to increase interpretability
[Olshausen and Field, 1997; Lewicki and Sejnowski, 2000].
For word representations, Murphy et al. [2012] improved
dimension interpretability by introducing non-negative and
sparse constraints into matrix factorization (NNSE). Re-
cently, Faruqui et al. [2015] verified the effectiveness of spar-
sity under Word2Vec in a post-processing way. They con-
verted the dense word vectors derived from Word2Vec us-
ing sparse coding (SC) and showed the resulting word vec-
tors are more similar to the interpretable features used in
NLP. However, SC usually suffers from heavy memory usage
since they require a global matrix. This makes it quite dif-
ficult to train SC on large-scale text data. Since Word2Vec
can easily scale up to large-scale raw text data, is it possi-
ble to directly derive sparse word representations under the
Word2Vec framework?

In this paper, unlike SC introducing sparsity in a post-
processing stage, we propose to directly applying the sparse
constraint to Word2Vec. Specifically, we take CBOW as
an example to conduct the study. A natural way to produce
sparse representations is to add an `

1

regularizer on the word
vectors. This is non-trivial in CBOW since the online op-
timization with stochastic gradient descent (SGD) cannot di-
rectly produce the sparse solutions for `

1

regularizer. To solve
this issue, we employ the Regularized Dual Averaging (RDA)
alogrithm [Xiao, 2009] to optimize `

1

regularized loss func-
tion of CBOW in online learning. In this way, we can ef-
ficiently learn sparse word representations from large-scale
raw text data on the fly.

We evaluate our model on both expressive power and inter-
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pretability. For expressive power, we evaluate the learned rep-
resentations on two tasks, word similarity and word analogy.
The results show that the proposed sparse model can achieve
competitive performance with the state-of-the-art models un-
der the same setting. Furthermore, our method also outper-
forms other sparse representation models significantly. For
interpretability, we introduce a new evaluation metric for
word intrusion task to get rid of human evaluation. Exper-
imental results demonstrate the effectiveness of our sparse
representations in comparison with the dense representations.

2 Related Work
Representing words as continuous vectors in a low-
dimensional space dates back several decades [Hinton et al.,
1986]. Based on the distributional hypothesis [Harris, 1954;
Firth, 1957], various methods have been developed in the
NLP community, including matrix factorization [Deerwester
et al., 1990; Murphy et al., 2012; Faruqui et al., 2015;
Pennington et al., 2014] and neural networks [Bengio et al.,
2003; Collobert and Weston, 2008]. According to the con-
straint on the representations, we group the existing models
into two categories, i.e., dense word representation models
and sparse word representation models.

2.1 Dense Word Representation Models
Inspired by the success in deep learning for NLP, there has
been a flurry of subsequent work exploring various neural
network structures and optimization methods to represent
words as low-dimensional dense continuous vector [Bengio
et al., 2003; Collobert and Weston, 2008; Mikolov et al.,
2013a; Mnih and Kavukcuoglu, 2013; Mikolov et al., 2013b].
Among all these neural embedding approaches, CBOW and
SG are two state-of-the-art methods due to their simplicity,
effectiveness and efficiency.

Besides, low-rank decomposition and spectral methods are
also popular choices to learn dense word representations.
LSA [Deerwester et al., 1990] used Singular Value Decom-
position (SVD) to factorize the word-document matrix to ac-
quire continuous word representations. GloVe [Pennington
et al., 2014] factorized a log-transformed word-context co-
occurrence matrix. Canonical Correlation Analysis (CCA)
also provided a powerful tool to derive the word represen-
tations [Dhillon et al., 2011; Stratos et al., 2015]. Levy and
Goldberg [2014b] showed the connection between matrix fac-
torization and Skip Gram with negative sampling.

Because of its advantage over traditional one-hot (local)
representation, the dense vectors learned by these models
have been successfully used in various natural language pro-
cessing tasks, e.g., language modeling [Bengio et al., 2003],
named entity recognition [Collobert et al., 2011], and parsing
[Socher et al., 2013].

