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Abstract

In this paper, we present a novel approach for re-
lation extraction using only term pairs as the in-
put without textual features. We aim to build a
single joint space for each relation which is then
used to produce relation specific term embeddings.
The proposed method fits particularly well for do-
mains in which similar arguments are often associ-
ated with similar relations. It can also handle the
situation when the labeled data is limited. The pro-
posed method is evaluated both theoretically with a
proof for the closed-form solution and experimen-
tally with promising results on both DBpedia and
medical relations.

1 Introduction

Detecting semantic relations between entities is very useful
in natural language processing because it enables knowledge-
bases to be leveraged in areas like information retrieval and
question answering. One focus of this area is to improve the
coverage of existing structured knowledgebases (KBs).
Recent work on relation extraction builds on existing KBs,
and applies “bootstrapping” to complete KBs. Most such ap-
proaches focus on textual features, while some others can di-
rectly learn new knowledge from KBs without considering
any context information. When applying relation extraction
in real-world applications, we find several common charac-
teristics that are yet to be addressed by existing techniques:

1. In many domains, similar arguments are often associated
with similar relations. This is particularly important for
medical domain, where the relations are mostly related
to diseases and similar diseases are often associated with
similar treatments, causes, etc.

2. While most approaches produce the same vector repre-
sentation for the same term and different vectors for dif-
ferent terms across all relations, this is less than ideal
for many situations. For example, the term “sign” and
“symptom” may have similar semantics for most sce-
narios but are very different for the symptom_of relation
in medical domain, where “signs” are what a doctor sees
and “symptoms” are what a patient experiences. Ideally,
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their vector representations should be different for symp-
tom_of relation and similar for other relations.

3. The amount of labeled relation data is often very limited
in real-world applications. For example, the medical on-
tology UMLS [Lindberg ef al., 1993] contains a huge
amount of disease terms and treatment terms, but the
“treats” relation (between diseases and treatments) only
covers 8,000 diseases. In this situation, overfitting be-
comes a major issue if the relation detectors are solely
trained on the labeled data.

In this paper, we develop new methods inspired by these
three characteristics and recent work in manifold learn-
ing [Wang and Mahadevan, 2011]. More specifically, this
paper offers the following two contributions:

e The first contribution is a joint space model for relation
extraction with a closed-form solution for training. The
model provides a way to generate relation specific term
embeddings, and will help remove the redundant infor-
mation not specific for that relation.

e The second contribution is a method to detect relations
from a given term pair. The method is trained with the
knowledge from existing relation knowledgebases, and
can handle relations with only limited amount of labeled
data. This general method works particularly well for
domains (e.g. medicine) in which similar arguments are
often associated with similar relations.

2 Related Work

Relation extraction is a well studied area. The earlier rule-
based methods use a number of linguistic rules to capture
relation patterns. The more recent machine learning based
methods utilize linguistic features obtained from relation in-
stances [Kambhatla, 2004; Zhao and Grishman, 2005], and
then learn to compute the similarity between these feature
vectors. Kernel-based machine learning techniques and parse
tree based features are also often used [Collins and Duffy,
2001; Culotta and Sorensen, 2004; Zhang et al., 2006]. Re-
cently, “distant supervision” has emerged to be a popular
choice for training relation detectors without requiring extra
human labelling effort other than using the existing relation
knowledgebases [Mintz et al., 2009; Chan and Roth, 2010;
Wang et al., 2011; Surdeanu et al., 2012; Takamatsu et al.,



2012; Min et al., 2013]. Our work differs from these pre-
vious works because we focus on a different task. Instead of
detecting relations expressed in a sentence, we are classifying
which relation if any exists between a pair of terms. We do
not use any textual features, and our relation detector can be
applied to pairs of terms that appear across multiple sentences
or even across documents.

