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Abstract
When engineering an automated planning model,
domain authors typically assume a static, unchang-
ing ground-truth world. Unfortunately, this as-
sumption can clash with reality, where domain
changes often rapidly occur in best practices, ef-
fectors, or known conditions. In these cases, re-
modeling the domain causes domain experts to en-
sure newly captured requirements integrate well
with the current model. In this work, we ad-
dress this model maintenance problem in a system
called Marshal. Marshal assists model main-
tainers by reasoning about their model as a (hid-
den) stochastic process. It issues queries, and learns
models by observing query answers, plan solutions,
and direct changes to the model. Our results indi-
cate that anticipating model evolution leads to more
accurate models over naive approaches.

1 Introduction
Most prior work on knowledge engineering, learning, and
algorithms for planning assumes that the planning model is
static. Knowledge engineering and learning approaches as-
sume that a ground-truth model exists and focus on how to
attain it. In practice, the ground-truth is ephemeral: organi-
zational doctrine changes, sensors and effectors break, and
knowledge engineers make mistakes. When the ground-truth
and the model diverge, such model drift causes planning-
driven applications to offer reduced functionality. In prac-
tice, knowledge engineers must maintain the model. While
software engineering practices have recently gained traction
in planning (Vaquero et al., 2013b), maintenance has largely
been ignored. Maintenance can represent 60% of the total
life cycle cost of traditional software (Lientz and Swanson,
1980), and represents an unaddressed problem in planning.

The declarative and constraint-based representations used
in planning lend themselves to automated forms of main-
tenance. We present Marshal, a system for maintaining
evolving planning domain models. Marshal integrates with
knowledge engineering tools, mixed-initiative planners, and
plan executives to learn how the model of a planning task

⇤This work was conducted under NASA contract NNX15CA19c.

evolves. Marshal interacts with users to highlight potential
plan flaws, ask clarifying questions, and explain model drift.

Consider an actual scenario taken from a recent occurrence
within NASA ISS operations. In the scenario, two tasks re-
quire access to nitrogen that is stored in a tank. One of the
tasks, check(N2) necessitates closing the valves from the
nitrogen tank. Unfortunately, this requirement prevents the
other task, use(N2), from being completed because it re-
quires opening the valves to use the nitrogen tank. There-
fore, use(N2) can never overlap with check(N2); it has a pre-
condition that the leak check is not ongoing. The flight con-
trollers could identify this condition (in their mental model),
as they know the procedures for both tasks. However, oper-
ations planners cannot identify the condition that the tasks
must not overlap (because the constraint is not formalized
in their tools). Though not represented directly, the oper-
ations planners manage to avoid violation of the condition
between these two tasks over several planning episodes. Un-
fortunately, on one plan the condition becomes violated. The
flight controllers begin executing the plan. It fails because
check(N2) occurs while executing use(N2).

This example illustrates how Marshal can provide value.
By observing the series of successful plans, Marshal hy-
pothesizes variations of the domain model that are consistent
with the plans. In the scenario, use(N2) has an unstated pre-
condition that check(N2) is not in progress, and Marshal
can include this as a hypothesis. As soon as Marshal is no-
tified that a plan is invalid, it uses this unstated precondition
hypothesis to explain the error. Instead of the user debugging
the model, Marshal hypothesizes explanations for the plan
failure, repairs the model, and confirms with the user.
Marshal’s capabilities stem from modeling the plan-

ning model as a first-order stochastic process with a hidden
Markov model. That is, Marshal maintains a belief state
P (X

t

|z1:t) over possible models x
t

given evidence z1:t re-
ceived from the user. In the case of STRIPS models, this
equates to tracking how for each action, each proposition
can become (or be removed as) a precondition, add effect or
delete effect. We discuss and evaluate alternative assumptions
about how the model drifts.

