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Abstract
Bike Sharing Systems (BSSs) experience a signif-
icant loss in customer demand due to starvation
(empty base stations precluding bike pickup) or
congestion (full base stations precluding bike re-
turn). Therefore, BSSs operators reposition bikes
between stations with the help of carrier vehicles.
Due to unpredictable and dynamically changing
nature of the demand, myopic reasoning typically
provides a below par performance. We propose an
online and robust repositioning approach to min-
imise the loss in customer demand while consid-
ering the possible uncertainty in future demand.
Specifically, we develop a scenario generation ap-
proach based on an iterative two player game to
compute a strategy of repositioning by assuming
that the environment can generate a worse demand
scenario (out of the feasible demand scenarios)
against the current repositioning solution. Exten-
sive computational results from a simulation built
on real world data set of bike sharing company
demonstrate that our approach can significantly re-
duce the expected lost demand over the existing
benchmark approaches.

1 Introduction
Bike Sharing Systems (BSSs) are widely installed in major
cities of the world to mitigate the concerns associated with
extensive usage of private vehicles such as increased carbon
emissions, traffic congestion and usage of non-renewable re-
sources. Because of this ability to provide healthier living
and greener environments, bike sharing systems are widely
adopted with 984 active systems and 295 systems under con-
struction [Meddin and DeMaio, 2016] in major cities of the
world. Popular examples of BSSs include Capital Bikeshare
in Washington DC, Hubway in Boston, Bixi in Montreal, and
Velib in Paris. In a typical bike sharing system, a set of base
stations are strategically placed throughout a city and each of
the stations has a finite number of docks, each holding one
bike. At the beginning of the day, each station is stocked with
a pre-determined number of bikes. Users can hire bikes from
one station and return them to a different station.

Due to the individualistic and uncoordinated movements
of customers, there is often starvation (fewer than required)
or congestion (more than required) of bikes at certain base
stations, which can result in a significant loss of customer
demand. Several bike sharing operators employ carrier ve-
hicles to reposition bikes during the day using myopic rea-
soning (e.g. start filling when number of bikes falls below
20% of the capacity) to better match the demand. Due to un-
certainty in future demand, it is difficult to predict the ideal
inventory level and therefore, myopic solutions often fail to
provide a good quality solution. While the existing offline
multi-step algorithms [Ghosh et al., 2015] based on expected
future demand are suitable for situations with stable demand
patterns, they perform poorly when demand varies through-
out the day. While data driven solution approaches that con-
sider demand uncertainty have been proposed in several ap-
plication domains (ex: emergency medical services [Saisub-
ramanian et al., 2015; Ghosh and Varakantham, 2016], taxi
fleet optimization [Lowalekar et al., 2016]), progress remains
slow in handling the unpredictable demand in a robust man-
ner, particularly in bike sharing systems. This serves as the
motivation for this paper.

To address such scenarios where demand has high vari-
ance, we propose an online and robust repositioning approach
to better match the demand and supply of bikes and conse-
quently to reduce the expected lost demand. We treat the
problem of computing a robust solution as an iterative game
between the decision maker of the BSS and the environment
acting as an adversary. In each iteration, the adversary identi-
fies a feasible demand scenario that maximises the lost de-
mand relative to the rebalancing strategy proposed by the
decision maker. From the decision maker’s perspective, we
solve this game using a scenario generation approach. That is
to say, the decision maker takes into account all the demand
scenarios generated by the adversary in previous iterations
and computes a routing and repositioning solution for the ve-
hicles that minimises the worse case lost demand over all the
scenarios. The process continues until the objectives of the
adversary and the decision maker converges.

We develop an online approach where the robust strategy
is generated at each time step by considering the current dis-
tribution of bikes across the stations and the strategy is exe-
cuted on a real world simulator to identify the distribution of
bikes for the next time step. Experimental results on multiple
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synthetic data sets and a real world data set demonstrate that
our approach significantly reduces the expected lost demand
over the existing benchmark approaches and is robust to the
uncertainty in demand.