Our work is also related to the KB completion task.
RESCAL [Nickel et al, 2011] and TRESCAL [Chang et
al., 2014] extend the matrix factorization approach to ten-
sor factorization for KB completion, which can be solved by
a classical alternating least-squares (ALS) method. Riedel
et al. [Riedel ef al., 2013] borrows the idea of collabora-
tive filtering and develops a matrix factorization approach to
solve this problem. [Weston ef al., 2013] projects two types
of embedding- one based on textual similarity and the other
based on knowledgebase to a common vector space, where a
relationship is viewed as translation of entities. Many of these
approaches use both structured data and unstructured text.
Related to this, TransE [Bordes et al., 2013] uses a neural
network to learn translations that map the two arguments of a
relation into the adjacent locations of the same latent space.
[Socher et al., 2013] uses a neural tensor network function to
determine if a relation exists between a given pair of terms,
and uses minibatched L-BFGS for optimization to converge
to a local minimum. They are similar to our task since they do
not use textual features, but the solutions differ from ours in
two important aspects. First, their solutions do not make use
of the unlabeled data in these algorithms. Real-world appli-
cations often do not have a large number of labeled instances,
and the unlabeled information can significantly improve the
performance. Second, the non-linear objective functions are
non-convex and the training process converges to a local min-
imum only, while our proposal has a closed-form solution
with a theoretic guarantee.

3 Joint Space Models

3.1 The Problem

For relation 7, we use X = {x!,--- 2™} to represent the set
of all terms associated with argument;, where x* is defined
by p features. Similarly, we use Y = {y!,--- 4"} to rep-
resent the set of all terms associated with arguments,, where
17 is defined by g features, and p may be different from g.
Then X can be viewed as a matrix of size p x m, and Y can
be viewed as a matrix of size ¢ X n.

We want to construct a mapping function f for X and g
for Y to map both X and Y to a new d dimensional joint
(latent) space, where (1) x* and 7 are mapped to adjacent
locations if they are associated with relation r, (2) z* and 3’
are mapped to locations away from each other if they are not
associated with r, and (3) similar examples within both X
and Y will still be close to each other after the mapping. One
thing to note is that the terms in argument; and arguments
sets may not be associated with any existing relation. An
illustration of the problem is given in Figure 1.

Using the “birthplace” relation as an example, the term
set associated with argument; contain the names of all the
people, and each of them can be represented by features
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Figure 1: Illustration of the joint space model. X and Y are
two argument term sets and the supervised information is:
1 <> Yo and x2 «» y3. The mapping function f and g will
be learned to project 1 and y, to the same location, separate
x2 and y3, and preserve the neighborhood relationship within
both X and Y (fTz; and fTxs, g7y, and g7 ys, and g7y,
and ¢g”ys will remain neighbors) in the joint space. Since
the neighborhood relationship is preserved during training,
overfitting can be alleviated when the labeled (relation) data
is not sufficient.
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like “age”, “occupation”, etc. The term set associated with
arguments include all the locations, and each of them can be
represented by features like “longitude”, “latitude”, etc. We
will learn mapping functions to project the people set and the
location set to one single joint space, matching related terms,
separating unrelated terms, and preserving the neighborhood
relationship within the original term sets. The new joint space
is then used with conventional learning approaches to detect
“birthplace” relation from the input term pairs.

3.2 Notation

We first define matrix W to model the nearest neighbor rela-
tionship for both X and Y:

W, 0
W= ( 0 W, ) )
where W, and W, represent the nearest neighbor graphs
(based on Euclidean distance) for X and Y. W, (i,5) = 1
when z; and z; are neighbors; and 0, otherwise. W), is de-
fined in a similar manner. As a result, W, is an m X m matrix,
and W, is an n X n matrix. We also define the corresponding
diagonal row sum matrix D as D(i,i) = >, W(i,j) and
combinatorial Laplacian matrix as L = D — W.