In the following, we define the model maintenance prob-
lem (MMP), the MMP applied to planning models, and our
Marshal solution. We then discuss an empirical evaluation
of Marshal and related work. Our results demonstrate that
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Marshal learns more accurate models of planning domains
if it expects and exploits model evolution. We also show
that integrating interaction modalities beyond observing plans
also helps to learn more accurate models. We illustrate these
findings on several domains drawn from the learning track of
the International Planning Competition.

2 Model Maintenance Problem
Marshal addresses the model maintenance problem (MMP)
under the assumption that a user’s understanding (mental
model) of a domain evolves, drifting away from the formal
computational model of the domain. Marshal is a model
maintenance (MM) system that solves the MMP by updat-
ing the computational model to correct drift. In the following
sections, we focus on the MMP with the assumption that we
can observe model use and have access to a domain expert to
provide answers to queries.
Model Evolution: Let Mu

t

denote a user’s mental model of
a domain that represents ground truth at time instant t. For
example, Mu

t

might represent a set of planning operators, a
Bayesian network, or a procedure. The model can evolve over
time so that Mu

t+1 6= Mu

t

because the user misunderstood
the domain or the domain changes. For example, a blocks-
world planning user might realize that only clear blocks can
be grasped (a misunderstanding) or a gripper might break (a
domain change).
Model Drift: An inconvenient side-effect of evolving mental
models is that their corresponding realizations as computa-
tional models no longer match reality as the user sees it. This
model drift (a.k.a., “bit rot”) renders (semi-)automated rea-
soners useless because their solutions are no longer generated
from an accurate model.

Let M
t

denote a computational model corresponding to a
user’s mental model Mu

t

, and ✏(M
t

,Mu

t

), the modeling error.
Let E[✏

t

] denote the expected error, given a filtering density
P (M

t

|z1:t), so that

E[✏
t

] =

Z
✏(M

t

,Mu

t

)P (M
t

|z1:t�1)dMt

where z1:t�1 signifies observations received by the MM sys-
tem at times 1 to t � 1. Fluctuations in this expected error
characterize the degree to which the model drifts.
Model Observations: We assume that an observation z

t

ac-
companies each time step t. The observation provides clues
to the MM system about how the user’s mental model has
evolved. For example, MM systems might receive observa-
tions of a hand coded computational model, a new constraint,
or a deleted state fluent. The MM system can then use these
observations to refine its knowledge about the model M

t+1.
User Query Actions: Beyond filtering observations of user
interactions, MM systems can perform a query action u

t

at
each step t with the hope that it can influence which observa-
tion z

t

it receives. Ideally, the preferred observations will
help it reduce model error. For example, the MM system
might perform a query action where it (i) performs an infer-
ence and asks if it is correct, (ii) asks whether a constraint is
still present, or (iii) critiques the user’s solution to a problem
and asks if the critique is valid.

Under these assumptions, we state the MMP as the
problem of minimizing the average expected model er-
ror. MM systems that solve the MMP must define: (i)
a prior distribution P (M0) over models, and (ii) a query
policy µ = (µ0, µ1, . . . , µT

) where µ
t

defines u
t

, and
(iii) a model update function f so that P (M

t+1|z1:t) =
f(z

t

, P (M
t

|z1:t�1)).
Definition (Model Maintenance Problem) Find
(P (M0), µ, f) that minimizes the average expected model
error:

c =
1

T + 1

TX

i=0

E[✏
t

]

3 MMP for Planning
Our motivation to address planning in the context of an MMP
is that manually creating and maintaining a planning do-
main model is extremely challenging. While many works
have developed knowledge engineering approaches to creat-
ing planning models, model maintenance is a largely man-
ual endeavor. MMP provides for an encompassing and fluid
modeling process where an MM system can adapt the domain
model to correct prior modeling mistakes or to incorporate
new facets of the domain. We expect and allow for errors in
the model, and accommodate cyclic or gradual evolution.

