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Abstract
Two major tasks in spoken language understanding
(SLU) are intent determination (ID) and slot filling
(SF). Recurrent neural networks (RNNs) have been
proved effective in SF, while there is no prior work
using RNNs in ID. Based on the idea that the intent
and semantic slots of a sentence are correlative, we
propose a joint model for both tasks. Gated recur-
rent unit (GRU) is used to learn the representation
of each time step, by which the label of each slot
is predicted. Meanwhile, a max-pooling layer is
employed to capture global features of a sentence
for intent classification. The representations are
shared by two tasks and the model is trained by a
united loss function. We conduct experiments on
two datasets, and the experimental results demon-
strate that our model outperforms the state-of-the-
art approaches on both tasks.

1 Introduction
Spoken language understanding (SLU) in human/machine
spoken dialog systems aims to automatically identify the in-
tent of the user as expressed in natural language and extract
associated arguments or slots towards achieving a goal [Tur
et al., 2011]. In recent years, with its widespread application
in many areas, e.g. automatic customer service, automatic
question answering, voice assistants, etc., SLU has become a
hot point in research communities. Typically, a SLU system
first transcribes users’ voice into text by an automatic speech
recognizer (ASR), or the input is directly text typed by users.
Then the intent of the user and associated arguments is iden-
tified. The system can take the next proper action according
to the extracted information to help the users achieve their
demands.

An example sentence, “Show flights from Boston to New
York today”, is demonstrated in Table 1 with In/Out/Begin
(IOB) representation. This sentence is derived from airline
travel information system (ATIS) corpus [Price, 1990], the
most widely used dataset in SLU area. The domain of the
sentence is airline travel and the intent is to find a flight. The
word “Boston” is labelled as the departure city and “New
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York” as arrival city. There are also named entity labels. The
“Boston” and “New York” are labelled as cities, with which
the slot label are easier to predict. The domain and intent de-
termination are usually treated as a semantic utterance clas-
sification (SUC) problem and the slot filling as a sequence
labelling problem. Since categories of intents are more fine-
grained than domains, we focus on intent determination in
this work.

Domain Airline Travel
Intent Find Flight

Sentence Slot Label Named Entity
show O O
flights O O
from O O

Boston B-dept B-city
to O O

New B-arr B-city
York I-arr I-city
today O O

Table 1: An example utterance from the ATIS dataset

In recent years, RNNs have demonstrated their effective-
ness in language modelling [Mikolov et al., 2011]. The state-
of-the-art method for SF task is also based on RNNs [Yao et
al., 2014]. Nevertheless, RNNs have not been explored in
the ID task, let alone a joint model for the two tasks. A joint
model is worthwhile for two reasons. Firstly, the two tasks are
usually both necessary in a SLU system. Secondly, the infor-
mation of one task can be utilized in the other task to promote
each other and a joint prediction can be made. For example,
if the intent of a sentence is to find a flight, it is likely to con-
tain the departure and arrival cities, and vice versa. Based on
this idea, we propose a joint model for the two tasks. The
input text can be viewed as a sequence. GRU is used to learn
the representation of each time step in the sequence. On one
hand, these representations are used for predicting slot labels.
On the other hand, a global representation of the sequence for
intent classification is learned by a max-pooling of these rep-
resentations. Therefore, the representations learned by GRU
are shared by two tasks, and with a joint loss function, the
two tasks can interact with each other through the shared rep-
resentations. Experimental results demonstrate that the joint
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model outperforms separate models for each task. Further-
more, our model outperforms the state-of-the-art methods for
ID and SF on two datasets. Another possible way of com-
bining the two tasks is a pipeline scheme. It first classifies
the intent of an utterance and then uses the extra intent in-
formation to help slot filling. This scheme is inferior to our
joint model because the direction of information sharing is
one-way and it suffers from error propagation problem.