Next, we define the similarity matrix Wj, its row sum ma-
trix D, and the corresponding combinatorial Laplacian ma-

trix L:
0 Wy
WS - ( Wéy,r 0 > b

where W2¥ = (W¥*)T is an m x n matrix. W2 (i, j) =
if relation r is held between z* and y?; W>Y(i,j)



otherwise. The corresponding diagonal row sum matrix is
defined as D,(i,4) = >_; W;(4,j), and combinatorial graph
Laplacian matrix Ly = Dy, — W,

Dissimilarity matrix Wy (an m X n matrix), and its cor-
responding row sum matrix Dy and combinatorial Laplacian
matrices L, are defined in a similar manner:

z,Y
Wd:< 0 Wj )

we
where W7Y = (W¥™)T. Wy(i,j) = 0, if z* and ¢/ are
known to be associated with r; Wy(i,j) = 1, otherwise.
Dd(i,i) = Zj Wd(i,j), and Ld = Dd — Wd.

The joint input matrix Z is defined as:

7 ( X 0 > .
3.3 Objective

0 Y
We define S7, S2 and S5: functions to be used in the objec-
tive.

= 05 > Mt — T2 |PWali, 5)

i=1 j=1

+ 05 > g™y = g"y 1PW, (. )

i=1j=1

S1

If 2° and 27 are similar in their feature space, then the corre-
sponding W, (i, 7) will be large. When fT2? and f7 27 are
well-separated from each other in the new space, S1 becomes
large. So minimizing S; is to preserve the neighborhood re-
lationship of the input datasets. Preserving the neighborhood
relationship is particularly useful for scenarios in which simi-
lar arguments are often associated with similar relations. This
forces similar terms to be projected to adjacent locations in
the joint space.

Sy =05 Y |1 ' — gy IPW(i, )

i=1 j=1

If 2 and 37 are associated with relation 7, but their mapping
results are not close to each other, then Sy will be large. Min-
imizing S encourages the related terms to be projected to
similar locations in the new space.

m n
S3=05 Y |1t — g"y P Wali, §)
i=1j=1
If ¢ and yj are not associated with relation r, but their map-
ping results are close to each other in the new space, then S5
will be small. So maximizing S5 encourages the unrelated
terms to be separated in the new space.
We define the overall cost function Cost(f, g) to be mini-

mized as:
Cost(f,g) = (wS1 + S2)/Ss,

where (i is a weight parameter.
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3.4 Analysis

Lety = [fT, g7]" be a (p+q) x d matrix that we want to con-
struct. The solution to minimize Cost(f, g) is a special case
of [Wang and Mahadevan, 2011] and can be constructed in
the following theorem with conventional techniques [Wilks,
1963].

Theorem 1 The ~y that minimizes Cost(f, g) is given by the
eigenvectors corresponding to the smallest non-zero eigen-
values of Z(pL + L) ZT¢ = NZLqZT¢€.

Proof:
When d = 1, it can be verified that:

Si = ~ATzLZT~,
Sy = ATZL,ZT~,
Sy = ATZLaZ",
T T
v Z(uL 4+ Ls)Z*
t = )
Cost(f,g) TZLa7T

Based on the Lagrange multiplier method, the v to minimize
Cost(f,g) is the eigenvector corresponding to the smallest
non-zero eigenvalue of:

Z(pL + L) Z7 ¢ = \ZLaZ7¢.

Similarly, when d > 1, it can be shown that the  that mini-
mizes Cost(f, g) is given by the eigenvectors corresponding
to the d lowest non-zero eigenvalues of

Z(uL+ L) ZTe = \ZLyZ7 €.

3.5 Feature and Feature Expansions

We use pre-trained term vectors as the input to our model.
Typical algorithms to learn term vectors include Latent
Semantic Analysis (LSA) [Deerwester et al., 1990] and
Word2Vec [Mikolov et al., 2013].