Knowledge engineering for planning provides several use-
ful modalities for expressing planning domain knowledge.
We adopt three: labeled plan examples, manual edits to the
planning model, and answers to MM system queries. We ex-
pect that in any of these modalities the information provided
by the user can be in error.

In the following, we define the elements of the model M
t

and an error function ✏
t

as they relate to STRIPS-based plan-
ning. We also describe the user interactions z

t

and queries u
t

noted above.
Definition (STRIPS Model) The grounded STRIPS planning
model M defines the tuple (P,A), where P is a set of state
propositions, and A is a set of actions. Each action a 2 A de-
fines the tuple (pre(a), add(a), del(a)), where each element
of the tuple is a subset of P . The subsets A

init

✓ A and
A

goal

✓ A correspond to the possible initial states (using ef-
fects) and goals (using preconditions).
Example The (simplified) ISS scenario defines Mu

0 as P =

{avail(N2)}, A = {check(N2)`, check(N2)a, use(N2)`,
use(N2)a} (using ` and a to denote atomic actions
for the respective start and end of durative actions),
del(check(N2)`) = {avail(N2)}, add(check(N2)a) =

{avail(N2)}, pre(use(N2)`) = {avail(N2)}, and all other
action preconditions, deletes, and adds are empty. While the
action start and end notation resembles that used in temporal
planning, our definitions assume atomic actions.

The error ✏
t

of a model M
t

with respect to the ground
truth model Mu

t

is the normalized symmetric difference of
the model features:

✏
t

=
|(I(M

t

) [ I(Mu

t

))\(I(M
t

) \ I(Mu

t

))|
|(I(M

t

) [ I(Mu

t

))|
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where I(M) is a set of model features. We define I(M),
where M = (P,A) as a subset of {act⇤(a, p)|p 2 P, a 2
A, ⇤ 2 {pre, add, del}} where, for example, if actpre(a, p) 2
I(M), then p is a precondition of action a in model M .

Example The flight controller’s initial model defines:

I(Mu

0 ) ={actdel(check(N2)`, avail(N2)),
actadd(check(N2)

a
, avail(N2)),

actpre(use(N2)
`
, avail(N2))}

In our scenario, if the planning system used by operations
planners has the model:

I(M0) ={actdel(check(N2)`, avail(N2)),
actadd(check(N2)

a
, avail(N2))}

then ✏0 = |{actpre(use(N2)`,avail(N2))}|
|I(Mu

0 )| = 1
3 .

We note that in practice Mu

t

does not exist in any formal
sense. Our evaluation uses a simulated user with a formally
represented model Mu

t

, thereby allowing us to compute ✏
t

.
Observations: We discuss several user interactions that are
representative of how MM systems can be used in our set-
ting. Each user interaction z

t

at instant t falls into one of the
following categories:

• M⇠u

t

, a user-supplied model (based upon the mental
model Mu

t

)
• (⇡,L), a user-labeled plan, where L 2 {valid, invalid}
• (x,L) where x is a model feature, and L 2 {true, false}

Example In our example, the failed plan corresponds to the
observation at step 42: z42 = (⇡, invalid), where ⇡ =

(check(N2)`, use(N2)`, check(N2)a, use(N2)a).

Query Actions: Given the STRIPS model and observations
noted above, there are several forms of queries u

t

that the
MM can use to control drift. We focus on a single type, model
feature queries. Each model feature query is of the form x,
where x is actpre(a, p), actadd(a, p), or actdel(a, p). The user
can either address a query by providing a label pair (x,L) or
take their own initiative to generate the next observation z

t

.
Each query u

t

involves zero or more specific questions that
the user can answer. Our simulated user always answers the
top ranked query.

4 Marshal
Marshal solves the MMP by combining a particle filter
(Arulampalam et al., 2002) with an information-gain-driven
query generation policy. Marshal develops a prior dis-
tribution over possible models P ( ~X0) as a set of particles
{~x(i)

0 }N
i=1 and then repeats for each time step t = 1 . . . T :

1. Query the user with u
t

, and receive an observation z
t

.