2 Related Work
In the 1990s, the SLU research emerged from some call clas-
sification systems [Gorin et al., 1997] and the ATIS project.
Due to the informality of spoken language and recognition
errors, the data-driven statistical approach has become the
mainstream. For ID, word n-grams are typically used as fea-
tures with generic entities, such as dates, locations. Because
of the very large dimension of the input space, large mar-
gin classifiers such as SVM [Haffner et al., 2003] and Ad-
aboost [Schapire and Singer, 2000] were found to be effective
for ID. For SF, a lot of work was based on CRF because of its
strong ability on sequence labelling [Raymond and Riccardi,
2007]. Apart from lexical and named entity features, some re-
searchers tried to use syntactic information. Hakkani-Tür et
al. [2005] presented an approach populating heterogeneous
features from syntactic and semantic graphs of utterance for
call classification. Moschitti et al. [2007] employed syntactic
features for slot filling via syntactic tree kernels with SVM.
To solve the difficulty in processing complex sentences, Tur
et al. [2011] proposed a dependency parsing based sentence
simplification approach that extracts a set of keywords and
uses those in addition to entire utterances for completing SLU
tasks. Recently, there has been some work on joint ID and
SF. Jeong and Geunbae Lee [2008] proposed triangular CRF,
which coupled an additional random variable for intent on top
of a standard CRF. Mairesse et al. [2009] presented an effi-
cient technique that learned discriminative semantic concept
classifiers whose output was used to recursively construct a
semantic tree, resulting in both slot and intent labels. Al-
though great successes have been made, these methods re-
quire good feature engineering and even additional semantic
resources. A promising direction is deep learning, which inte-
grates both feature design and classification into the learning
procedure.

Recently, various deep learning models have been explored
in SLU. The initial try is deep belief networks (DBNs), which
have been used in call routing classification [Sarikaya et al.,
2011] and slot filling [Deoras and Sarikaya, 2013]. Tur et
al. [2012] used deep convex networks (DCNs) for domain
classification and produced higher accuracy than a boosting-
based classifier. RNNs have shown excellent performance
on the SF task [Mesnil et al., 2013; 2015] and outperform
traditional models, such as CRF. Yao et al. [2014] improved
RNNs by using transition features and the sequence-level op-
timization criterion of CRF to explicitly model dependencies
of output labels. As for joint work on ID and SF, Xu and
Sarikaya [2013] improved the triangular CRF model by us-
ing convolutional neural networks (CNNs) to extract features
automatically. Guo et al. [2014] adapted recursive neural net-

works (RecNNs) for joint training of ID and SF. To use Rec-
NNs for sequence labelling, tri-path vector was proposed to
capture contextual information. In this paper, we propose a
RNNs based joint model for SLU. To the best of our knowl-
edge, this is the first work using RNNs for joint ID and SF.

3 Model
The structure of our model is shown in Figure 1. The input of
the network is text S of an utterance, which is a sequence of
words w1, ..., wT

, and T is the length of the utterance. The
network consists of two kinds of output, i.e. the predicted slot
label sequence ˆ

l

s and predicted intent label ˆ

l

u. Next we give
a detailed description of our model.

3.1 Embeddings
As an alternative to traditional representations, such as one-
hot representation, word embeddings are suitable for serving
as the input of neural networks. These embeddings are usu-
ally trained in an unsupervised way on a large corpus and then
fine-tuned during supervised training process.

Mesnil et al. [2015] found that a context word window
could improve the performance of RNNs on SF. Following
their work, we also use a context window as the input of the
recurrent layer. With each word mapped to an embedding
vector, the d-context word window x

d

t

, which considers the
d previous words and d next words of the current word w

t

,
is defined as the ordered concatenation of the 2d + 1 word
embedding vectors. Formally,

x

d

t

= [e(w

t�d

), ..., e(w

t

), ..., e(w

t+d

)] (1)

where e(w
t

) is the embedding of w
t

, and the size of the word
window is 2d+ 1.

