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Abstract

Unsupervised word representations have demon-
strated improvements in predictive generalization
on various NLP tasks. Much effort has been de-
voted to effectively learning word embeddings, but
little attention has been given to distributed char-
acter representations, although such character-level
representations could be very useful for a variety of
NLP applications in intrinsically “character-based”
languages (e.g. Chinese and Japanese). On the
other hand, most of existing models create a single-
prototype representation per word, which is prob-
lematic because many words are in fact polyse-
mous, and a single-prototype model is incapable
of capturing phenomena of homonymy and poly-
semy. We present a neural network architecture
to jointly learn character embeddings and induce
context representations from large data sets. The
explicitly produced context representations are fur-
ther used to learn context-specific and multiple-
prototype character embeddings, particularly cap-
turing their polysemous variants. Our character
embeddings were evaluated on three NLP tasks of
character similarity, word segmentation and named
entity recognition, and the experimental results
demonstrated the proposed method outperformed
other competing ones on all the three tasks.

1 Introduction and Motivation

Much recent research has been devoted to deep learning algo-
rithms which achieved impressive results on various natural
language processing (NLP) tasks. The best results obtained
on supervised learning tasks involve an unsupervised learning
phase, usually in an unsupervised pre-training step to learn
distributed word representations (also known as word embed-
dings). Such semi-supervised learning strategy has been em-
pirically proven to be successful by using unlabeled data to
supplement the supervised models for better generalization
both on English [Collobert ef al., 2011; Socher et al., 2011;
dos Santos and Zadrozny, 2014] and Chinese [Zheng et al.,
2013; Pei er al., 2014] language processing tasks.

Due to the importance of unsupervised pre-training in deep
neural network methods, many models have been proposed to

improve on distributed word representations. The two main
model families for learning word embeddings are: (a) pre-
dicting or scoring the current word based on its local con-
text, such as the neural probabilistic language model (NNLM)
[Bengio et al., 2003], C&W [Collobert ef al., 20111, and con-
tinuous bag-of-words (CBOW) [Mikolov et al., 2013]; (b) us-
ing the current word to predict its surrounding words, such as
the Skip-gram [Mikolov et al., 2013] as well as its extensions,
multi-sense Skip-gram (MSSG) [Neelakantan et al., 2014]
and proximity-ambiguity sensitive (PAS) Skip-gram [Qiu et
al., 2014]. When employing these models to learn the char-
acter representations, they suffer three significant drawbacks.

First, the context is often represented by a sum (or an aver-
age) of the surrounding words’ feature vectors. Such con-
text representations may not be applicable to the cases of
“character-based” languages since the meaning of a charac-
ter is more ambiguous than a word, and should be determined
by its neighboring characters and the rules used to combine
them. Each context character in general does not contribute
equally to the meaning of the target character, and thus the
simple sum or average operation can not capture this com-
positionality. Some other models, [Bengio et al., 2003] and
[Collobert et al., 2011] for example, used an affine transfor-
mation (usually following a non-linear function) over the con-
catenation of the neighboring words’ vectors to produce the
context representations. These representations are obtained
with more computational cost, but still are unable to capture
multiple possible interpretations of a text window which cor-
respond to different, but possible two or more word segmen-
tation results.

Second, most of the neural network-based models poorly
utilize the global statistics of the corpus since their word em-
beddings are separately trained on the local context windows.
The training criteria of the models like NNLM and CBOW
are to correctly classify the target word. There exist two main
variants of such models: one with |V| outputs with softmax
normalization, where |V| is the number of words in the vo-
cabulary, and the other with a binary hierarchical encoding
tree of words, where each word is associated with a bit vec-
tor and the classification can be interpreted as a series of bi-
nary stochastic decisions with respect to bits of a vector. The
Huffman tree is often used to reduce the average bit length
of words. The hierarchical decomposition by a proper binary
tree could provide an exponential speed-up, but this encoding
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schema gives less information about how similar two words
are to each other. Ideally, each node in the hierarchy should
convey a semantic meaning being associated with a group of
similar-meaning words.