2. Generate N samples from a proposal distribution ~x
(i)
t

⇠
q(~x(i)

t

|~x(i)
t�1, zt), i = 1, . . . , N , that accounts for both

model drift and the observation.

3. Weight the particles with their likelihood w
(i)
t

=

P (z
t

|~x(i)
t

)P (~x(i)
t

|~x(i)
t�1)/q(~x

(i)
t

|~x(i)
t�1, zt).

4. Re-sample the particles from the set of normalized-
weighted particles to create the next belief state {~x(i)

t

}.

In the following, we discuss how Marshal represents the
space of domain models, how it develops a prior {~x(i)

0 }N
i=1,

how it selects queries u
t

, and how it defines the pro-
posal q(~x(i)

t

|~x(i)
t�1, zt), transition P (~x(i)

t

|~x(i)
t�1) and observa-

tion P (z
t

|~x(i)
t

) functions.
Space of Domain Models: Marshal represents its knowl-
edge of the domain model using a set of domain features
X . Each possible model M is defined in terms of X (i.e.,
I(M) ✓ X ). Marshal initializes X by generating sets
A and P of skolem action and proposition symbols, so that
X = {act⇤(a, p)|p 2 P, a 2 A, ⇤ 2 {pre, add, del}}. As
Marshal observes aspects of the model (e.g., action sym-
bols appearing in a plan), it builds an interpretation that as-
sociates user provided symbols with its skolem symbols. We
assume that the user is consistent in their use of symbols.
Marshal represents its knowledge as a probability distri-

bution over ~X where each component X denotes a random
variable corresponding to an element of X . Each ~x is an as-
signment to random variables in ~X , where each assignment
x = > indicates that x 2 I(M) for the model M represented
by ~x.
Prior Distribution: We formulate the prior distribution
P ( ~X0) over models by assuming a starting model M where
every domain feature is false (i.e., I(M) = {}). We ini-
tialize the particle set that approximates P ( ~X0) with a set of
identical particles, where all domain features are false. While
this prior is unlikely to reflect the user’s mental model, it will
change quickly as the user provides observations.
Query Generation: Given the approximation {~x(i)

t

}N
i=1

of its filtering distribution P ( ~X
t

|z1:t), Marshal computes
the priority of several model features so that u

t+1 is a
ranked list. The priority for the query of model feature
x 2 X is defined by its relevance (higher relevance is
better priority). We define the relevance of a query x by
the negative expected entropy of the posterior probability
of the most recent plan ⇡ upon observing x or ¬x, i.e.
�H(P (⇡| ~X

t+1)P ( ~X
t+1|z1:t, x)), computed with respect to

the particle set. This distribution represents the probability of
the most recent plan observation assuming that x (¬x, resp.)
is observed. That is, x is relevant if it distinguishes cases
where the plan fails or succeeds. If there has been no plan
observations, then Marshal does not compute relevance.
Marshal breaks ties between features with the same rel-

evance by computing their information gain. The informa-
tion gain is the difference in entropy of the prior distribution
P ( ~X

t

|z1:t) and the posterior distribution P ( ~X
t+1|z1:t, x).

Sample Proposal: The proposal distribution q(~x(i)
t

|~x(i)
t�1, zt)

is an importance density for domain models. Drawing a sam-
ple from q involves updating a particle approximating ~X

t

with respect to the observation z
t+1. Intuitively, the update

should make the resulting particle correspond more closely
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with the observation. In the next section, we evaluate five
different approaches for updating the particles; these include:

• Verbatim (V): Update particles to be complicit with user
domain update and query response observations. Ignore
plan observations.

• Uniform Drift (U): Similar to verbatim, but for plan ob-
servations, uniformly sample a single domain model fea-
ture to add (remove).

• Uniform Drift Generalization (UG): In addition to uni-
form drift, also add (remove) related domain model fea-
tures.