2 Related Work
Given the practical importance of bike sharing systems, they
have been studied extensively in the literature. We broadly
categorize the repositioning problem into three threads of re-
search. The first thread of research focuses on static reposi-
tioning [Chemla et al., 2013] where the goal is to find the
routes for a fixed set of vehicles for achieving the desired
configuration of bikes across the base stations at the begin-
ning of the day. [Raviv and Kolka, 2013; Raviv et al., 2013;
Rainer-Harbach et al., 2013] propose scalable exact and ap-
proximate algorithms to solve the static repositioning prob-
lem by employing constraints from inventory management
literature or by using variable neighborhood search heuris-
tic. [Di Gaspero et al., 2013; 2015] employ constraint pro-
gramming (CP) and efficiently solve the problem using large
neighbourhood search. These notably scalable static reposi-
tioning solutions are fruitful if the demand pattern is stable
and predictable. However, if the demand changes over time,
the stations get imbalanced during the day and static repo-
sitioning is not sufficient in those situations. Therefore, our
approach focuses on repositioning during the day.

The second thread of research focuses on performing dy-
namic repositioning of bikes during the day. [Shu et al.,
2013] provide an optimisation model for dynamic reposition-
ing to minimise the number of unsatisfied customers. [Ghosh
et al., 2015] consider the dynamic repositioning of bikes in
conjunction with the routing problem for vehicles. Due to
the inherent complexity of the joint problem, they employ
decomposition and abstraction based heuristics to solve the
real world large scale problems. [Contardo et al., 2012] de-
velop a myopic repositioning approach by considering the re-
cently observed demand to reduce the unmet demand in rush
hours. [Pfrommer et al., 2014] provide myopic online deci-
sions based on assessment of near future demand. [Schui-
jbroek et al., 2013] propose a scalable approximate solution
for this problem by abstracting base stations and solving it
using a clustered vehicle routing [Battarra et al., 2014] ap-
proach. All the papers in this thread assume a known distri-
bution of demand and they are not sensitive to the fluctuating
or unpredictable demand scenarios. In contrast, we propose a
robust solution approach for the dynamic repositioning prob-
lem by considering the possible uncertainly in future demand.

The last thread of research focuses on the prediction and
analysis of demand in BSS. [Nair and Miller-Hooks, 2011;
Nair et al., 2013] provide service level analysis of BSS using
dual-bounded chance constraints. [Leurent, 2012] represent
the BSS as a dual markovian waiting system. [Borgnat et
al., 2009; 2011] propose the idea of predicting temporal user
demand and forecasting that information to users. [George
and Xia, 2011; Shu et al., 2013; Kabra et al., 2015] represent
the customer arrival process at base stations using Poisson
distribution. Due to its simplicity and accuracy in represent-
ing random arrival processes, we evaluate the performance of

our robust strategies on the demand scenarios generated using
Poisson distribution.

3 Model: Bike Sharing System
The generic model for Dynamic Repositioning and Routing
Problem with demand Uncertainty (DRRPU) in BSS is for-
mally defined using the following tuple:

D
S,V,C#,C⇤, d#,0, d⇤,0, {�0

v},P,F
E

S represents the set of base stations, where each station s 2 S
has a fixed capacity (number of docks) denoted by C#

s . V
represents the set of vehicles and each vehicle v 2 V has a
fixed capacity (number of slots for bikes) denoted by C⇤

v . The
number of bikes stocked at a base station, s at the beginning
of the day, is given by d#,0

s . d⇤,0v denotes the number of bikes
present initially in a vehicle v. �0

v(s) is set to 1 if vehicle v
is present at station s initially. For ease of notation, we use
the generic �t

v(s) and set it to 0, if t > 0. Ps,s0 represents the
distance between station s and s0.

F represents the set of demand bounds that is computed
from the historical trip data. We compute three types of
bounds on the arrival customer demand: (a) F̌ t, F̂ t denote the
lower and upper bound on the system wide demand across all
the stations at time step t; (b) F̌ t

s , F̂
t
s denote the bounds on

the demand in station s at time step t; (c) F̌ t
s,s0 , F̂

t
s,s0 denote

the bounds on the demand that arises in station s at time step
t and reach station s0 at time step t+1. These demand bounds
are used in the solution approach to generate the strategy. On
the other hand, the strategies are evaluated on a wide range
of testing demand scenarios that are created using Poisson
distribution and these scenarios are not forced to follow the
bounds used in the planning process.