Furthermore, most of existing models on word represen-
tations create a single-prototype embedding for each word.
This single-prototype representation is problematic because
many words are intrinsically polysemous, and a single-
prototype model is incapable of capturing phenomena of
homonymy and polysemy. It is also important to be reminded
that languages differ in the degree of polysemy they exhibit.
For example, Chinese with its (almost) complete lack of mor-
phological marking for parts of speech certainly exhibits a
higher degree of polysemy than English.

Recent models on learning multiple representations per
word [Reisinger and Mooney, 2010; Huang et al., 2012] gen-
erally work as follows: for each word, first cluster its con-
texts into a set of clusters, and then derive multiple represen-
tations (each for a cluster) of the word from the clusters of
similar contexts. In these models, each context is represented
by a vector composed of the occurrences of its neighbor-
ing words or a weighted average of the surrounding words’
vector. Such context definitions neglect the relative order of
words in the context window. The order of words does matter
to the meaning of those they form, and it impairs the quality
of the multiple-prototype representations derived by the clus-
tering based on such context representations. Besides, those
models set the equal number of prototypes for each word, al-
though different numbers were tested to determine the opti-
mal number of prototypes. We argue that the degree of poly-
semy in polysemous words depends on the number of distinct
contexts in which they occur. When a word appears in more
different linguistic contexts, it may carry more meanings, and
greater number of prototypes should be created for that word.

We propose a new context-specific language model that
can learn multiple-prototype Chinese character representa-
tions, which accounts for characters with multiple senses. To
verify whether our model’s character representations render
learning deep architectures more effective, we evaluate them
on various NLP tasks with several competing models. There
are three main contributions in this study. (1) We propose a
novel neural network architecture to learn character embed-
dings from large data sets by modeling the contexts, captur-
ing the meanings of its constituents and the rules to combine
them; (2) We present a multi-prototype character representa-
tion model that is capable of capturing character’s syntactic
and semantic information, particularly their polysemous vari-
ants, by taking advantage of the better learned context repre-
sentations from our context-specific language model; (3) We
show that the character representations learned by our model
outperforms those of others on the three NLP tasks of char-
acter similarity, word segmentation, and NER by transferring
the unsupervised internal representations of characters into
the supervised models.

2 Related Work

Over the last decade, there has been increasing interest in
learning word representations from a large collection of un-
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labeled data, and using these word representations as a fea-
ture set to augment the supervised learners. Generally, re-
lated work on learning word representations can be divided
into three categories: clustering-based [Brown et al., 1992;
Li and McCallum, 20051, distributional [Blei et al., 2003;
Teh et al., 2006; Rehifek and Sojka, 20101, and distributed
representations [Bengio er al., 2003; Mnih and Hinton, 2007
Collobert and Weston, 2008].

We focus on the distributed representation methods here.
Distributed representations are dense, low-dimensional, and
real-valued, which are typically induced using neural lan-
guage models. Distributed word representations are also
called word embeddings, each dimension of which represents
latent feature about word syntactic and semantic information.
The goal of [Bengio et al., 2003] is to estimate the probabil-
ity of a word given the previous words in a sentence using
the cross-entropy criterion. Because the size of dictionary is
usually large, the computation of exponentiation and normal-
ization can be extremely demanding, and sophisticated ap-
proximations are required. Many approaches have been pro-
posed to eliminate the linear dependency on the dictionary
size. The model of [Mnih and Hinton, 2007] learns a lin-
ear model to predict the embedding of the last word given
the concatenation of the embeddings of previous words. Col-
lobert and Weston [Collobert and Weston, 2008] introduced
a neural language model that evaluates the acceptability of a
piece of text.

The related studies closest to ours in term of handling
multi-prototype word representations are [Reisinger and
Mooney, 2010; Huang et al., 2012; Qiu et al., 2014; Nee-
lakantan et al., 2014]. Reisinger and Mooney [2010] intro-
duced a multi-prototype vector-space model, where multiple
prototypes for each word are generated by clustering contexts
of the word occurrence and collecting the resulting cluster
centroids. The dimensionality of their word vectors is nor-
mally large, which corresponds to the size of vocabulary.