• Well-Formed Drift (W): Similar to uniform drift, but
treat plans differently. If a particle agrees with the plan
label, then non-uniformly sample a single domain model
feature to add (remove). If the particle does not agree
with the plan label, then repair or injure explanations of
plans that are observed as valid or invalid (resp.).

• Well-Formed Generalization (WG): In addition to the
well-formed drift, also add (remove) related domain
model features.

The verbatim approach is a reference method where
Marshal does not hypothesize model drift. Because the ini-
tial particles are identical and it does not update the particles
(aside from matching domain models and query answers),
each sampled particle will be identical. Thus, the importance
q(~x(i)

t

|~x(i)
t�1, zt) = 1 if ~x(i)

t

respects ~x(i)
t�1 aside from updates

specified by z
t

, and is 0 otherwise.
The uniform drift approach treats model and query obser-

vations identically to the verbatim approach. When observ-
ing a plan, it assumes that the domain model will change in
a uniformly random way by one model feature per step. The
importance is q(~x(i)

t

|~x(i)
t�1, zt) = 1/|X | if ~x(i)

t

differs from
x
(i)
t�1 by exactly one assignment and is 0 otherwise. This ap-

proach is able to hypothesize model drift, unlike the verbatim
approach, because it changes the model in ways that are not
necessarily stated by the user.

Generalization allows Marshal to effectively treat par-
ticles as tracking action schemas instead of ground actions.
For example, say Marshal samples the domain feature
actpre(a, p) to be set false, where a is a grounding of ac-
tion schema go(?x, ?y) and p is a grounding of predicate
at(?x). With generalization Marshal will also set false all
actpre(a0, p0) where a0 is a different grounding of go(?x, ?y)
and p0 is a grounding of at(?x). Note that with generaliza-
tion, Marshal loses its ability to learn context-dependent
model features (e.g., conditional effects).

The uniform drift with generalization defines importance
as q(~x(i)

t

|~x(i)
t�1, zt) = 1/|XG | if ~x(i)

t

differs from x
(i)
t�1 by ex-

actly one group of assignments and as 0 otherwise. The set of
groups XG partitions the set of model features X into related
subsets that represent groundings of the same schema feature.

The well-formed drift approach treats model and query ob-
servations as the previous methods, but handles plans differ-
ently. If a model encoded by the particle agrees with the plan
label (i.e., the plan is labeled valid and the plan is valid given

the model), then the particle will change by one model fea-
ture. Marshal uses heuristics as bias, including:

• preconditions are likely delete effects, and vice versa.
• preconditions are unlikely add effects, and vice versa.
• add effects are unlikely delete effects, and vice versa.

The importance distribution q(~x(i)
t

|~x(i)
t�1, zt) = ↵a if ~x(i)

t

dif-
fers from x

(i)
t�1 by exactly one assignment where ↵ is a nor-

malization constant, and is 0 otherwise. We define a with
respect to the heuristics so that if it satisfies one of the heuris-
tics above, then a = 0.5. If it specifically violates one, then
a = 0.01. If it does not satisfy or violate any, then a = 0.1.

The well-formed drift approach updates particles that dis-
agree with plan observations so that they agree. Marshal
does this by repairing or introducing flaws. Flaws are un-
satisfied preconditions or goals. Repairing a flaw involves
either removing the precondition from the domain model, or
adding an add effect to an action preceding it and preserv-
ing the effect by removing clobbering delete effects of in-
termediate actions. Introducing a flaw involves adding an
unsupported precondition, removing a supporting add effect,
or clobbering it by adding a delete effect. If a plan is la-
beled valid, but is invalid under the domain model expressed
by the particle, then for each plan flaw Marshal uniformly
samples an update to the domain model to repair it. Simi-
larly, if the plan is labeled invalid, but is valid given the par-
ticle, then Marshal uniformly samples an update that intro-
duces a flaw. The importance distribution q(~x(i)

t

|~x(i)
t�1, zt) =Q

flaw2Flaws(⇡,x(i)
t�1)