Named entity is an important kind of feature for SLU. To
utilize these features, we associate each named entity (includ-
ing a special label representing non-entity) with an embed-
ding, which is initialized randomly according to a uniform
distribution on the interval [0, 1] and is fine-tuned during the
training process. The context named entity window is de-
fined like the word window. With named entity embeddings,
the input of the recurrent layer at time step t is represented as:

x

d

t

= [e(w

t�d

), ..., e(w

t

), ..., e(w

t+d

),

e

0
(n

t�c

), ..., e

0
(n

t

), ..., e

0
(n

t+c

)]

(2)

where e

0
(n

t

) is the embedding of the named entity n

t

, and
the size of named entity window is 2c+ 1.

3.2 Recurrent Hidden Layers
As an extension of conventional feed-forward neural net-
works, RNNs can handle the variable-length sequence by us-
ing a recurrent hidden state to take into account the influence
of past states.

Traditionally, given a sequence x = (x1, x2, ..., xT

), the
recurrent hidden state is calculated by

h

t

= tanh(Wx

t

+ Uh

t�1) (3)

where h

t

is the hidden state at time t, W and U are respec-
tively transformation matrices of the input and the previous
hidden state.
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Figure 1: The structure of our model

It was difficult to train RNNs to capture long-term depen-
dencies because the gradients tend to either vanish or ex-
plode. Therefore, some more sophisticated activation func-
tions with gating units were designed. Two representative im-
provements are long short-term memory (LSTM) [Hochreiter
and Schmidhuber, 1997] and recently proposed gated recur-
rent unit (GRU) [Cho et al., 2014]. We use GRU in this work,
because it performs comparably to LSTM in our experiments,
but has less parameters.

GRU Definition: The hidden state h

t

of GRU at time t is
calculated by

r

t

= �(W

r

x

t

+ U

r

h

t�1) (4)
e
h

t

= tanh(Wx

t

+ r

t

� (Uh

t�1)) (5)
z

t

= �(W

z

x

t

+ U

z

h

t�1) (6)

h

t

= (1� z

t

)� h

t�1 + z

t

� e
h

t

(7)

where x

t

is the input at time t, r and z are reset gate and
update gate respectively, � is sigmoid function, W and U are
transformation matrices, and� denotes element-wise product
of two vectors. For simplification, the above equations are
abbreviated with h

t

= GRU(x

t

, h

t�1).
For sequence labelling, it is beneficial to consider both past

and future information at the same time. Consequently, we
use a bidirectional variant of GRU to learn the representations
at each time step.

First, we define the forward
�!
h

t

and the backward
 �
h

t

hid-
den layers:

�!
h

t

=

���!
GRU(x

t

,

�!
h

t�1) (8)
 �
h

t

=

 ���
GRU(x

t

,

 �
h

t+1) (9)

where �! and  � represent the forward and backward pass
respectively.

The bidirectional hidden state
 !
h

t

at time t is defined as
the concatenation of the forward and backward hidden states.

 !
h

t

= [

�!
h

t

,

 �
h

t

] (10)

3.3 Task Specific Layers
The bidirectional hidden states are shared by two tasks. On
one hand, the hidden states capture the features at each time
step, so they are directly used for predicting slot labels. On
the other hand, we use a max-pooling layer to acquire the
representation of the whole sequence h

u. The global repre-
sentation is defined as:

h

u

=

T

max

i=1

 !
h

t

(11)

where the max function is an element-wise function, and T

is the number of words in the utterance. The pooling layer
converts texts with variable length into a fixed-length vector,
with which the information throughout the entire text can be
captured.

The last part is the output layer. The softmax function is
applied to the representations with linear transformation to
give the probability distribution y

s

t

over the t-th slot labels
and the distribution y

u over the intent labels. Formally,

y

s

t

= softmax(W

s

 !
h

t

+ b

s

) (12)
y

u

= softmax(W

u

h

u

+ b

u

) (13)

where W s and W

u are transformation matrices for SF and ID
respectively, bs and b

u are bias vectors.
The labels of slots are inferred at sentence level as in [Chen

et al., 2015]. A transition score A

ij

is introduced to measure
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the probability of jumping from label i to label j. For a label
sequence l1:T , a sentence-level score is given by the sum of
label transition scores and predicted scores at each time step:

s(l1:T , ✓) =

TX

t=1

(A

lt�1lt + y

s

t

(l

t

)) (14)

where y

s

t

(l

t

) is the predicted probability of label l
t

at time
step t, which is calculated by Equation 12. A special cir-
cumstance is that when t = 1, l0 is involved but not exists.
Therefore we add one more label “BOS” to represent l0. Fi-
nally, the predicted slot label sequence ˆ

l

s is the one with the
highest score in all possible label sequences L:

ˆ

l

s

= argmax

l

s2L

s(l

s

, ✓) (15)

3.4 Training
The parameters ✓ in our network include:

✓ = {E,E

0
,

����!
GRU

✓

,

 ����
GRU

✓

,W

s

, b

s

,W

u

, b

u

, A} (16)

Specifically, E 2 R|e|⇥|V |, E0 2 R|e0|⇥|V 0| are respec-
tively word and entity embeddings.

����!
GRU

✓

are parameters
of the forward GRU, which include the transformation matri-
ces
�!
W,

�!
W

r

,

�!
W

z

2 R|x|⇥|h|,
�!
U ,

�!
U

r

,

�!
U

z

2 R|h|⇥|h| and ini-
tial hidden states

�!
h 0 2 R|h|.

 ����
GRU

✓

are parameters of the
backward GRU, which is similar to the forward GRU, and we
use separate parameters for the forward and backward passes.
W

s 2 R2|h|⇥L

s

,Wu 2 R2|h|⇥L

u

are transformation matri-
ces for two tasks and b

s 2 RL

s

,bu 2 RL

u

are the bias vec-
tors. A 2 R(Ls+1)⇥(Ls+1) is transition score between labels.
|V |, |V 0| are respectively the number of words and named en-
tities in the vocabulary, and |e|,|e0| are dimensions of embed-
dings of word and named entity. |h| is the dimension of the
recurrent hidden units. Ls

, L

u are respectively the number of
labels of slot and intent. |x| is the dimension of the input of
recurrent layer, i.e. |x| = (2d + 1)|e| with only lexical fea-
tures, and |x| = (2d + 1)|e| + (2c + 1)|e0| with both lexical
and named entity features.

Next we define loss function for our networks. We use S to
denote the text of an utterance, ls and l

u to denote the ground
truth label of slot and intent.

The loss function for intent is a cross-entropy cost function.

Lu

(✓) = � log y

u

(l

u

) (17)

The loss function for slot is calculated by a Max-Margin
criterion. The structured margin loss �(l

s

,

ˆ

l

s

) for ground
truth slot label sequence l

s and predicted sequence ˆ

l

s is de-
fined as:

�(l

s

,

ˆ

l

s

) =

TX

t=1

1{ls
t

6= ˆ

l

s

t

} (18)

The loss function of a slot label sequence is defined as:

Ls

(✓) = max(0, s(

ˆ

l

s

, ✓) +�(l

s

,

ˆ

l

s

)� s(l

s

, ✓)) (19)

The training target of the network is minimizing a united
loss function:

L(✓) = ⌃(ls,lu,S)2D (↵Ls

(✓) + Lu

(✓)) (20)

where D is the dataset, ↵ is a weight factor to adjust the at-
tention paid to two tasks.

Through the united loss function, the shared representa-
tions learned by GRUs can consider two tasks jointly. Fur-
thermore, the correlations of the two tasks can be learned and
promote each other.

4 Experiments
4.1 Dataset
In order to evaluate our proposed model, we conducted ex-
periments on two datasets. The first set is widely used ATIS
dataset, and the second dataset consists of question collected
from Baidu Knows1, the most famous Chinese QA commu-
nity. We refer to the second dataset as Chinese Question Un-
derstanding Dataset (CQUD).

ATIS dataset: The ATIS corpus [Price, 1990] is the most
commonly used dataset for SLU research. There are some
variants of the dataset. In this paper, we use the ATIS corpus
used in [Tur et al., 2010]. The dataset consists of sentences of
people making flight reservations. There are 4978 sentences
for training and 893 sentences for testing. The numbers of
distinct intents and slots are 18 and 63 respectively.