2.2 Sparse Word Representation Models
Dense word representations have dominated the NLP com-
munity because of their effectiveness in a variety of NLP
tasks. Nonetheless, they are usually criticized for lacking of
interpretability and extravagance of storage [Griffiths et al.,
2007]. On the contrary, sparse representation is considered

as a potential choice for interpretable word representations.
It is believed that human brain represents the information in
a sparse way. For example, in human vision, neurons in the
primary visual cortex (V1) are believed to have a distributed
and sparse representation [Olshausen and Field, 1997; At-
twell and Laughlin, 2001]. In human language, Vinson and
Vigliocco [2008] showed that the gathered descriptions for
a given word are typically limited to approximately 20�30
features in feature norming1.

In practice, sparse overcomplete representations have been
widely used as a way to improve separability and inter-
pretability in image processing and computer vision [Ol-
shausen and Field, 1997; Lewicki and Sejnowski, 2000].
There have been some work trying to explore sparse word
representations. Murphy et al. [2012] improved the inter-
pretability of word vectors by introducing sparse and non-
negative constraints into matrix factorization. Lately, Faruqui
et al. [2015] converted dense word vectors derived from any
state-of-the-art word vector model (e.g., CBOW or SG) into
sparse vectors using sparse coding and showed the resulting
word vectors are more similar to the interpretable features
typically used in NLP tasks comparing with original dense
word vectors.

3 Our Approach
In this section, we take CBOW as an example to conduct the
study. We first briefly introduce CBOW and then elaborate
the proposed sparse representations model. It is easy to apply
the sparse constraint to SG model using the same strategy
elaborated in this section.

3.1 Notation
First of all, We list the notations used in this paper. Let
C=[w

1

, . . . , w

N

]

2 denotes a corpus of N word sequence over
the word vocabulary W . The contexts for word w

i

2 W

(i.e., i-th word in corpus) are the words surrounding it in an
l-sized window (c

i�l

, . . . , c

i�1

, c

i+1

, . . . , c

i+l

), where c

j

2
C, j2[i�l, i+l]. Each word w 2 W and context c 2 C are
associated with vectors #‰

w 2 Rd and #‰
c 2 Rd respectively,

where d is the representation dimensionality. In this paper, #‰
x

denotes the vector of the variable x unless otherwise speci-
fied. The entries in the vectors are treated as parameters to be
learned.

3.2 CBOW
Continuous Bag-of-Words (CBOW) is a simple and effective
state-of-the-art word representation model [Mikolov et al.,
2013a]. It aims to predict the target word using context words
in a sliding window.

Formally, given a word sequence C, the objective of CBOW
is to maximize the following log-likelihood:

L
cbow

=

NX

i=1

⇣
log p(w

i

|h
i

)

⌘

1It is a task that participants are asked to list the properties of a
word.

2It is worth noting that wi and wj in corpus C could be the same
word w in the vocabulary W .
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where h

i

denotes the combination of w
i

’s contexts.
We use softmax function to define the probabilities

p(w

i

|h
i

) as follows:

p(w

i

|h
i

) =

exp(

#‰
w

i

· #‰
h

i

)

P
w2W

exp(

#‰
w · #‰

h

i

)

where
#‰
h

i

denotes the projected vectors of w
i

’s contexts. It is
defined as the average of all context word vectors in CBOW3:

#‰
h

i

=

1

2l

i+lX

j=i�l

j 6=i

#‰
c

j

3.3 Sparse CBOW
In order to learn sparse word representations, a straight-
forward way is to introduce the sparse constraint, e.g., the
`

1

regularizer, on word vectors. In this way, we obtain the
new objective function as follows:

L
s�cbow

= L
cbow

� �

X

w2W

k #‰
wk

1

where � is the hyperparameter that controls the degree of reg-
ularization.