1/|R(flaw,⇡, x(i)
t�1)| if z

t

labels ⇡

as valid and ~x
(i)
t

applies exactly one repair from
R(flaw,⇡, x(i)

t�1) for each plan flaw, and 0 otherwise. The
importance distribution is q(~x(i)

t

|~x(i)
t�1, zt) = 1/|F(⇡, x(i)

t�1)|
if z

t

labels ⇡ as invalid and ~x
(i)
t

applies exactly one injury
from F(⇡, x(i)

t�1) to create a plan flaw, and 0 otherwise.

Example If a particle ~x
(0)
42 at step 42 assigns the model fea-

tures the same as I(M0) (an incorrect model), and Marshal
observes z42 (the failing plan), then the well-formed tech-
nique may sample x

(0)
43 by assigning the model features the

same as I(Mu

0 ) (i.e., setting actpre(use(N2)
`
, avail(N2)) to

true). The invalid plan is valid under ~x(0)
42 (because no pre-

conditions are unsatisfied), and the possible injuries to the
plan include setting actpre(use(N2)

`
, avail(N2)) to true, or

actpre(check(N2)
a
, avail(N2)) to true. If we sample the for-

mer injury, then the resulting particle matches the observation
and also Mu

0 .

The well-formed drift with generalization approach em-
ploys generalization in the same way as the uniform drift
with generalization method, but applies it to the well-formed
drift technique (above). The importance distribution is de-
fined with respective sets RG , and FG in place of the same
sets without subscripts. These sets group updates that would
be in the original sets with the elements from their respective
subsets of X in G.
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Weighting Particles: Weighting a particle requires that we
define a transition and observation function. We define the
transition function P (~x(i)

t

|~x(i)
t�1) = 1/2|X | so that the prob-

ability of a transition between any two domain models is
with uniform probability. We define the observation function
P (z

t

|~x(i)
t

) so that observations agreeing with a domain model
have high probability (we use 0.99) and those disagreeing
have low probability (we use 0.01). Thus, the weight is cal-
culated as w(i)

t

= P (z
t

|~x(i)
t

)P (~x(i)
t

|~x(i)
t�1)/q(~x

(i)
t

|~x(i)
t�1, zt).

Resampling Particles: We sample particles with probabil-
ity equal to their normalized weight w(i)

t

/
P

N

j=1 w
(j)
t

. The
resulting set of particles are re-indexed to define {x(i)

t

}N
i=1.

5 Evaluation
In our evaluation, we show that Marshal can learn how the
user’s mental model has changed. We employ a simulated,
scripted user agent capable of (1) evolving its mental model
multiple times from an initially provided model, (2) sending
Marshal answers to queries and simulated (scripted) plans
based on those models, and (3) interfacing with Marshal
to provide empirical data on the error between the Marshal
learned model and the simulated user’s model.

Using the simulated user agent, we evaluate Marshal by
posing three questions:

• Q1. Must Marshal assume a evolving model, or can
static change be assumed?

• Q2. Do answers to queries help with the learning pro-
cess, or are plan observations enough?

• Q3. Does a uniform transition function operate as ef-
fectively as a more well-formed transition function that
captures common traits of domains?

Experimental Setup: Our experiments were run on a cluster
containing Intel Xeon Harpertown quad-core CPUs, running
at 2.83 Ghz with 2 GB of memory given to each Marshal
instance. For each planning domain we assume that the user
updates their mental model six times and after each change
provides a series of 108 plans that they believe are valid.
Each change is over a precondition, add or delete effect in
an action schema. After each plan, the user answers a series
of Marshal’s questions in the order that Marshal deter-
mines. After each series of plans, and just prior to the next
drift in the user’s model, we ask Marshal to calculate the
probability (given its distribution over models) that each plan
within a testing set of 28 plans is valid. The testing error
is the difference in the actual probability that a plan is valid
(given the user’s ground-truth model) and the probability re-
ported by Marshal. We report the average testing error over
all six testing sessions in a single scenario. We also report
the average model error. The testing error measures how
well Marshal learns a useful model and the model error
measures how close Marshal is to the current ground-truth.
Marshal uses 128, 256, 512, or 1024 particles in its particle
filter.