As shown in Table 1, the ATIS dataset also has extra named
entity features marked via table lookup, including entities
such as city, airline, dates, etc., which nearly determine the
slot label. Researchers have different opinions on whether to
use these features or not. Some researchers think these fea-
tures are hand-crafted and not generally available in open do-
main so that they only use lexical features [Guo et al., 2014;
Mesnil et al., 2013]. To make a comprehensive comparison,
we give our results with and without named entity features.

CQUD dataset: Although there are some other datasets
for SLU, e.g. Cortana Data [Guo et al., 2014] and Bing
Query Understanding Dataset [Yao et al., 2014], they are non-
public and all English. We intend to conduct experiments on
a dataset having some differences with the ATIS. Therefore,
we collected questions from Baidu Knows and manually la-
bel them. Finally, 3286 questions were filtered and labelled.
They are from four domains: Flights, Weather, Express, and
Other. The “Other” domain consists of questions that do not
belong to the previous three domains. There are totally 43
kinds of intents and 20 kinds of slots. Although questions in
Baidu Knows are typed by users, they are far different from
formal written language. The style of the questions is infor-
mal and filled with colloquialism. They are similar to spoken
language except that they are not spoken but typed.

The CQUD dataset distinguishes from the ATIS dataset
at three aspects. Firstly, the languages are different so that
we can conduct experiments for different languages. Sec-
ondly, the domains of CQUD are more diverse than ATIS, and
specifically CQUD includes sentences labelled with “Other”,
which is necessary for real-world applications. Thirdly, the
intents and slots in CQUD are more diverse and informal than
ATIS, which increases the difficulties for the two tasks. For
example, slots of places in ATIS are basically limited to cities
in America, while in CQUD the slots are more informal, like
“the summit of Changbai Mountain”.

1http://zhidao.baidu.com/
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4.2 Evaluation Metrics
We use accuracy as evaluation metric for ID task. Some utter-
ances in ATIS have more than one intent label. As in previous
work [Tur et al., 2010], an utterance is counted as a correct
classification if any ground truth label is predicted.

F1-score is used as evaluation metric for SF task. A slot is
considered to be correct if its range and type are correct. The
F1-score is calculated using CoNLL evaluation script2.

4.3 Baselines
We compare our model against the following baselines:

SVM: Raymond and Riccardi [2007] used heuristic combi-
nations of forward-moving and backward-moving sequential
SVMs classifiers for slot filling.

CRF: A CRF baseline was demonstrated in [Mesnil et al.,
2015]. The input is the n-grams in a context window.

RNN: Mesnil et al. [2013] employed RNNs for slot filling
and the experimental results were updated in [Mesnil et al.,
2015].

R-CRF: Yao et al. [2014] proposed R-CRF as an improve-
ment to RNNs. It is the state-of-the-art method for SF. Here
we use the score reported in [Mesnil et al., 2015] as we use
the same dataset.

Boosting: Tur et al. [2010] employed AdaBoost.MH al-
gorithm for intent determination. Word n-grams are used as
features.

Sentence simplification: Tur et al. [2011] parsed the sen-
tence to extract keywords, which served as additional infor-
mation for SLU task. AdaBoost.MH is the classifier for ID,
and CRF for SF. It is the state-of-the-art method for ID.

RecNN: Guo et al. [2014] adapted recursive neural net-
works for joint training of ID and SF. To improve the result
on SF, the Viterbi algorithm was applied to optimize the sen-
tence level tag sequence.

4.4 Training Details
We preprocess the datasets as follows. For ATIS, as in [Yao
et al., 2013], to deal with unseen words in the test set, we
marked all words with only one occurrence in the training
data as hUNKi and used this label to represent those unseen
words in the test set. We also converted sequences of numbers
to the string DIGIT, e.g. “1990” is converted to “DIGIT*4”.
For CQUD, we use Chinese character rather than word as a
basic unit for slot filling. It is because there is no separator
between Chinese words and some wrong word segmentations
bring inevitable errors for slot filling. Syntactical features are
not employed for SF task on CQUD dataset because a parser
needs word segmentation first, while for baselines that are
set for ID and not joint, such as sentence simplification, we
perform word segmentation and syntactical features can be
used. Besides, named entity features are not employed on
CQUD because we did not label named entities in the dataset.