As we know, the optimization of word2vec is in an on-
line fashion using stochastic gradient descent as in [Mikolov
et al., 2013b], which makes it very efficient in learning. How-
ever, a main drawback of directly applying stochastic subgra-
dient descent to an `

1

regularized objective in online training
is that it will not produce a sparse solution. That is because
the approximate gradient of SGD used at each update is very
noisy and the value of each entry in the vector can be eas-
ily moved away from zero by those fluctuations. Fortunately,
there have been several studies concerning the online opti-
mization algorithms that target such `

1

regularized objectives
[Langford et al., 2009; Duchi and Singer, 2009; Xiao, 2009;
McMahan and Streeter, 2010]. In this paper, we propose to
employing the Regularized Dual Averaging (RDA) algorithm
[Xiao, 2009] to produce the sparse representations.

3.4 Optimization Details
The RDA method keeps track of the online average subgradi-
ents at time t : ḡ

t

=

P
t

t

0
=1

g

t

0
. Here, the subgradient gt

0
at

time t

0 does not include the regularization term (� = 0). For
Sparse CBOW, we use g

t

#‰
wi

to denote the subgradient with
respect to #‰

w

i

at time t.
However, the derivatives of L

cbow

include high computa-
tional complexity normalization terms. For efficient learn-
ing, we employ the negative sampling technique [Mikolov et
al., 2013b] to approximate the original softmax function. It
actually defines an alternative training objective function as
follows:

Lns

cbow

=

NX

i=1

⇣
log �(

#‰
w

i

· #‰
h

i

) + k ·E
w̃⇠PW̃

log �(� #‰
w̃ · #‰

h

i

)

⌘

3It can also be sum, average, concatenate, max pooling, etc.

Algorithm 1 RDA algorithm for Sparse CBOW
1: procedure SPARSECBOW(C)
2: Initialize: #‰

w, 8w2W,

#‰
c , 8c2C, ḡ

0

#‰
w

=

#‰
0 , 8w2W

3: for i = 1, 2, 3, . . . do
4: t update time of word w

i

5:
#‰
h

i

=

1

2l

i+lX

j=i�l

j 6=i

#‰
c

j

6: g

t

#‰
wi

=

h
1
h

(w

i

)� �(

#‰
w

t

i

· #‰
h

i

)

i
#‰
h

i

7: ḡ

t

#‰
wi

=

t�1

t

ḡ

t�1

#‰
wi

+

1

t

g

t

#‰
wi

8: Update #‰
w

i

element-wise according to

9:
#‰
w

t+1

ij

=

(
0 if |ḡt#‰

wij
| �

#(wi)
,

⌘t

�
ḡ

t

#‰
wij
� �

#(wi)
sgn(

#‰
w

t

ij

)

�
otherwise,

where, j = 1, 2, . . . , d

10: for k = �l, . . . ,�1, 1, . . . , l do
11: update #‰

c

i+k

according to
12: #‰

c

i+k

:

=

#‰
c

i+k

+

↵

2l

h
1
hi(wi

)� �(

#‰
w

t

i

· #‰
h

i

)

i
#‰
w

t

i

13: end for
14: end for
15: end procedure

where �(x) = 1/(1 + exp(�x)), P
˜

W

denotes the distribu-
tion4 of sampled negative word w̃ (i.e., random sampled word
which is not relevant with current contexts), and k is the num-
ber of negative samples. Negative sampling transforms the
computationally expensive multi-class classification problem
into a binary classification problem which can be regarded as
to distinguish the correct word w

i

from the random sampled
words.