We note that the experiments are run faster than real-time.
With each method, Marshalwill complete a scenario as fast
as the environment permits. We anticipate that actual usage

will involve a human-user that will have considerably more
latency than the simulated user. Each of our scenarios com-
pletes within a few hours, but represents actual usage over
several months. As such, Marshal response time is on the
order of a small number of seconds or less and within reason-
able expectations for most applications.

To answer Q1 above, we evaluate the verbatim method (V)
against the other methods. To answer Q2, we vary the number
of (top ranked) queries answered by the user after each plan.
To answer Q3, we compare the uniform (U, UG) to the well-
formed (W, WG) methods.

We evaluate on the parking, spanner, transport, and floor-
tile domains from the Learning Track of the 2014 Interna-
tional Planning Competition (IPC-2014). We generated 108
problems per version of the domain for each of the domains.
We then produced plans using Fast Downward (Helmert,
2006) for each version of the domain and each of these prob-
lems.
Parking: The parking domain simulates parking multiple
cars in a lot. The initial domain fed to Marshal has forgot-
ten constraints over the car being at a curb before it is moved
from curb-to-curb or curb-to-car, and does not include delete
effects regarding this. It also excludes delete effects of the car
being behind car when moving car-to-curb or car-to-car.
Spanner: The spanner domain simulates using a spanner to
tighten nuts on a gate to fix it. A man must pick up a span-
ner, walk across several linked locations, then perform the
appropriate fixes. Once a spanner is used, it cannot be used
again. The initial domain neglects preconditions and effects
over these constraints.
Transport: In the transport domain vehicles must transport
packages between locations. Each vehicle has a limited ca-
pacity. The drifts in the domain involve reconfiguring the
delete effects of the drive and pick-up actions.
Floortile: The floortile domain involves a robot painting tiles.
The robot can move up, down, left, and right and paint going
upward and downward. It also can change the color of paint
it if the color is available. The initial domain does not include
constraints on painting.
Results: Figure 1 illustrates the average model error and the
average testing error for each method on each scenario, with
the exception that Marshal ran out of memory on the trans-
port domain instances when using more than 128 particles.
We note that we generally have higher model and testing error
when assuming no drift (Q1). The one exception is the uni-
form method with generalization (UG) has the greatest model
error in all cases and surprisingly lower relative testing error.
This is due to the UG method hypothesizing (potentially delu-
sional) changes to the domain model that are not necessarily
related to observations but sometimes explain plans. Increas-
ing the number of queries does indeed help (or at least not
harm) error in all cases (Q2), and the effect seems to be more
pronounced as the number of particles increases. This trend
is due to Marshal correctly hypothesizing which aspects of
the model changed and then asking about them for confir-
mation. Of the methods that take drift into account (Q3),
we see that the well-formed drift with generalization (WG)
performs best, and increases performance with the number
of particles and queries. It is followed by the well-formed
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Figure 1: The average model error (left) and testing error (right) for each method and domain. Each group of columns lists
results on a domain with a different number of particles. Each stacked column lists results for a method, from left to right (V,
U, UG, W, WG). Within each column the results from the bottom to the top of the stack are for each number of queries per plan
(0, 1, 2, 3). The data illustrates an anticipated trend that as the number of queries or particles increases, each method performs
better. Across the methods, incorporating the well-formed heuristics and generalization (WG) results in the best performance.

method without generalization. The uniform methods have
somewhat greater testing error, but less than the verbatim ap-
proach. Overall, it would seem that taking drift into account
is useful, and that carefully applying bias in the well-formed
methods is essential to tracking the evolving domain model.