We can also expand these features with domain knowledge
like semantic types, etc. Commonly used ontologies contain-
ing such domain knowledge include UMLS [Lindberg et al.,
1993], and YAGO [Suchanek et al., 20071, etc.

For each relation, all the terms associated with argument;
will be represented by the same features. Similarly, all the
terms associated with arguments will also be represented
by the same features. However, the features associated with
argument; can be very different from the features associated
with arguments,.

After the term x; and y; are projected onto the joint (latent)
space using f and g, fTz; and gTyj are directly compara-
ble. To better represent their relationship, we produce several
straightforward expansions, including

o “sum™: fTz; + gTy;
o “difference”: | fTx; — g7y,

e “product”: fTz; -gTyj



3.6 Algorithm

The algorithm to build a detector for relation r with the joint
space model has three steps.

1. Construct the mapping functions f and g using The-
orem 1.

e The input to the training algorithm includes X and
Y corresponding to the two argument sets associ-
ated with r. It also includes a set of term pairs (one
from X, another from Y') that are known to bear re-
lation 7, and a set of term pairs that are known not
to bear relation 7.

e One thing to note is that among a total number of
m - n term combinations produced by X and Y,
only a small number of them are known to “bear”
or “not bear” relation r. The labels for others are
unknown.

e I, Ls, Ly and Z are constructed from these input
datasets as shown in Section 3.2.

2. Project argument sets X and Y to the d dimensional
joint space using f and g, resulting in relation specific
term embeddings.

e d is specified by users.

3. Use conventional learning techniques to build rela-
tion detectors in the joint space (with or without us-
ing the feature expansion results constructed in Sec-
tion 3.5).

e Our algorithm focuses on the construction of the
joint space. In the experiments, we apply a linear
SVM model on top of the joint space to see how the
joint space helps relation extraction.

e At the test time, the algorithm takes a term pair as
the input, uses f and g to map the input to the joint
space and then applies the relation detector to the
result for relation extraction.

4 Experiments

We used the liblinear package [Fan er al., 2008] as our clas-
sifier in the experiments. In all these experiments, the weight
for the positive examples was set to 100. All the other param-
eters were set to the default values. The evaluation of differ-
ent approaches was based on the F scores, where the thresh-
old was chosen to maximize the F for the training data.

4.1 Baseline Approaches

Two approaches were used to produce the raw features for
each individual term: LSA model [Deerwester et al., 1990]
and Word2Vec model [Mikolov et al., 2013]. When we con-
structed Word2 Vec model, the Hierarchical Softmax+CBOW
setting was used. The parameters used in training were: win-
dow_size=5, and sample_rate=1e-5. Training the LSA model
only required one parameter: desired dimensionality.

Affine matching [Jain, 1986] is a well-known approach to
align two datasets with the correspondences. We used affine
matching to learn a mapping function to align the argument;
set with the arguments set. This process also resulted in a
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single space for both arguments. Another baseline approach
used in our experiments was to represent a term pair x; and
Y; as a vector concatenating the vector representations of both
x; and y;. This approach does not require an alignment, since
it does not need the input terms to be represented by the same
features. RESCAL [Nickel et al., 2011] was our third base-
line, where we merged all argl-relation-arg2 triples into a
tensor and used the tensor reconstruction results to judge if
a pair of terms bear the desired relation. The last baseline
was TransE [Bordes et al., 2013]. In TransE, the learning
rate, margin and number of epoches were set to 0.001, 1 and
100. Dimensionality of the latent space was set to 100 for
both TRESCAL and TransE.

4.2 Parameters for the Joint Space Model

Once the pre-trained word vectors are given, the joint space
can be constructed in a straightforward manner. There are
three parameters to specify. The default value of  is 1, which
means S; and S5 (defined in Section 3.3) will be associated
with equal weights. If i = 0, the neighborhood relationship
will not be respected. The default value of £ in kNN graph
construction is 10. In all experiments, we set the desired di-
mension of the joint space to be 100, i.e. d = 100.