With the negative sampling, the subgradient of the posi-
tive/negative word w

i

at time t given contexts h
i

is:

g

t

#‰
wi

=

h
1
hi(wi

)� �(

#‰
w

t

i

· #‰
h

i

)

i
#‰
h

i

where 1
h

(w) is an indicator function whether w is the right
word in context h or not, and #‰

w

t

i

denotes the vector for word
w

i

at time t.
Following the RDA algorithm, the update procedure for

vectors #‰
w

i

and #‰
c

i

is shown in Algorithm 1. Specifically,
we first initialize each word vector #‰

w and context vector #‰
c

randomly using the same scheme as in Word2Vec. Then,
the subgradient of word vector #‰

w

i

at time t is computed as
shown in line 6 and its online average subgradients ḡ

t

#‰
wi

is
computed in line 7. We update each entry of #‰

w

i

according to
line 9, where ⌘ is the learning rate, sgn(·) is a sign function,
#‰
w

ij

denotes the j-th entry of word vector #‰
w

i

, and ḡ

t

#‰
wij

is the
corresponding average subgradient at time t. Context vector
#‰
c is updated according to line 12, where ↵ is the learning
rate. We adopt the same linear learning rate schedule de-
scribed in [Mikolov et al., 2013a], decreasing it linearly to
zero at the end of the last training epoch.

4It is defined as pW̃ (w) / #(w)0.75, where #(w) means the
number of word w appearing in corpus C.

2917



Table 1: Summary of results. We report precision (%) for word analogy task and spearman correlation coefficient for
the word similarity task. Higher values are better. Bold scores are the best.

Model Dim Sparsity Semantic Syntactic Total WS-353 SL-999 RW Average‡
GloVe 300 0% 79.31 61.48 69.57 59.18 32.35 34.13 48.81

CBOW 300 0% 79.38 68.80 73.60 67.21 38.82 45.19 56.21

SG 300 0% 77.79 67.32 72.09 70.74 36.07 45.55 56.11

PPMI(W-C) 40,000 86.55% 74.02 38.99 53.02 62.35 24.10 30.45 42.48

PPMI(W-C) 388,723 99.61% 58.55 31.19 43.60 58.99 23.01 27.98 38.40

NNSE (PPMI)† 300 89.15% 29.89 27.68 28.56 68.61 27.60 41.82 41.65

SC (CBOW)? 300 88.34% 28.99 28.43 28.68 59.85 30.44 38.75 39.43

SC (CBOW)? 3000 95.85% 74.71 61.24 67.35 68.22 39.12 44.75 54.61

Sparse CBOW 300 90.06% 73.24 67.48 70.10 68.29 44.47 42.30 56.29
† The input matirx of NNSE is the 40000-dimensional representations of PPMI in fourth row.
? The input matirx of SC is the 300-dimensional representations of CBOW in second row.
‡ The average performance is calculated across the four different datasets/tasks (one for word analogy and three for

word similarity), following the way used in [Faruqui et al., 2015].

4 Experiments
In this section, we investigate the expressive power5 and in-
terpretability of our Sparse CBOW model by comparing with
baselines including both dense and sparse models. Firstly,
we describe our experimental settings including the corpus,
hyper-parameter selections, and baseline methods. Then we
evaluate expressive power of all models on two tasks, i.e.,
word analogy and word similarity. After that, we test the in-
terpretability using word intrusion task and case study.

4.1 Experimental Settings
We take the widely used Wikipedia April 2010 dump6

[Shaoul and Westbury, 2010] as the corpus to train all the
models. It contains 3,035,070 articles and about 1 billion
words. We preprocess the corpus in a common way by lower-
casing the corpus and removing pure digit words and non-
English characters. During training, the words occurring
less than 20 times are ignored, resulting in a vocabulary of
388,723 words. Following the practice in [Mikolov et al.,
2013b; Pennington et al., 2014], we set the context window
size as 10 and use 10 negative samples. Like CBOW, we set
the initial learning rate of Sparse CBOW model as ↵ = 0.05

and decrease it linearly to zero at the end of the last training
epoch. For the `

1

regularization penalty �, we perform a grid
search on it and select the value that maximizing performance
on one development testset (a small subset of WordSim-3537)
while achieving at least 90% sparsity in word vectors.