Given the DRRPU model, our goal is to provide a reposi-
tioning and routing strategy for the vehicles at each time step
that minimises the worse case lost demand. We are primarily
interested in minimising lost demand that arises because of
the starvation of bikes at stations. As we compute the strat-
egy for one time step, we have no control over the lost de-
mand that arises due to the congestion of bikes at the des-
tination station (which depends on the unknown demand) in
the next time step. However, experimental results on the real
world data set demonstrate that repositioning bikes to reduce
the lost demand at the time of hiring, determine the inven-
tory level efficiently and furthermore, reduce the number of
unsatisfied customers at the return time.

4 Solution approach
We compute a robust repositioning and routing strategy us-
ing rolling horizon framework. In each decision epoch, for
a given distribution of bikes at stations, we compute a robust
strategy by assuming that the arrival demand in each station
and in aggregate follows the input bounds. Once we obtain
the repositioning strategy for a decision epoch, we simulate
the customer flows for the given demand scenario along with
the repositioning numbers to achieve the distribution of bikes
across stations for the next decision epoch. This iterative pro-
cess continues until we reach the last decision epoch.
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For the ease of representation, we made three key assump-
tions: (a) Customers complete their trips in one decision
epoch. That is to say, customers who hire bikes at decision
epoch t should return their bikes to the destination station at
the beginning of the decision epoch t+ 1; (b) Customers are
impatient in nature and leave the system if they encounter an
empty station. On the other hand, they return their bikes to
the nearest available station if the destination station is full;
(c) The events at each time step follow a particular sequence.
First, the customers return their bikes which was hired in the
previous time step, then the repositioning events by the vehi-
cles are done and lastly, the arrival customers hire bikes.

Variable Definition

y+,t
s,v

Number of bikes picked up from station s by
vehicle v at time index t

y�,t
s,v

Number of bikes dropped off at station s by
vehicle v at time index t

zts,s0,v
Set to 1 if vehicle v has to move from station
s to s0 at time index t

d⇤,tv Number of bikes in vehicle v at time index t

F k
s,s0

Arrival customer demand from station s to s0

for kth demand scenario

Table 1: Definition of the variables

To compute a robust strategy in each decision epoch, we
propose an iterative two player game approach between the
repositioning planner and an adversary. We provide two novel
Mixed Integer Linear Programming (MILP) formulations to
represent the planning problem for the adversary and the
repositioning planner. For ease of understanding, the decision
variables employed in the MILP are provided in Table (1).

4.1 The Adversarial Planner
Once the intentions of the repositioning planner are revealed,
the adversary aims at providing the worst possible demand
scenario that results in lowest bike usage during the planning
period. More specifically, the goal is to find a demand sce-
nario that maximises the amount of lost demand, while ensur-
ing constraints related to demand feasibility. In the first itera-
tion the adversary finds a worse demand scenario with the as-
sumption of no repositioning in the system. In the subsequent
iterations, the adversary plans against a particular reposition-
ing strategy that is proposed by the repositioning planner. The
MILP for the demand selection process by the adversary is
shown compactly in Table (2). The inputs for the MILP are
the current repositioning strategy, i.e., the number of bikes to
pickup, Y +

s and drop-off, Y �
s at station s. The distribution

of bikes, d#,t
s at station s and in the decision epoch t is also

provided as input. Let Ls denotes the number of lost demand
occurred at station s during the planning period. Fs,s0 denotes
the number of customers arrived in station s at the current de-
cision epoch and reach station s0 at the beginning of the next
decision epoch.

The objective delineated in expression (1) is to generate a
demand scenario, F that maximises the total amount of lost
demand over all the stations. The number of bikes present
at station s after the repositioning event can be computed as

max

F

X

s

Ls (1)

s.t. Ls = max(0,
X

s0

Fs,s0 � (d#,t
s + Y �

s � Y +
s )), 8s (2)

ˇF t 
X

s,s0

Fs,s0  ˆF t (3)

ˇF t
s 

X

s0

Fs,s0  ˆF t
s , 8s (4)

ˇF t
s,s0  Fs,s0  ˆF t

s,s0 , 8s, s0 (5)

Table 2: ADVERSARY(Y +,Y �, t,d#,drrpu)

(d#s +Y �
s �Y +

s ). Therefore, constraints (2) compute the lost
demand at station s as the deficiency between the demand for
bikes (i.e.,

P
s0 Fs,s0 ) and the supply of bikes. These con-

straints are non-linear in nature and we linearise them with
a set of inequality constraints using the well known Big-M
method. Constraints (3-5) ensure that the generated demand
follows the given input bounds. Specifically, constraints (3)
ensure that the aggregated system wide demand at the deci-
sion epoch t is bounded by F̌ t and F̂ t. Constraints (4) en-
force that the arrival demand in station s at decision epoch t

is bounded by F̌ t
s and F̂ t

s . Constraints (5) enforce that the de-
mand arises in station s at decision epoch t and reach station
s0 in the next decision epoch is bounded by F̌ t

s,s0 and F̂ t
s,s0 .