4.3 DBpedia Relation Extraction

Corpus and Relations

In this experiment, the Wikipedia corpus was used to train
LSA and Word2Vec models. The relation data was extracted
from DBpedia [Auer ef al., 2007], which contains the exam-
ples for thousands of different relations in the format of (re-
lation_name, argument_1, argument_2). We first filtered out
the invalid examples from each relation. A valid example
means both argument terms occur at least twice in our cor-
pus. Among all the relations with more than 10K valid ex-
amples, we randomly selected 8 of them for our experiment.
We generated the argument; and arguments term sets by
collecting all the argument, and arguments terms from the
valid examples under each relation.

Training/Test Data

For each relation, about 10K examples were randomly se-
lected from all valid examples as the positive examples. To
resemble the real-world challenges, where most of the given
term pairs do not bear the desired relation, we randomly gen-
erated about 100 times more term pairs as the negative exam-
ples by choosing one term from argument; set and another
term from arguments set. If a generated term pair is known
to bear the given relation, it will be removed. Some nega-
tive examples generated in this way may still be positives, but
this should be rare. We divided both the positive and negative
set into 3 parts: 40% as training set 1, 30% as training set 2
and the remaining 30% as the test set. The training set 2 was
also used to learn the new joint space in both the proposed
approach and affine matching. The list of all 8 relations, the
number of examples in both the training and the test set are
listed in Table 1.

Using “birthplace” relation as an example, it has about
122K distinct terms in the argument; set and 16K distinct
terms in the argumentsy set. About 10K positive examples,
and 1.02M negative examples were used in the experiment.



Table 1: F} Scores for DBpedia Relation Extraction Experiment

Number of LSA word2vec | word2vec Joint Joint word2vec | Joint Joint
Training concate- | concate- affine Space Space affine Space | Space
/Test nated nated matching | =0 =1 | matching | p=0 | p=1

Examples | features | features no ex- no ex- no ex-

pansion | pansion | pansion
birthplace 720K/308K | 0.3465 0.3866 0.3935 0.3852 | 0.3985 0.3739 0.3493 | 0.3734
country 737K/316K | 0.4028 0.3641 0.3716 0.4040 | 0.4425 0.4218 0.4597 | 0.4206
hometown 877K/376K | 0.3546 0.3315 0.3336 0.3796 | 0.3818 0.3386 0.3372 | 0.3601
instrument 959K/435K | 0.0195 0.5295 0.5289 0.6307 | 0.6176 0.5672 0.5818 | 0.5847
militarybranch | 765K/353K | 0.3348 0.3991 0.3998 0.4370 | 0.4299 0.4152 0.4026 | 0.4079
nationality 1.1IM/468K | 0.4759 0.4257 0.4294 0.4760 | 0.4760 0.4370 | 0.4416 | 0.4506
occupation 762K/327K | 0.0292 0.2432 0.2470 0.4095 | 0.3452 0.3907 0.4372 | 0.3516
religion 1.2M/525K | 0.3055 0.2945 0.2887 0.3634 | 0.3620 0.3259 0.3253 | 0.3370
average 892K/389K | 0.2836 0.3718 0.3741 0.4357 | 0.4317 0.4088 0.4168 | 0.4107

Raw Features and the Joint Space

In LSA related experiments, the raw features to represent
each input term were the LSA features (100 dimensional).
In Word2Vec related experiments, the raw features were the
Word2Vec features (100 dimensional). Joint space models
also used the Word2Vec features as the raw input. Affine
matching mapped the 100 dimensional raw features associ-
ated with argument; to the feature space of arguments.
The classification was then done in the new space. The joint
space models constructed a new 100 dimensional joint space,
and did relation extraction in that space.

Results

The results are summarized in Table 1. As described in the
previous section, in real world applications the number of
negative examples is often orders of magnitude more than
positive examples which suggests a simple majority baseline
will achieve a high accuracy. This makes accuracy a less in-
formative metric, and we decide to focus on F} score.