We compare our model with two classes of baselines:

• Dense representation models: GloVe [Pennington et al.,
2014], CBOW, and SG [Mikolov et al., 2013a].

• Sparse representation models: sparse coding (SC)
[Faruqui et al., 2015], positive pointwise mutual infor-
mation (PPMI), and NNSE [Murphy et al., 2012].

5We focus on the intrinsic evaluation task since different extrin-
sic tasks favor different embeddings [Schnabel et al., 2015]

6http://www.psych.ualberta.ca/⇠westburylab/downloads/westb
urylab.wikicorp.download.html

7Set1 in http://www.cs.technion.ac.il/⇠gabr/resources/data/wor
dsim353/

For GloVe8, CBOW9, and SG9, we train them using the
released tools on the same corpus with the same setting as
our models for fair comparison. For SC10, we use the result
matrix of CBOW as its initial matrix. The PPMI matrix is
built based on the word-context co-occurrence counts with
window size as 10. Similar to [Murphy et al., 2012], we im-
plement NNSE based on word-context co-occurrence PPMI
matrix using the SPAMS package11. Due to the memory is-
sue, the PPMI matrix for NNSE is built over a vocabulary of
40,000 most frequent words just as the same setting in [Mur-
phy et al., 2012].

4.2 Expressive Power
To evaluate the expressive power of the representations of
each model, we conduct experiments on two tasks, i.e., word
analogy and word similarity.

Word Analogy. The word analogy task is introduced by
Mikolov et al. [2013c; 2013a] to quantitatively evaluate the
models ability of encoding the linguistic regularities between
word pairs. The dataset contains 5 types of semantic analo-
gies and 9 types of syntactic analogies12. The semantic anal-
ogy contains 8869 questions, typically about places and peo-
ple, like “Athens is to Greece as Paris is to France”, while the
syntactic analogy contains 10,675 questions, mostly focusing
on the morphemes of adjective or verb tense, such as “run is
to running as walk to walking”.

This task is to assume the last word is missing (e.g., “a is to
b as a0 is to ”) and to correctly predict it. It is answered us-
ing 3COSMUL for performance concern [Levy and Goldberg,
2014a]:

arg max

x2W\{a,b,a0}

sim(x, b)sim(x, a

0
)

2sim(x, a) + ✏

where ✏ is used to prevent division by zero and sim(x, y)

computes the similarity between word x and y. It is defined
8http://nlp.stanford.edu/projects/glove/
9https://code.google.com/p/word2vec/

10https://github.com/mfaruqui/sparse-coding
11http://spams-devel.gforge.inria.fr
12http://code.google.com/p/word2vec/source/browse/trunk/questi

ons-words.txt
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as sim(x, y) = (cos(x, y)+1)/2 due to the non-negative con-
straint for similarity in 3COSMUL. The prediction is judged
as correct only if x is exactly the missing word in the evalua-
tion set. The evaluation metric for this task is the percentage
of questions answered correctly.

Word Similarity. The word similarity task is employed to
measure how well the model captures the similarity between
two words. We evaluate our model on three different test-
sets: (1) WordSim-353 (WS-353) [Finkelstein et al., 2002],
it is the most commonly used testset for semantic models,
and consists of 353 pairs of English words; (2) SimLex-999
(SL-999) [Hill et al., 2015], it is constructed to overcome the
shortcomings of WS-35313 and contains 999 pairs of nouns
(666), verbs (222), and adjectives (111); (3) Rare Word
(RW) [Luong et al., 2013], it consists of 2034 word pairs,
with more rare and morphological complex words than other
word similarity testsets. These datasets all contain word pairs
together with human assigned similarity scores.

The performance is evaluated using the spearman rank cor-
relation between the similarity scores computed on learned
word vectors and the human judgements14.

Result Table 1 summarizes the results on word analogy
and word similarity tasks.

