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Abstract

Effective placement of charging stations plays a key
role in Electric Vehicle (EV) adoption. In the place-
ment problem, given a set of candidate sites, an op-
timal subset needs to be selected with respect to
the concerns of both (a) the charging station ser-
vice provider, such as the demand at the candidate
sites and the budget for deployment, and (b) the EV
user, such as charging station reachability and short
waiting times at the station. This work addresses
these concerns, making the following three novel
contributions: (i) a supervised multi-view learning
framework using Canonical Correlation Analysis
(CCA) for demand prediction at candidate sites, us-
ing multiple datasets such as points of interest in-
formation, traffic density, and the historical usage
at existing charging stations; (ii) a mixed-packing-
and-covering optimization framework that models
competing concerns of the service provider and
EV users; (iii) an iterative heuristic to solve these
problems by alternately invoking knapsack and set
cover algorithms. The performance of the demand
prediction model and the placement optimization
heuristic are evaluated using real world data.

1

The environmental impact of fossil fuels and the high vari-
ability in their prices have led to rising adoption of Electric
Vehicles (EVs), which is supported by ambitious government
policies for promoting EVs [U. S. Department of Energy,
2012; European Union, 2014]. Despite the technological ad-
vances in vehicle efficiency and battery capacity, a key hurdle
in EV adoption is that, barring a few pockets of densely pop-
ulated areas, the distribution of EV charging stations is sparse
in most regions.! Because of this, EV owners and potential
buyers frequently worry about whether the vehicle will have
sufficient charge to travel to their trip destinations or an inter-
mediate charging station. On the other hand, given the high

Introduction

'Recent government mandates [Press Release, 2014; 114th
Congress, 2015] focus specifically on the expansion of refueling in-
frastructure to cover entire geographical regions.
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cost of building a charging station and currently low? number
of EVs, charging station operators would only want to place
stations where demands for charging are high. This results in
a situation where the charging station density is concentrated
near city centres, rapidly decreasing while moving outward.

This work is an attempt to break this deadlock by improv-
ing the distribution of new charging stations so as to mitigate
the range anxiety of EV users. To be effective, such a solution
must simultaneously address the concerns of both EV users
and charging station operators. Charging station operators are
concerned about (a) demand: charging stations must serve as
much demand as possible, and (b) budget: there is a limited
budget available for setting up charging stations. EV users are
concerned about (c) reachability: there must be a charging
station within a short driving distance from most locations,
and (d) waiting time: the waiting time to begin charging at
charging stations should not be prohibitively large, given that
the charging event itself is time-consuming.’

This paper models the above placement problem within a
framework that is inspired from the facility location litera-
ture [Drezner, 1995]. Given a set of candidate sites for charg-
ing stations, e.g., parking lots in a city, the objective is to
select an optimal subset of these locations that maximizes
the total demand satisfied, subject to the total cost not ex-
ceeding the available budget (packing constraint), and given
a set of locations of interest, there is at least one charging sta-
tion within a specified driving range of every location in this
set (covering constraint). This mixed-packing-and-covering
formulation (Section 3.1) covers concerns (a)-(c). For (d), a
queueing model is used to translate the requirement on wait-
ing time to a constraint on the minimum number of charging
slots needed at any given location, which is then factored into
the setup costs in a pre-processing step.

Before tackling the optimization problem itself, it is nec-
essary to predict the demand for charging at candidate sites.
Although demand prediction has been extensively studied for
planning transportation infrastructure, the EV charging sta-

“Nevertheless, this number is rapidly growing, e.g., in the U.
S., EV market share has risen [Cobb, 2014] from 0.14% in 2011 to
0.72% in 2014.

3There may be several other concerns for charging station opera-
tors and EV users, including alternate interpretations of reachability,
e.g., [Funke et al., 2015], but in this work, we restrict our attention
to modeling just these four.



tion demand prediction problem is difficult because of sparse
deployment of such stations, and lack of sufficient and reli-
able historic data. Thus, in addition to the limited historical
demand data for existing charging stations in other locations,
we consider two other types of location features which may
strongly impact the usage: (i) nearby points of interest (Pol),
e.g., shopping malls, institutions, restaurants, hospitals etc.,
indicating the frequency of visits that could be made by trav-
elers, and (ii) traffic density at nearby road junctions. Using
these features, in Section 2, we propose a supervised multi-
view learning framework using Canonical Correlation Anal-
ysis (CCA) for EV charging station demand prediction.

After estimating the demands, the next step is to solve the
mixed packing and covering problem. We propose a family
of heuristics* in Section 3.2 that seeks to iteratively find the
optimal allocation of the available budget between satisfying
the packing and the covering constraints, by alternately in-
voking algorithms that solve reduced knapsack and set-cover
subproblems. For example, choosing the well known greedy
algorithms for the knapsack and set-cover problems [Vazi-
rani, 2001] yields one instance in this family.5 In Section 3.3,
we present results from an experimental evaluation of this
instance for the EV charging station placement problem us-
ing charging data from the UK. In most cases, and especially
when budget is scarce, our heuristic achieves an improvement
of 10-15% over a “naive” heuristic (that just solves a set-cover
subproblem first and then uses the remaining budget, if any,
to solve a residual knapsack subproblem), both in terms of
finding feasible solutions and maximizing demand.