From the table, we can see that the LSA model with the
concatenated raw features returned the lowest average F}
score of 28.36%, followed by the Word2Vec model with the
concatenated raw features (37.18%).

When the relation detectors were built from the new joint
space, the average Fj scores went up. Under this setting,
the new joint space model returned the best score across all
approaches (I} 43.57%) and beat the affine matching
(Fy = 37.41%) by a large margin of 6.16%.

Using the feature expansion results to build classifiers fur-
ther increased the F) score for word2vec+affine matching
baseline by 3.4% to 40.88%. However, it hurt the joint space
models by about 2%. Overall, the two joint space models
with feature expansions beat all other approaches except the
joint space model without using the feature expansions.

From Table 1, we can also see that setting 4 = 0 does
not make too much difference on F} scores. The reason for
this is that the amount of the training data was large in our
experiments (on average, 0.89M for training and 0.389M for
testing) and the number of the features was small. Under this
situation, overfitting is unlikely to happen.

RESCAL [Nickel et al., 2011] and TransE [Bordes et al.,
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2013] did not return satisfying results in this experiment. The
average F; were 3.35% and 20.62%. Like most previous KB
completion approaches, these two approaches require large
amount of labeled positive data (e.g. hundreds of thousands
of positive instances), which is not available for our experi-
ments. RESCAL and TransE need to access the training data
of all relations during training, so their results are not directly
comparable to other approaches, and thus not included in Ta-
ble 1. We also tested RESCAL and TransE by building a
model for each individual relation (rather than a model for
all relations) in both DBpedia and Medical experiments, and
found the results were worse.

4.4 Medical Relation Extraction

Corpus and Relations

Our medical corpus has incorporated Wikipedia articles and
MEDLINE abstracts (2013 version). The relation data used
in this experiment was from UMLS [Lindberg ef al., 1993].
The UMLS 2012 Release contains more than 600 relations
and 50M relation instances under around 15 categories. Each
relation has a certain number of Concept Unique Identifier
(CUI) pairs that are known to bear that relation. The UMLS
consists of a set of 133 subject categories, or semantic types,
that provide a consistent categorization of all CUIs. The se-
mantic types can be further grouped into 15 semantic groups.

Following the approach described in [Wang and Fan,
2014], we extracted the UMLS relations corresponding to 6
key medical relations: “treats”, “prevents”, “causes”, “loca-
tion_of”, “diagnoses” and “symptom_of” and used them to
compare different algorithms in our experiments. The UMLS
produced a huge amount of the CUI pairs under these 6 re-
lations. However, the majority of them contained the CUIs
that are not in our corpus. In this paper, we only consider the
relation examples with both CUIs in the corpus.

The arguments of each of these 6 relations are specified
by a certain number of semantic types and semantic groups.
When we generated the argument; and arguments term
set for each relation, we extracted all CUIs under the desired
types and semantic groups.



Table 2: F; Scores for Medical Relation Extraction Experiment

Number of LSA word2vec | word2vec Joint Joint word2vec | Joint Joint

Training concate- | concate- affine Space Space affine Space | Space

/Test nated nated matching | =0 p=1 | matching | p=0 | p=1

Examples features | features no ex- no ex- no ex-
pansion | pansion | pansion
treats 461K/198K | 0.2493 0.5215 0.5223 0.6181 | 0.6254 0.6756 | 0.7936 | 0.7913
prevents 63K/27K 0.2637 0.5734 0.5699 0.5507 | 0.6483 0.7661 0.6917 | 0.7671
causes 14K/6K 0.6596 0.4220 0.4667 0.4706 | 0.4587 0.2069 | 0.2697 | 0.4235
location_of | 1.26M/539K | 0.3982 0.3072 0.3111 0.4287 | 0.4145 0.4762 | 0.6969 | 0.6919
diagnoses 9K/4K 0.0370 0.5051 0.4299 | 0.40000 | 0.4286 0.4524 | 0.3226 | 0.3944
symptom_of | 865K/371K | 0.1865 0.3509 0.3417 0.4031 | 0.3943 0.3711 0.5489 | 0.5220
average 447K/218K | 0.2991 0.4467 0.4403 0.4785 | 0.4950 0.4914 | 0.5539 | 0.5984
Training/Test Data beddings in the joint space, and helped improve the F} score.