The third block shows the results of word analogy task.
It is easy to see that word analogy is more challenging for
sparse models. All sparse models have not been able to out-
perform CBOW and SG. It seems like that dense represen-
tations are more effective on revealing linguistic regularities
between word pairs. Nevertheless, we found Sparse CBOW
can achieve the similar performance comparing with CBOW
if we reduce its sparsity level less than 85%.

The fourth block shows the results of word similarity task
on three different testsets. It is easy to observe that WS-353
is quite easy for all the models while SL-999 is more chal-
lenging as Hill et al. [2015] claimed. For SL-999, Sparse
CBOW performs significantly better than all the other models
including both sparse models and state-of-the-art dense mod-
els. This indicates that the salient semantic meanings learned
from Sparse CBOW can be very helpful for modeling word
similarities.

The last block of the table reports the average performance
on all tasks. As we can see, NNSE and SC are much worse
than the dense models (GloVe, SG, and CBOW) and their cor-
responding baseline, PPMI(W-C) and CBOW respectively.
Moreover, SC still performs a little bit worse than CBOW
even with 10 times dimensionality vectors. Even so, the pro-
posed Sparse CBOW still achieves the best average perfor-
mance. It is worth stressing that our sparse model performs
as well as or even better than the state-of-the-art dense models
with only about 10% non-zero entries of dense models.

Effects of Vector Length
The dimensionality is an important configuration in word
representations. In Figure 1, we report the average perfor-

13SL-999 focuses on measuring how well models capture simi-
larity, rather than relatedness or association that WS-353 do. As a
result, it is more challenging for word representation models.

14In all experiments, we removed the word pairs that cannot be
found in the vocabulary
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Figure 1: Average performance of CBOW and Sparse CBOW
across all tasks against the varying dimensionality.

mances of CBOW and Sparse CBOW across all tasks against
the varying dimensionality. As can be seen in Figure 1, the
peak performance of both CBOW and sparse CBOW are very
close. CBOW achieves its best performance under the di-
mension 300, and then drops with the increasing dimension-
ality. On the contrary, Sparse CBOW is more stable than
CBOW. Moreover, Sparse CBOW performs slightly better
than CBOW on all dimensions except the smaller dimensions
(50, 100). It suggests that sparsity can make the word repre-
sentation learning process more stable.

4.3 Interpretability
To evaluate the interpretability of our learned sparse word
representations, we conduct experiments on word intrusion
task and some case studies focusing on individual dimen-
sions.

Word Intrusion
Following [Murphy et al., 2012; Faruqui et al., 2015], we also
evaluate the interpretability of learned word representations
through the word intrusion task. The task seeks to measure
how coherent each dimension of these vectors are.

The data construction of word intrusion task proceeds as
follows: for each dimension i of the learned word vector, it
first sorts the words on that dimension alone in descending
order. Next, it creates a set consisting of the top 5 words from
the sorted list, and also one word from the bottom half of
this list, which is also present in the top 10% of some other
dimension i

0. The last word added from the bottom half is
called an intruder. An example of such a set constructed from
a dimension of the Sparse CBOW is shown below:
{poisson, parametric, markov, bayesian, stochastic, jodel}

where jodel is the intruder word which means an aircraft com-
pany, while the rest of the words represent different concepts
in statistical learning.

The goal of the traditional word intrusion task is to evaluate
whether human judges can identify the intruder word. How-
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Table 2: Results for word intrusion task. Higher values are
better. Bold scores are the best.