Huang et al [2012] presented a neural language model that
learns the word embeddings by incorporating both local (pre-
vious words) and topic (document vectors) information. The
single-prototype embeddings learned in advance are used to
represent the word context, and these context representations
are then clustered by spherical k-means using cosine distance.
Multiple prototypes of a word are induced from its associated
clusters. For multi-prototype variants, they fix the number of
prototypes to be ten. It shows that the performance is sensi-
tive to the number of prototypes, and the degree of polysemy
of words relates to the number of distinct contexts in which
they occur. It is unnecessary for rare words to learn several
prototypes, whereas for most common words, if the number
of word senses is greater than that of clusters, and certain
cluster could contain the contexts of different meanings, the
prototype learned by that cluster might not represent any one
of the meanings well as it is influenced by several (and differ-
ent) meanings of that word.

Qiu et al [2014] addressed the word-sense discrimination
problem by creating multiple representations per word, each
for a POS type. However, many words still may carry more
than one meaning even though they are constrained to a cer-
tain POS type. A POS tagger can effectively process the texts



from the same domain as the training texts, but the perfor-
mance may deteriorate significantly when the tagger is used
to the large texts from others, which is not conducive to the
word-sense discrimination. They used a weighted average of
the context word vectors to represent the context. In compari-
son, we finely model the contexts by a convolutional layer (or
a tensor) with several feature maps, particularly to capture the
multiple possible semantic interpretations and compositions
of the context words.

Neelakantan et al [2014] extended the Skip-gram model to
learn multi-prototype word embeddings from large unlabeled
texts by adding a word-sense disambiguation layer to the net-
work. The sense disambiguation works by maintaining mul-
tiple sense vectors per word and identifying the sense whose
vector is the closest to the current context. The word sense
vectors are initialized randomly and updated together with
the word embeddings during the training. In their model, the
word context is represented as an average of its surrounding
words’ vector, which might not be well enough to represent
the meaning (i.e. compositionality) of the context words and
would lead to poor clustering results.

3 A Neural Language Model

Various types of neural network-based models were proposed
for computing distributed vector representations of words.
We present here a novel neural network architecture that can
jointly learn character embeddings and context representa-
tions. A convolutional layer with multiple feature maps is de-
signed to produce the refined context representations (or vec-
tors) that reflect the order of their constituents and the rules
to combine them. The better learned context representations
are then used to learn context-specific and multiple-prototype
character embeddings by the sense induction with the cluster-
ing over the context vectors.

3.1 The Neural Network Architecture

The network architecture is shown in Figure 1. The input to
the network is a context window, and it induces the vector
for the context by a sum pooling of multiple feature maps
yielded by a convolutional layer. The networks are trained to
correctly classify the target words by using the context feature
vectors.

We use a window approach that assumes the meaning of a
character depends mainly on its surrounding characters. The
characters (except the target) in the window of size w (a hy-
per parameter) are fed into the network as indices that are
used by a lookup operation to transform characters into their
feature vectors. We consider a fixed-size character dictionary
V. The vector representations are stored in a character em-
bedding matrix M € R?*IVI where d is the dimensionality
of the vector space (a hyper-parameter to be chosen) and |V
is the size of the dictionary.

The context feature window produced by the first lookup
table is a matrix H € R¥>%_ where each column of the ma-
trix H is the character feature vector in the window. A one-
dimensional convolution is used to yield another feature vec-
tor by taking the dot product of filter vectors with the rows of
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Figure 1: The neural network architecture.

the matrix H at the same dimension:
F=HOW (1)

where the weights in the matrix YW € R“*¢ are the parame-
ters to be trained, and F € R% is a vector. The trained weights
in WV can be viewed as a linguistic feature detectors that learn
to recognize a specific class of n-gram.

The convolution can be repeated to produce feature maps,
hopefully capturing possible multiple, but different inter-
pretations of character contexts. Multiple feature maps
Fi,...,Fm can be computed in a parallel fashion at the same
layer. We add a simple sum pooling layer on the top of the
convolution layer, and take the pooling results as the context
representation instead.