For our joint model, the average score of the two tasks on
the held-out data is used as target to select hyper-parameters.
For ATIS, we took out 15% of the training data as hold-
out data to determine the hyper-parameters. After optimiz-
ing these hyper-parameters, the model is trained on all of the

2http://www.cnts.ua.ac.be/conll2000/chunking/output.html

training data and tested on the test data. For CQUD, we re-
port the scores of 5-fold cross validation. GloVe [Penning-
ton et al., 2014] is used to train word embeddings as initial-
izations. For ATIS, the training corpora are Wikipedia and
Gigaword. For CQUD, the training corpus is 3 millions un-
labelled question collected from Baidu Knows. The dimen-
sions of word embeddings are both 200, and for ATIS the
dimension of named entity embeddings is 40. For context
window, we set d = 1 and c = 1. The dimensions of the
forward and backward recurrent hidden states are both 300.
Model parameters are updated using stochastic gradient de-
scent (SGD). The training set is shuffled at each epoch. The
learning rate is initialized to be 0.01 and is updated dynami-
cally by AdaDelta method.

4.5 Results and Analysis
The results are demonstrated in Table 2. The second column
lists the features used by each method. W, N and S denote
lexical, named entity and syntactical features respectively ex-
cept that W means Chinese character features on CQUD.

We can see that CRF outperforms SVM on SF, showing
that with the sequence-level optimization, CRF is suitable for
the sequence labelling task. Furthermore, RNN beats CRF
because of the ability of capturing long-term dependencies.
To model label transfer and acquire the global optimum of
the whole sequence, R-CRF combined RNN and CRF, and
achieved the state-of-the-art performance on SF task. In fact,
the inference of slot labels at sentence level used in our model
is similar to R-CRF. For ID task, the state-of-the-art approach
is sentence simplification, which uses a dependency parser to
extract keywords of a sentence. This method is not a joint
work, two individual classifiers are used for the two tasks.
RecNN uses the syntactical information in a deep learning
scheme. However, the results are worse than the sentence
simplification. We think this may be because the scale of the
dataset is small such that human-written syntactical features
perform better. Nevertheless, Guo et al. [2014] compared the
joint model and separate models by RecNN and the results
demonstrated the effectiveness of the joint model.

On ATIS dataset, our joint model outperforms the state-of-
the-art of ID, yielding an absolute improvement of the F1-
score of 1.34%, corresponding to a relative error reduction of
44%. As to SF, our model outperforms the state-of-the-art
method by 0.43% (relative 12%). The absolute improvement
may be not very high, because this dataset have been studied
for more than ten years and the score of the state-of-the-art
method is very high. Nevertheless, we still achieve obvious
relative error reduction. We also observed that the named en-
tity features help the ID only a little, but contribute to the
SF a lot, because of the high relevancy of named entities and
slot labels. Our method outperforms the previous joint work
RecNN significantly, thanks to the powerful ability of recur-
rent neural networks for modelling sequence and the united
loss function that can adjust the weights of two tasks.

The scores on CQUD dataset are lower than ATIS. It is
likely because of the higher difficulty of CQUD. As men-
tioned in Section 4.1, the intents in CQUD are more diverse
than ATIS, and the expression of slots are more informal. Be-
sides, the input is a sequence of Chinese characters rather
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Model Features ATIS CQUD
Intent Slot Intent Slot

SVM [Raymond and Riccardi, 2007] W — 89.76 — 81.32
CRF [Mesnil et al., 2015] W — 92.94 — 83.40
CRF [Mesnil et al., 2015] W+N — 95.16 — —
RNN [Mesnil et al., 2015] W — 95.06 — 85.63
RNN [Mesnil et al., 2015] W+N — 96.24 — —
R-CRF [Yao et al., 2014] W — — — 85.88
R-CRF [Yao et al., 2014] W+N — 96.46 — —