Model Sparsity DistRatio
GloVe 0% 1.07

CBOW 0% 1.09

SG 0% 1.12

NNSE (PPMI) 89.15% 1.55
SC (CBOW) 88.34% 1.24

Sparse CBOW 90.06% 1.39

ever, such manual evaluation method is an arduous, costly,
and subjective process. In this paper, we propose a new eval-
uation metric for the word intrusion task without human as-
sessment. The intuition of word intrusion task is that if the
learned representation is coherent and interpretable, then it
should be easy to pick out the intruder word. To this end, the
intruder word should be dissimilar to the top 5 words while
those top words should be similar to each other. Therefore,
we use the ratio of the distance between the intruder word
and top words to the distance between the top words to quan-
tify the interpretability of learned word representations. The
higher ratio corresponds to better interpretability since it in-
dicates the intrusion word is far away from the top words and
can be easy picked out. Formally, the evaluation metric can
be formalized as:

DistRatio =

1

d

dX

i=1

InterDist

i

IntraDist

i
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i

=

X

wj2topk(i)
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j

, w
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)
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where top

k

(i) denotes top k words on dimension i, w
bi de-

notes the intrusion word for dimension i, dist(w
j

, w

k

) de-
notes the distance between word w

j

and w

k

, IntraDist

i

de-
notes the average distance between top 5 words on dimension
i, and InterDist

i

denotes the average distance between the
intruder word and top words on dimension i. In this paper, k
is set as 5 and dist(w

j

, w

k

) is defined as euclidean distance.
Result We run the experiment ten times since there exists

randomness in selection of intruder words. The average re-
sults for 300 dimensional vectors of each model are reported
in Table 2. we can observe that all sparse models perform
significantly better than dense models. This confirms that the
sparse representations are more interpretable than the dense
vectors. Besides, as the two methods based on CBOW, the
results show that our model can gain more improvement than
SC. The reason might be that our method directly learns the
sparse word representations with respect to the original pre-
dictive task of CBOW, and thus may avoid the information
loss caused by a separate sparse coding step in SC.

Moreover, NNSE obtains the highest score for this task.
This suggests that, besides sparse constraint, non-negative
constraint might also be a good choice for improving the
interpretability of word representations. Luo et al. [2015]

Table 3: Top 5 words of some dimensions in CBOW and
Sparse CBOW.

Model Top 5 Words

CBOW

beat, finish, wedding, prize, read
rainfall, footballer, breakfast, weekdays, angeles
landfall, interview, asked, apology, dinner
becomes, died, feels, resigned, strained
best, safest, iucn, capita, tallest

Sparse
poisson, parametric, markov, bayesian, stochastic

CBOW
ntfs, gzip, myfile, filenames, subdirectories
hugely, enormously, immensely, wildly, tremendously
earthquake, quake, uprooted, levees, spectacularly
bosons, accretion, higgs, neutrinos, quarks

also verified that non-negativity is a beneficial factor for in-
terpretability in skip gram model.

Case Study
Besides the quantitative evaluation, we also conduct some
case studies to verify if a vector dimension is interpretable.
For this purpose, we select top five words from word vectors’
dimensions and check whether these words reveal some se-
mantic or syntactic groupings.

Table 3 shows top 5 words from some dimensions in
learned CBOW and Sparse CBOW, one dimension per row.
For Sparse CBOW, It is clear to see that the first row lists
the concepts in statistical learning, second row talks about
the computer file system, the third row contains all adverbs
describing “to a great degree”, the fourth row lists different
things about disasters like earthquake or flood, and the last
row talks about particles in physics. All these show the di-
mensions of Sparse CBOW reveal some clear and consistent
semantic meanings. In contrast, the dimensions of CBOW do
not convey consistent meanings. These results also confirm
that our proposed model has a better interpretability.

5 Conclusion
In this paper, we present a method to learn sparse word repre-
sentations directly from raw text data. The proposed Sparse
CBOW model applies the `

1

regularization on CBOW model
and uses regularized dual averaging algorithm to optimize it
in online training. The experimental results on both word
similarity tasks and word analogy tasks show that, compared
with the original CBOW model, Sparse CBOW can obtain
competitive results using less than 10% non-zero elements.
Besides, we also test our model on word intrusion task and
design a new evaluation metric for it to get rid of human eval-
uation. The results demonstrate the effectiveness of our pro-
posed model in interpretability.
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