A tensor-based transformation is also tried to model con-
texts with its advantage of explicitly modelling multiple in-
teractions between feature vectors. We use a 3-way tensor
V11l to produce the context vector representation Z € R%:

Z=F'viiFr.z, = FVIF, 2)

where F; (or F,) denotes the left (or right) context vector
of the target character which is produced by adding up the
feature vectors of the characters in the left (or right) context
window, and each dimension Z; is yielded by the bilinear
form defined by each tensor slice VI € R4, To speed up
tensor operation, each slice is factorized into two low rank
matrices: VI = LE Rl L] ¢ RIX1 gnd Rl € R1%4,

3.2 Training

Once the context representation is produced, we attempt to
predict the target character based on the representation. A bi-
nary hierarchical encoding tree of characters is used to speed
up the training process like [Mikolov er al., 2013], where each
character is associated with a bit vector and the prediction can
be viewed as a series of binary classification decisions with
respect to bits of the vector (see Figure 1). We choose to use
a binary tree based on the Brown clustering [Brown et al.,
1992] instead of the Huffman tree because the Brown cluster-
ing is able to assign characters to classes based on the global
co-occurrence with others, which have the flavor of both se-
mantically and syntactically based groupings. Each node in
the tree of Brown clustering conveys a semantic meaning be-
ing associated with a group of similar-meaning characters,
which makes the semantically similar characters to be closer
to each other than those under the different nodes. Such bi-
nary hierarchical encoding tree provides some kine of global
information that is complement to the local context windows.



The neural networks are trained by maximizing the condi-
tional likelihood of the target characters given their contexts
using the gradient ascent algorithm. The log-likelihood func-
tion we consider takes the following form:

10) =" " log po(clt)

ceVteT.

3

where V is the dictionary of characters, 7, is the set of all
possible character ¢’s context windows (the target character is
removed) from the data sets, and 6 are the parameters needed
to be trained. The distribution py(c|t) can be factorized with
respect to the ¢’s bit vector as follows.

de , ,
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. 4
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where x. is the ¢’s context vector representation produced by
the networks, d. is the depth of node c in the binary encod-
ing tree. Each non-leaf node of the tree is associated with a
binomial classifier based on logistic regression, and ¢(-) is a
sigmoidal function. The vector of coefficients of a regression
model is denoted as 3, and y° € {0,1} are bits of the c’s
encoding. These lead us to maximize the following objective
function:

0)=% ¥ 5 {4 loglé(al )+

ceEVteT: i=1 ) )
(1 —ye) - log[l — é(x: 5)]}

When maximizing this log-likelihood, the error will back-
propagate and update both the network parameters and char-
acter embeddings.

&)

4 Multi-Prototype Language Model

In order to learn multiple prototypes, we first construct a re-
gression function to predict the number of character senses
given the quantity of its distinct contexts. We then gather
the fixed-size context windows of all occurrences of a char-
acter, and the context vector representations are extracted
by collecting the outputs of the sum pooling layer (see the
shaded ellipses in Figure 1). The spherical k-means algo-
rithm [Dhillon and Modha, 2001] is used to cluster these con-
text representations. The number of clusters for a character is
given by the regression function constructed in the first step.
Finally, each character in a large raw corpus is labeled with
its corresponding cluster, and the sense-labeled corpus is used
to train the character representations by neural network lan-
guage models.

4.1 Determining the number of prototypes

As stated in the introduction, we assume that the number of
prototypes of a character depends upon the quantity of dis-
tinct contexts in which it can occur. Obviously, it is desirable
to choose the number of prototypes that corresponds to the
character senses. To address this issue, we first want to know
how many character types have a certain number of mean-
ings, and then gain some understanding of the relationships
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Figure 2: (a) Frequency of character types with respect to
number of senses. (b) Average and standard deviation of char-
acter’s contexts versus number of their senses.

between the number of senses in which a character can be
used and the quantity of distinct contexts it fits into.