4.2 The Repositioning Planner
Given a set of K demand scenarios (computed by the adver-
sary in K iterations), the goal of the repositioning planner is
to find the best routing and repositioning strategy for the vehi-
cles that maximises the bike usage or alternatively, minimises
the worse case lost demand. Let F k

s,s0 denotes the arrival de-
mand from station s to s0 for scenario k. Lk

s denotes the lost
demand at station s for scenario k. The outcome of the repo-
sitioning planner is two-fold: (a) A set of decisions z for the
vehicle routes; (b) The repositioning strategy y+ and y�.

The MILP for solving the joint problem of routing and
repositioning is represented compactly in Table (3). The ob-
jective function delineated in expression (8) is to minimise
the maximum lost demand over all the scenarios. We further
simplify the objective function by introducing an additional
set of constraints (7) to ensure that the total lost demand for
scenario k is bounded by the variable � and we minimise � in
objective function (6).

min
y,z

� (6)

s.t. � �
X

s

Lk
s , 8k (7)

Note that a vehicle can visit multiple stations in one deci-
sion epoch. Let a vehicle visit a maximum of T̂ number of
stations within one decision epoch. To represent the sequence
of moves, we use a time index t̂ 2 [0, T̂ ]. After reposition-
ing, the number of bikes present at station s in the decision
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epoch t can be computed as (d#,t
s +

P
t̂,v(y

�,t̂
s,v�y+,t̂

s,v )). There-
fore, constraints (9) ensure that the lost demand at station s
for scenario k is equal to the difference between the total ar-
rival demand (i.e.,

P
s0 F

k
s,s0 ) and the supply of bikes. Con-

straints (10) ensure that the total number of bikes picked up
from a station s during the planning period is less than the
available bikes, d#,t

s . Constraints (11) enforce that the total
number of bikes dropped off at station s is less than the num-
ber of available docks, C#

s � d#,t
s .

min

y,z
max

k

X

s

Lk
s (8)

s.t. Lk
s �

X

s0

F k
s,s0 �(d#,t

s +

X

t̂,v

(y�,t̂
s,v � y+,t̂

s,v )), 8s, k (9)

X

t̂,v

y+,t̂
s,v  d#,t

s , 8s (10)

X

t̂,v

y�,t̂
s,v  C#

s � d#,t
s , 8s (11)

d⇤,t̂v +

X

s2S

[(y+,t̂
s,v � y�,t̂

s,v )] = d⇤,t̂+1
v , 8ˆt, v (12)

X

k2S

zt̂s,k,v �
X

k2S

zt̂�1
k,s,v = �t̂

v(s), 8ˆt, s, v (13)

y+,t̂
s,v + y�,t̂

s,v  C⇤
v ·

X

i2S

zt̂s,i,v, 8ˆt, s, v (14)

↵
X

t̂,s,s0

Ps,s0z
t̂
s,s0,v +M

X

t̂,s

(y+,t̂
s,v + y�,t̂

s,v ) Q, 8v (15)

Lk
s � 0, y+,t̂

s,v , y
�,t̂
s,v  C⇤

v , d
⇤,t̂
v  C⇤

v , z
t̂
i,j,v 2{0, 1} (16)

Table 3: REDEPLOYMENT(F,k,t,d#,drrpu)