6 Related Work
Our work on Marshal spans many areas, including mixed-
initiative planning, expert systems, learning for planning,
model-lite planning, and knowledge engineering.

Prior work on mixed-initiative planning (Chien et al., 1998,
Marquez et al., 2013, Muscettola et al., 1998, Myers, 2006,
Schreckenghost et al., 2014) largely treats model mainte-
nance as an ad-hoc activity that relaxes or ignores constrains
violated by the user.

Work on expert systems (Erman et al., 1980, Freed et al.,
2011, Mailler et al., 2009) and learning for planning has ad-
dressed model acquisition, but ignores the evolution of mod-
els. The emphasis has on acquiring the correct model from
the outset rather than embracing the fluid nature of models.

Model-lite planning (Morwood and Bryce, 2012, Nguyen
and Kambhampati, 2014, Weber and Bryce, 2011, Zhuo et
al., 2013) is more similar to our setting in that it assumes
the model is only partially specified/known. However, it also
assumes that the model is static. Attempts (Weber et al.,
2011a,b) to refine the knowledge about the model can only
be effective if the model is static.

Knowledge engineering for planning (Cresswell et al.,
2013, Vaquero et al., 2013b, Yang et al., 2007) can be greatly
enhanced with systems like Marshal. While considerable
support for debugging plans and models is helpful, it can
still be difficult for users to manually maintain their mod-
els. itSIMPLE does however acquire and re-use plan ratio-
nale to aid plan understanding (Vaquero et al., 2011, 2013a)
similar to how Marshal automatically adapts the model to
match model usage. Marshal can integrate with such tools
to provide quick-fixes, suggested errors, and other guidance

to users. If so desired, Marshal could adapt the model with
minimal input from users.

Other works have considered updating the domain model
with input from the user. Plan post-optimization approaches
adapt the model to eliminate irrelevant actions or speed up
planning (Chrpa et al., 2012, Nakhost and Müller, 2010), and
Marshal could help users identify such actions.

7 Conclusion
We have presented a formalization of the model maintenance
problem for STRIPS planning models and a system called
Marshal that attempts to minimize the average expected er-
ror of the domain model. Marshal tracks the user’s men-
tal model with a stochastic process that reflects how models
can evolve over time. Marshal uses observations of plans,
domain models, and query responses to refine its knowledge
about the user’s model with Bayesian filtering. Marshal
implements its model tracking as a particle filter.

Our experiments demonstrate that Marshal is effective
at learning domain models that are evolving, and that using
observations beyond just plans only improves its ability to
correctly capture the user’s mental model of a planning task.
Our results across multiple domains from the learning track of
the International Planning Competition reinforce our claims
and highlight the unique capabilities afforded by Marshal.

In future work, we hope to extend the base planning lan-
guage addressed by Marshal to include a broad set of rela-
tional, temporal, and resource constraints. This would require
considerable extensions to the particle representation and use
of the proposal distribution. We also foresee Marshal be-
coming a full mixed-initiative planner that not only provides
feedback on the model, but also helps modify plans. Simul-
taneously modifying the domain model and plans given user
interaction presents several unique and interesting challenges.

3058



References
M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A

tutorial on particle filters for online nonlinear/non-gaussian
bayesian tracking. Signal Processing, IEEE Transactions
on, 50(2):174–188, Feb 2002.

Steve A. Chien, Nicola Muscettola, Kanna Rajan, Ben-
jamin D. Smith, and Gregg Rabideau. Automated plan-
ning and scheduling for goal-based autonomous spacecraft.
IEEE Intelligent Systems, 13(5):50–55, 1998.

Lukás Chrpa, Thomas Leo McCluskey, and Hugh Osborne.
Optimizing plans through analysis of action dependencies
and independencies. In Lee McCluskey, Brian Williams,
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