To answer the first question, we downloaded a dictionary’
that contains 7868 Chinese characters and their lexical en-
tries, which are shown in Figure 2(a). The statistics tell us
that Chinese characters on average have about 2.54 senses,
but character types have a very uneven distribution. Some
characters can be used in more than ten senses (there are
91 such characters, not shown in Figure 2(a), accounting for
1.16% of the character types). On the other extreme, 65.76%
of the character types have only one or two meanings in the
dictionary. The vast majority of word types (98.84%) have
ten or fewer senses. Therefore, it is necessary to individually
determine how many prototypes need to be created for each
character according to its sense number.

In order to predict the number of the senses for the char-
acters missing in the dictionary, we constructed a regression
function to make such prediction by Bayesian linear regres-
sion model [Bishop, 2006]. The training data set comprises
the above 7868 characters together with corresponding con-
texts. The contexts of a character were collected from each
occurrence in a large unlabeled corpus (the duplicates are re-
moved), and each context was composed of all unigram oc-
curring in an 8-character window around the target charac-
ter. The corpus has 268.28 million characters (6.08 million
sentences) extracted from the Chinese Wikipedia. The con-
structed function is used to determine the appropriate number
of prototypes for each character (including the missing ones
in the dictionary). In Figure 2(b), we reported the average and
standard deviation of character’s contexts with respect to the
number of senses in the data set.

4.2 Context Clustering

We use the clusters of contexts to capture meaningful varia-
tion in character usage. The contexts of characters are pro-
duced by the trained networks as mentioned above. The con-
text vectors are then clustered into groups, each of which cor-
responds to a sense of the target character. To cluster these
context vectors, we choose to use the spherical k-means algo-
rithm, which has been demonstrated to model semantic relat-
edness well [Dhillon and Modha, 2001]. We found the spher-
ical k-means algorithm performed better than other clustering

! Available at http://www.zdic.net/



methods, such as standard k-means and movMF [Banerjee et
al., 2005] by preliminary experiments.

The clustering algorithm is run separately for each char-
acter type, and the number of clusters will be chosen by the
regression function mentioned previously. After clustering
is completed, each character occurrence in the corpus is la-
beled to the corresponding cluster according to its context.
In our implementation, the size of character dictionary grew
to 16399 in the sense-labeled corpus, and the combination
of character and sense label is considerred as one character.
Finally, the sense-labeled corpus is used to train the multi-
prototype character representations. For both word segmen-
tation and NER tasks, the characters in the training and testing
corpora are also relabeled to their associated clusters.

S Experiments

We conducted two sets of experiments. The goal of the first
one is to systematically compare different models by evaluat-
ing them on the character similarity task. The second one is to
see how well the character representations learned from large
unlabeled texts to enhance the supervised learning on two
standard NLP tasks: word segmentation and named entity
recognition, and whether the performance can be further im-
proved by their multi-prototype versions. We used the same
training data sets for all the models to be compared.

5.1 Evaluation Tasks

This section describes three NLP tasks on which different
character representations are compared: character similarity,
word segmentation, and NER. We wish to find out whether
some representations are preferable for certain tasks. For the
word similarity task, the Spearman’s rank correlation coeffi-
cient is used to compare correlations between the similarity
scores given by the models and those rated by humans. The
other two tasks are evaluated by computing the standard F1-
score, which is the harmonic mean of precision and recall.

e Character similarity focuses on ranking the character
pairs in Chinese by their similarities. To the best of our
knowledge, there is no such data set available. We con-
structed a Csim-305 data set, which contains three hun-
dred and five different character pairs. Each pair is as-
signed the similarity score by twenty three native speak-
ers, and the average of those human judgements as the
final score. The scores range from O to 10, and the higher
score, the more similar two characters will be. An aver-
age Spearman’s rank correlation coefficient achieved by
human annotators is 0.85, and the hightes score is 0.91.

e Word segmentation is used to reconstruct the word
boundaries of texts in those languages that are written
without using whitespace to delimit words. We picked
Penn Chinese Treebank (CTB-7) as our data set [Xue et
al., 2005].

e Name entity recognition seeks to locate and classify ele-
ments in the sentence into pre-defined categories such as
the names of persons, organizations, locations, etc. For
the NER task, we choose to use MSRA data set from
Bakeoff-3 with standard train-test splits [Levow, 2006].