The initial distribution of bikes in vehicles, d⇤,0 and the
initial distribution of vehicles at stations, �0 are computed
from the state of the system at the end of previous decision
epoch. Constraints (12) ensure the flow conservation of bikes
in the vehicle. The number of bikes present in vehicle v at
time index t̂ + 1 (i.e., d⇤,t̂+1

v ) is equivalent to the number of
bikes present in the vehicle at time index t̂ (i.e., d⇤,t̂v ) plus
the net incoming bikes at time index t̂. Constraints (13) en-
force the flow conservation of vehicles at stations by ensuring
the equivalence between the inflow and outflow of vehicles in
each station. For t̂ = 0, depending on the initial location
of vehicles, �0

v these constraints ensure that vehicles move
appropriately out of the initial locations. Constraints (14) en-
force that the number of bikes picked up or dropped off is
conditional to the station being visited at that time index. Let
↵ denotes the unit for converting distance to time, M denotes
the time required to pickup/drop-off one bike and Q denotes
the duration of planning period. Then, constraints (15) en-
force the physical limitation of the carrier routes. That is to
say, total time spent by the vehicles for traveling between the
stations plus the time spend on picking up or dropping off the
bikes, is bounded by the duration of the planning period. Fi-
nally, constraints (16) enforce that the number of bikes picked

Algorithm 1: solveDRRPU(drrpu, t,d#)
1 Initialize: F {},Y+

0 ,Y�
0  0, i 0 ;

2 repeat
3 i i+ 1;
4 Oa,Fi  ADVERSARY(Y+

i�1,Y�
i�1, t,d

#, drrpu)
5 F F [ Fi

6 Or, zi,Y�
i ,Y+

i  REDEPLOYMENT(F, i, t,d#, drrpu)
7 until Converge;
8 return y+i , y�i , zi

up or dropped off is bounded by the capacity of vehicles.
To better understand the robust optimisation approach, we

provide the key iterative steps in Algorithm (1). The reposi-
tioning strategies are initialised as 0, therefore, in the first it-
eration adversary computes a demand scenario against the no
repositioning strategy. From the subsequent iteration, the ad-
versary generates a worse demand scenario against the repo-
sitioning strategy revealed by the repositioning planner. At
iteration k, the repositioning planner has k demand scenarios
(communicated by the adversary) and it computes a reposi-
tioning strategy that minimises the worse case lost demand
over all the scenarios. The process stops when the objectives
of the repositioning planner, Or and the adversary, Oa con-
verge. Therefore, at the convergence, the solution guarantees
to provide an upper bound on the lost demand for any possible
demand scenario that follows the given bounds.

4.3 Simulation Model
We employ the solveDRRPU procedure from Algorithm (1)
to compute a repositioning strategy at each time step and ex-
ecute the strategy on a simulator for the evaluation. Let f t

s,s0

denotes the number of arrival customers in station s at time
step t and want to reach station s0 at the beginning of time
step t+1. d#,t

s denotes the number of bikes present in station
s at time step t after the repositioning is done. The flow of
bikes is determined based on the following two cases: (a) If
the arrival demand at a station is less than the number of bikes
present in the station, then all the customers are served. (b)
If the arrival demand at a station is higher than the number
of bikes present in the station, then actual flow (denoted as

xt
s,s0 ) depends on the relative ratio

ft
s,s0P

s0 f
t
s,s0

.

xt
s,s0 =

(
f t
s,s0 if

P
s0 f

t
s,s0  d#,t

s
ft
s,s0P
s̃ ft

s,s̃
· d#,t

s Otherwise

)

Once we determine the flow of bikes between stations at time
step t, we can compute the distribution of bikes at a station at
time step t+1 as the sum of un-hired bikes at time step t, net
incoming bikes at the beginning of time step t+1 and the net
drop-off bikes by vehicles at time step t+ 1.

d#,t+1
s = d#,t

s +
hX

s̃

xt
s̃,s�

X

s0

xt
s,s0

i
+
h
Y �,t+1
s � Y +,t+1

s

i

If the number of bikes in station s at time step t+1, d#,t+1
s ex-

ceeds the station capacity, C#
s then we transfer the extra bikes
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(i.e., d#,t+1
s �C#

s ) to the nearest station to ensure the capac-
ity constraints of the stations. These extra numbers are shown
as the lost demand at the time of return in the experimental
results. Once we obtain the distribution of bikes across the
stations for time step t + 1, this information can readily be
utilised to compute the repositioning strategy for time step
t+ 1. This iterative process continues until we reach the last
time step.