The training and test datasets were created in a similar man-
ner as Section 4.3. The only difference was that we used all
available relation examples from UMLS, since UMLS did not
produce as many relation examples as DBpedia. Table 2 lists
the number of examples used in experiments.

Raw Features and the Joint Space

During the corpus preprocessing step, if a term was associ-
ated with a CUI, we used the CUI to replace the term. Both
the LSA model and the Word2Vec model were applied to the
processed corpus, resulting in the vector representations for
all the CUIs and other terms in the corpus.

Similar to Section 4.3, in LSA related experiments, the
raw features to represent each input term were the LSA fea-
tures (100 dimensional). In Word2Vec related experiments,
the raw features were the Word2Vec features (100 dimen-
sional). Joint space models also used the Word2Vec features
as the raw input. Different from the DBpedia experiment,
we also expanded the raw feature set by the related semantic
type/group information in this experiment. Since the allowed
types/groups may be different from relation to relation. The
arguments used in different medical relations may be defined
by different features. Affine matching models and joint space
models were constructed in the same way as Section 4.3.

Results
The results are summarized in Table 2.

One result we can see from the table is that the average F}
scores in the medical relation experiments are significantly
better than the scores produced in the DBpedia relation ex-
periments. This is mainly due to the difference between the
medical relations and the DBpedia relations. All 6 medical
relations are related to diseases, and similar diseases are of-
ten associated with similar treatments, causes, symptoms and
diagnose methods, etc. Algorithms based on joint spaces fit
particularly well for this task. This property may not hold
for some DBpedia relations like “birthplace”, where the joint
space models cannot improve the Fj score in a straightfor-
ward manner.

The feature expansions helped both the joint space mod-
els and the word2vec+affine matching method. On average,
the boost was more than 7% on Fj score. The expanded fea-
tures can better capture the relationship between term em-
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Overall, the two joint space models with feature expansions
returned the best F scores across all approaches: 59.84%
and 55.39%, followed by joint space models without fea-
ture expansions and word2vec+affine matching. RESCAL
returned a result similar to LSA (average F; = 30.83%) for
this experiment. TransE performed poorly on this set (aver-
age F1 = 3%) due to the lack of positive training data.

Another result from Table 2 is that setting ¢ = 1 signifi-
cantly helped the joint space model (with feature expansion)
when given limited amount of training data. For the three
medical relations with least amount of labeled data (“pre-
vents”, “causes” and ‘“diagnoses”), including unlabeled in-
stances (i.e. setting ;x = 1) improved F; by approximately
10% each. For the three relations with the most amount of
labeled data, there was little improvement. This is because
when the labeled data set is small, and if the joint space is
learned solely from the labeled data, overfitting will be likely.
Setting ¢+ = 1 encourages the neighborhood relationship to
be preserved, alleviating overfitting.

5 Conclusions

We present a novel approach for relation extraction using the
term pairs as the input. We aim to construct a single joint
space for each relation to provide relation specific term em-
beddings. The joint space associated with each relation is in
fact an underlying concept space spanning the relation, and
will help remove the redundant information not specific for
that relation. The benefits of our approach are three-fold. 1,
our approach provides a closed-form solution, which will not
suffer from local minimum as many previous works. 2, the
proposed method can fit for scenarios in which similar ar-
guments are often associated with similar relations. 3, the
proposed approach can handle the situation when the labeled
data is limited.
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