5.2 Supervised NLP system

For word segmentation and NER tasks, we assume that one
can take an existing, close to state-of-the-art, supervised NLP
system, and its performance can be further improved by trans-
ferring the unsupervised character representations into the
system. We used the neural network of [Zheng et al., 2013] as
such supervised component, which was designed to perform
the sequence tagging tasks particularly for “character-base”
languages like Chinese.
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Average Spearman’s p versus window size. In (a), the win-
dow size is 5. In (b), the dimension is 100.

5.3 Word Similarity

We reported in Figure 3 the Spearman’s p versus window size
and versus vector size for our models and other competitors
on the CSim-305. The proposed convolution-based model is
denoted as ConvM, and the tensor-based one as TensorM. The
number of feature maps used by the ConvM was set to five.
We compared the performance of ours against three state-of-
the-art models: GloVe [Pennington ef al., 2014], CBOW and
SKIP [Mikolov er al., 2013]. All the results reported have
been averaged over five runs.

Table 1: Nearest characters.

Character| CBOW SKIP GloVe ConvM  TensorM
¥i(dog) Fij(dog) Fij(dog) Fij(dog)  Fi(dog)
Fi(cat) H2(ghost) At (bear) fiE (bear) f(rabbit) J#(badger)
i (beast)  Pk(monster) JR(fox) R (canine) J#(hawk)
Zk(green)  Zi(green)  Zr(green) # (yellow) 15 (orange)
1% (blue) F(colorful) 4I(red) 4 (red) Z(red)  %k(green)
& (orange) ff(color)  ffy(color) 2 (black) #(brown)
75 (six) E(seven)  7N(six) =(three) -L(seven)
Ti(five) ti(seven)  J\(eight)  Li(seven) i(seven) 75(six)
(three)  7N(six) +(ten) P (four)  /\(eight)
Wi(ake)  vi(ow)  Ti(lake) i(lake) T (lake)
i (river) | &(creek) iHi(lake) /#(bank) & (creek) & (creek)
] (Min) #(creek)  dk(north) % (ridge) 75 (Wei)
fi(he) fryow) — FR(you) ) Tt (he)
E2q00) LILIC) #E(who) 4 (huh) fti (he) R (you)
fiR(you) 1 (you) fiIpl. suffix)  fR(yow)  E(it)
I (bar) 7 (eat) % (whew) Wz (eat)  Mz(eat)
U(drink) | Z(cellar) ®(drunk) Mz(eat)  (have) i (drunken)
fi¥(drunken) ME(bar) #(wine) B (bite)  #b(fry)

It can be seen from Figure 3(a) that generally, the larger the
dimension, the higher the Spearman’s p we will have. The
ConvM achieved the highest Spearman’s p (67.58%) when
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the window size was set to 5 and the dimension to 300. Fig-
ure 3(b) shows that the performance drops smoothly when
the window size is larger than 3 except the ConvM. A rea-
sonable explanation for this is that most Chinese words con-
tain no more than 3 characters, and the neighboring charac-
ters outside word boundaries become “noise” when we try
to capture the semantic and syntactic information about the
central character. The increasing point of entropy of succes-
sive characters is the location of a word boundary [Jin and
Tanaka-Ishii, 2006]. The models will suffer from such phe-
nomenon if they do not model the character contexts prop-
erly. The ConvM and TensorM were designed to capture this
complicated, but critical “compositionality” of the surround-
ing characters. The TensorM, therefore, is less affected by
the variation in the window size while the ConvM can even
benefit from the larger ones.