5 Experimental Settings
We evaluate our approach with respect to key performance
metric of loss in demand, on real world1 and synthetic data
sets. The real world data sets contain the following data: (1)
Customer trip records, from which we estimate the bounds
on demand; (2) The number of stations, their capacity and
initial distribution of bikes in each of the stations; (3) Geo-
graphical locations of base stations, from which we calculate
the distance between two stations; (4) The number of vehi-
cles and their capacity. We generate the synthetic data sets
as follows: (a) We take a subset of the stations from the real
world data set (b) Station capacity, their geographical loca-
tions and initial distribution of bikes are drawn from the real
world data for those specific stations. (c) We generate the
demand bounds manually. More specific details on the de-
mand bounds are mentioned later. We compare the utility of
our approaches with three existing benchmark approaches as
mentioned bellow.
Benchmark-1: Static Repositioning implies the practice of
no repositioning during the day. The stations are rebalanced
at the end of the day to achieve a predefined inventory level.
We use this as a baseline approach where no repositioning is
done during the planning period.
Benchmark-2: Myopic Repositioning entails that bikes are
repositioned at each time step to reach a certain inventory
level. Through the personal communication with bike shar-
ing operators, we infer that 50% of the station capacity is the
ideal inventory level and some operators rebalance the sta-
tions in a myopic fashion (without considering the demand
patterns) to reach that specific inventory level.
Benchmark-3: Online Heuristic is adapted from [Schui-
jbroek et al., 2013]. This static repositioning approach can
be executed online due to its assumption of negligible cus-
tomer movements during the rebalancing period. As we eval-
uate the strategies on the demand scenarios generated using
Poisson distribution with a known mean, the goal of the on-
line heuristic is to bound the inventory level within 10% of
the Poisson mean, while ensuring the physical limitations of
the vehicle routes.

To ensure a fair comparison, all the three benchmark ap-
proaches and our robust strategy are evaluated by employing
a simulation model as described in section (4.3). Further-
more, we compute an upper bound on the optimal solution
for the synthetic data sets where exact future demand for the
entire horizon is assumed to be known. We employ an MILP
formulation proposed by [Ghosh et al., 2015] to compute the
optimal solution.

1Data is taken from Hubway bike sharing company of Boston
[http://hubwaydatachallenge.org/trip-history-data]

Static Myopic Online Robust Offline
MEAN 822 758 641 638 451
STDEV 37 47 38 38 38
MAX 938 908 713 730 521

(a) Scenarios for Uniform Data (data set: 1)
MEAN 956 769 734 704 491
STDEV 48 62 45 48 39
MAX 1069 974 825 826 568

(b) Scenarios for Two-Peaked Data (data set: 2)

Table 4: Lost demand statistics on synthetic data sets

6 Empirical Evaluation
We report2 results on two synthetic data sets. Both the data
sets consist of 20 stations and 1 vehicle. We generate demand
for 14 time steps. Figure 1(a) shows the demand patterns for
both the synthetic data sets. We generate the aggregated mean
demand at each time step for first data set randomly, while
the aggregated mean demand for second data set follows a
realistic pattern with two peak hours. For both the data sets,
we compute the lower bound on the arrival demand as (1-✏)
of the mean demand and upper bound as (1+✏) of the mean
demand. To compute the bounds on arrival demand for each
station and for each origin destination pair we set ✏ as 100%,
while for the bounds on the system wide demand at each time
step, ✏ is set as 10%.
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Figure 1: (a) Demand patterns for synthetic data sets; (b) Conver-
gence of scenario generation approach on synthetic data set

Figure 1(b) shows the convergence of our scenario gener-
ation approach on synthetic data. As expected, the gap be-
tween the objectives of the adversary and the repositioning
planner reduces monotonically and converges after 40 itera-
tions. As both the objectives converge to 112, we can claim
that the worse case lost demand is bounded by 112 if the ro-
bust strategy is adopted.

To compare the utility of our policy with the existing
benchmark approaches, we generate 100 testing demand sce-
narios, where demand from station s to s0 at time step t, f t

s,s0

is generated using Poisson distribution with known mean pa-
rameters. We report average performance statistics in terms

2All the linear optimisation models were solved using IBM
ILOG CPLEX Optimisation Studio V12.5 on a 3.2 GHz Intel Core
i5 machine with 8GB DDR3 RAM

3100



Lost demand at Issue Time Lost demand at Return Time
Static Myopic Online Robust Static Myopic Online Robust