Boosting [Tur et al., 2010] W 95.50 — 93.54 —
Sentence simplification [Tur et al., 2011] W+S 96.98 95.00 94.46 —

RecNN [Guo et al., 2014] W+S 95.40 93.22 — —
RecNN+Viterbi [Guo et al., 2014] W+S 95.40 93.96 — —

Our model W 98.10 95.49 96.05 87.12
Our model W+N 98.32 96.89 — —

Table 2: Comparison with previous approaches

than words. Nevertheless, the improvements are consistent
in CQUD. Our model outperforms the state-of-the-art meth-
ods by 1.59% for ID and 1.24% for SF.

4.6 Joint Model vs Separate Models
First, we give the definitions of joint model and separate mod-
els. The joint model is our proposed model in Figure 1. The
separate model is similar to the joint model except that there
is only one task. For ID, there is only the shared layers and
ID specific layers without SF specific layers. It is in the same
way for SF. We also implement a pipeline method. First a
RNN is trained for ID, and then the predicted intent is used
as addition feature to train another RNN for SF.

The speed advantage of the joint model is self-evident, be-
cause only one model is needed to train and test. The shared
part of the model is only calculated one time for the two tasks.
For quantitative analysis, we ran programs of the joint model
and separate models using same parameter settings and hard-
ware. On ATIS dataset, the time for training one epoch using
joint model is 124 seconds, while the sum of time using sep-
arate models is 212 seconds.

Next we compare the performance of the joint model and
separate models. In these experiments, only lexical features
are used. Here a new concept, joint and with one task ori-
ented, is introduced. In the joint model, we can pay different
attentions to the two tasks. This is achieved by adjusting the
weight factor ↵ in Equation 20 and using score of one task as
target to select hyper-parameters. Larger ↵ means that more
attention is paid to SF. The results are listed in Table 3.

The joint model outperforms separate models for two tasks,
showing that the joint training is effective. The correlations
of two tasks are learned by our joint model and contribute
to the two tasks. Because of the two-way information shar-
ing and supervision, our joint model outperforms the one-way
pipeline method. Note that if we set one task as oriented in
the joint model, higher performance can be acquired for it
comparing to treating two tasks equally. This brings flexibil-
ity to have tendency to one task if high score is required for it
or even only one task is needed in a real application.

In ATIS, ↵ is set to 1.6 for equal model, 1.6 for ID ori-

Model ATIS CQUD
Intent Slot Intent Slot

ID only 97.53 — 95.34 —
SF only — 95.14 — 85.78
Pipeline 97.53 95.41 95.34 86.96

Joint (equal) 98.10 95.49 96.05 87.12
Joint (ID oriented) 98.10 95.49 96.35 86.63
Joint (SF oriented) 97.87 95.61 95.93 87.23

Table 3: Comparison of joint model and separate model

ented and 1.8 for SF oriented. In CQUD, ↵ is set to 1.5, 2.0
and 1.8 respectively for three models. Intuitively, the perfor-
mance of one task gets better with higher weight on it. It is
not always true in our experiments, which may be because
too large weight for one task leads to too quick convergence
such that parameters are not well tuned for that task.

5 Conclusion and Future Work

In this paper we have introduced recurrent neural networks
for joint intent determination and slot filling, which are two
major tasks in spoken language understanding. Bidirectional
GRUs are used to learn the sequence representations shared
by two tasks. A global representation is acquired by a max-
pooling of the shared representations to predict the label of
intent. The labels of slots are predicted by the shared repre-
sentations and are further inferred at sequence level. Through
a united loss function and shared representations, the correla-
tions of the two tasks are learned so as to promote each other.
We conducted experiments on two datasets. The joint model
demonstrates advantages over separate models and outper-
forms the state-of-the-art approaches on both tasks.

In future works, we plan to improve our model by using
syntactic information. Furthermore, our CQUD dataset is still
small-scale for the application of deep learning methods. We
would like increase the scale of our dataset, which can be
useful for SLU and QA research.
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