The reason of such different behavior is that a convolu-
tional layer with multiple feature maps is used to produce
the refined context representations, which reflect the order
of their constituents and the rules to combine them (i.e. the
weights of context characters). The preliminary experiments
showed that if the Huffman tree was used instead of the
Brown clustering, the performance of our models drops about
3~5%. Table 1 shows the nearest neighbors of six characters
(randomly chosen) for the models mentioned above. We see
that the nearest neighbors discovered by our models are more
semantically coherent than those by the others.

5.4 Word Segmentation and NER

Table 2 shows the final word segmentation results, and Table
3 the NER results. For the models to be evaluated here, the di-
mension was set to 100, and the window size to 9, because we
prefer to “observe” a character within a slightly larger win-
dow to better discover its syntactic and semantic information.
To train the multi-prototype character representations, the
learning algorithms were fed with the sense-labeled corpus
in which each character occurrence is labeled with its corre-
sponding cluster. The results obtained using multi-prototype
representations were indicated by “multiple”. Unlike ours,
there are no direct way to obtain the context representations
from the results of the CBOW, SKIP, and Glo Ve, their context
vector representations are simply collected by the sum of the
surrounding characters’ feature vectors, and then fed into the
clustering algorithm for multi-prototype character represen-
tation learning like [Huang ef al., 2012].

The results shown in Table 2 suggest that unsupervised pre-
training gives consistently better generalization comparing to
the baseline started with randomly initialization (without pre-
training embeddings), and our models performed slightly bet-
ter than all the competitors. It is worth noting that our mod-
els’ standard deviations of the Fl-scores are much less than
the others, which means that it is more likely for them to ob-
tain the character embeddings with good enough performance
for just one-run. The results also show that all the multi-
prototype enhancements can further improve the performance
of the task. The ConvM achieved higher increase in F1-score
with 0.85% difference. The results for the NER task is re-
ported in Table 3, and we found the similar trends as that for
the word segmentation task. The results for both benchmark
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Table 2: Word segmentation results.

Approach Precision  Recall F1-score

Baseline 92.31 90.22  91.25 + 0.0089

CBOW 93.06 91.40  92.2240.0076
o | SKIP 93.40 92.28  92.84 +0.0024
g | GloVe 93.12 91.39  92.25 £ 0.0067
L | ConvM 93.64 92.45 93.04 +0.0015

TensorM 93.89 93.03  93.46 +0.0017

CBOW 93.29 91.80  92.54 + 0.0045
2 | SKIP 93.88 92.60  93.23 + 0.0056
E | GloVe 92.85 91.78  92.31 +£0.0032
= | ConvM 94.50 93.29  93.89 4+ 0.0018
® | TensorM 94.01 93.59  93.80 + 0.0026

datasets show that our models achieved consistently higher
performance over the three competitors.

Table 3: Name entity recognition results.

Approach Precision Recall F1-score

Baseline 82.02 80.30  81.15+£ 0.0286

CBOW 82.64 80.46  81.53 £ 0.0020
» SKIP 85.50 82.60 84.02+0.0154
5 | GloVe 82.90 80.30  81.58 + 0.0289
c'% ConvM 85.81 83.07 84.42 4+ 0.0054

TensorM 86.10 82.97  84.51 £0.0071

CBOW 83.32 80.55  81.91 £ 0.0092
Z | SKIP 85.77 83.58  84.66 £ 0.0074
== GloVe 83.21 80.61  81.89 £ 0.0081
= | ConvM 86.70 83.49  85.06 £ 0.0065
& | TensorM 86.85 83.20  84.98 + 0.0072

6 Conclusion

Word or character features can be learned in advance in an
unsupervised manner. These features, once learned, are eas-
ily disseminated with other researchers, and easily integrated
into existing supervised NLP systems. We presented a new
neural network architecture as well as a context-specific lan-
guage model that can learn multi-prototype character rep-
resentations, which are capable of capturing character-level
syntactic and semantic information, particularly their poly-
semous variants. Experiment results with different datasets
showed that the proposed ConvM and TensorM outperformed
the three state-of-the-art embedding learning methods on the
three NLP tasks. The ConvM achieved the best results on all
the three evaluation tasks. In the future, it would be interest-
ing to see how well our models can be used to learn character
or word representations for other languages.
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