MEAN 267 269 257 197 61 138 46 50
STDEV 79 77 82 68 19 32 18 15
MAX 460 471 453 393 103 196 91 96

(a) Demand scenarios from real-world data
MEAN 145 155 146 100 53 126 37 33
STDEV 18 19 19 18 9 21 14 10
MAX 193 202 192 137 83 165 68 74

(b) Demand scenarios follow Poisson distribution at each station
MEAN 163 171 154 113 69 143 50 54
STDEV 24 22 17 19 13 28 16 14
MAX 206 220 204 158 103 208 86 85

(c) Demand scenarios follow Poisson distribution for each OD pair

Table 5: Lost demand statistics on the Hubway data set

of mean, standard deviation and the worse case lost demand
over 100 demand scenarios. The performance statistics for
the synthetic data set with uniform patterns are demonstrated
in Table 4(a). Our approach reduces the average lost demand
by 22% over the static approach and by 15% over the myopic
approach and is highly competitive with the online approach.
Similar performance statistics for the synthetic data set with 2
peak hours are shown in Table 4(b). The average performance
of our approach is significantly better than all the three bench-
mark approaches, which verify the fact that our approach is
able to better handle the lost demand at rush hours. More
interestingly, the competitive ratio for our solution is approx-
imately 70% of the optimal solution for both the data sets.

Results on the Hubway data set: The next thread of re-
sults demonstrate the performance statistics on the Hubway
data set. The Hubway BSS consists of 95 base stations and
3 vehicles. We consider a planning horizon of 6 hours in the
morning peak (6AM-12PM) and the duration of each deci-
sion epoch is 30 minutes. We compute the bounds on de-
mand from three months of historical trip data. As the his-
torical trip data only contains successful bookings and does
not capture the unobserved lost demand, we employ a micro-
simulation model with 1 minute of time step to identify the
duration when a station got empty and introduce artificial de-
mand at the empty station based on the observed demand at
that station in previous time step.

We produce three threads of demand scenarios (1) We took
the real demand data for 60 weekdays. We estimate the actual
demand by introducing artificial demand at empty stations us-
ing a similar heuristic mechanism discussed earlier; (2) We
generate 100 demand scenarios, where the arrival demand at
each station is generated using Poisson distribution with the
mean computed from historical data. Similar to [Shu et al.,
2013], we assume that customers reach their destination sta-
tion with a fixed probability; (3) We generate 100 demand
scenarios, where the demand for each origin destination pair
at each time step is computed using Poisson distribution.

For all the three settings of demand scenarios, we sum-
marise the key performance statistics for all the approaches

in Table (5). As the planning period for one decision epoch
is 30 minutes, we set a time threshold of 3 minutes as a con-
vergence criterion for our scenario generation approach. We
provide statistics for two types of lost demand: (a) Lost de-
mand occurred at the time of hiring the bikes due to starvation
of bikes at stations; (b) Lost demand occurred at the time of
returning the bikes due to the congestion of bikes at stations.

The performance statistics for real demand scenarios are
demonstrated in Table 5(a). On an average our approach
reduces the overall lost demand by atleast 18% over all the
benchmark approaches. Moreover, our approach reduces the
worse case lost demand by atleast 10%, hence, is robust to
the uncertainty in demand. Similar performance statistics
for other two settings of demand scenarios are shown in Ta-
ble 5(b) and 5(c). For both the settings, the average and worse
case performance of our approach is noticeably better than all
the three benchmark approaches. The average lost demand is
reduced by atleast 27% and 18%, while the worse case lost
demand is decreased by atleast 19% and 16%, over all the
three benchmark approaches.

7 Conclusion
We develop a robust optimisation approach to solve the dy-
namic repositioning problem in bike sharing systems. We
propose an iterative scenario generation approach where an
adversary identifies the worse demand scenario for a given
repositioning strategy and the decision maker computes a
repositioning strategy by considering a set of demand sce-
narios proposed by the adversary. The empirical results on
a real world and multiple synthetic data sets shown that our
approach outperforms the existing benchmark approaches in
terms of reducing the expected and worse case lost demand
and therefore, improves the operational efficiency of the bike
sharing company. In future, this work can be extended with
multi-step planning by considering the expected future de-
mand bounds for multiple epochs to better account for the fu-
ture demand surges. Furthermore, a decomposition technique
can be employed for the repositioning planner to scale up the
solution process for problems with thousands of stations.
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