The modeling and heuristic frameworks above can be ex-
tended to the following alternate scenarios: (i) incremental
placement of charging stations when the budget is progres-
sively released over a period of time, and (ii) when there
are multiple charging station operators, each with their re-
spective budgets, and a government agency (subject to its
own budget) seeks to optimally allocate grants to incentivize
these providers to set up charging stations at selected loca-
tions (e.g., where the demand is low). We discuss these ex-
tensions in the full version [Gopalakrishnan et al., 2016].

1.1 Related Work

With the recent increase in the adoption of EVs, the charg-
ing station placement problem has received significant atten-
tion. One of the prerequisites of an effective charging station
placement is the availability of estimated charging demand
at candidate sites. In this context, prior literature has stud-
ied the impact of external information on charging station de-
mand. For example, parking demand is combined with fa-
cility location problem in [Chen ef al., 2013], and the effect
of demographic features is studied using regression models

*As we report later in Section 3.3, solving the integer linear pro-
gram (ILP) exactly using [CPLEX, 2009] takes more than a day
on average, which may be prohibitive even for a planning problem,
since a designer would likely want to solve numerous instances of
the ILP with different parameters during the planning process.

3Since the primary mixed packing and covering problem, and
the associated knapsack and set-cover problems are NP-hard, it is
unlikely that any polynomial-time solution, including this instance,
would be optimal.
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in [Wagner et al., 2014]. However, these approaches lack
a principled multi-view learning framework to integrate het-
erogeneous data sets to predict EV charging demand. In the
machine learning literature, CCA-based models have been
used for multi-variate regression [Rai and Daume, 2009;
Sun et al., 2011; Klami er al., 2013]; in this paper, we propose
a novel variant of CCA-based multivariate regression.

A useful charging station placement solution needs to
take into account the charging demand, budget, coverage,
and waiting time at the stations. Existing work has not
considered all of these factors simultaneously. For exam-
ple, placement of charging stations based on predicted de-
mand has been studied in [Dai er al., 2013; Klabjan, 2012;
Wagner et al., 2014; Chen et al., 2013; Lam et al., 2013;
Chung and Kwon, 2015], but they do not simultaneously
consider constraints on budget, coverage, and waiting times.
Coverage requirements in charging station placement has
been modeled as path cover in [Funke er al., 2015], and reach-
ability cover in [Storandt and Funke, 2013] over the city road
network, but they do not consider the demand satisfied by the
deployment and the waiting time faced by the users.

The optimization problem considered in this work con-
tains both packing and covering constraints, with integer de-
cision variables. Mixed packing and covering problems have
been studied for fractional decision variables [Young, 2001;
Azar et al., 20131, as well as for integer decision vari-
ables [Chakaravarthy er al., 2013; Mukherjee et al., 2015].
However, this work introduces an optimization problem with
a knapsack packing constraint and a set covering constraint,
which has not been studied earlier.

2 Demand Prediction at Candidate Sites

Understanding the EV charging demand is key to optimal
placement of charging stations. Since the distribution of
charging stations is typically sparse, there is insufficient data
to efficiently model the demand. Thus, it becomes important
to model the relationship of EV charging demand with aux-
iliary data such as Points of Interest (Pol) and traffic density.
Such relationships help in better understanding not only the
charging demand, but also the factors behind it. Additionally,
the expected demand at a candidate site where no historical
demand is known, can be predicted based on external factors.
A multi-view learning framework based on Canonical Corre-
lation Analysis (CCA) is used to jointly model the charging
demand data and other external data sources, and to predict
the demand at new candidate sites given the external factors.

CCA is a classical method to find a linear relationship
between two sets of random variables. Let X and Y be data
matrices of size n x d, and n x d, respectively, where each
row corresponds to a realization of the random variables.
CCA finds linear projections u, € R% and u, € R% such
that their correlation, corr(Xug,Ywu,), is maximized. It
can be shown that maximizing correlation is equivalent to
minimizing || Xu, — Yu,||* subject to | Xu,||* = 1 and
Y, A set of kK < min(rank(X),rank(Y))
linear projections can be computed by solving a generalized
eigenvalue problem; [Hardoon er al., 2004] provides a
detailed review of classical CCA.



Multi-View Regression Using CCA: We present a multi-
view learning based regression framework for the charg-
ing demand prediction, which uses CCA in a supervised
setting as a multivariate regression tool. CCA is, in fact,
closely related to multivariate linear regression; [Borga, 2001;
Sun et al., 2011] present least-square formulations. CCA-
based approaches model the statistical dependence between
two or more data sets and assume a single latent factor to
describe information shared between all datasets. In a su-
pervised setting such as multivariate regression task, the out-
put variable is considered as one of the random variables and
CCA models the statistical dependence between the output
variable (dependent) and a covariate (independent variable).
However, when there are more than two datasets (output vari-
able and multiple covariates), modeling shared information
may not always be a good choice, since it would discard
dataset-specific information which may be crucial to predict-
ing the output variable.

To address this deficiency, a multi-view learning regression
framework is proposed when there are n > 2 covariates, all of
which can be used to predict the output variable. The idea is
to model the statistical dependence of the output variable with
each of the covariates separately and then learn a weighted
combination for each such model that maximizes the predic-
tion performance. We call this model Multiple Dependent
Regression (MDR), which can be formulated as the ensemble
regression function f = ), w;f;, where ). w; = 1. Here,
f; is a regression function learned from covariate X; to the
output variable Y, and w; are the weights denoting the impor-
tance of covariate X; in the regression task. The regression
function f; for covariate X; can be learnt according to a CCA-
based regression, given by arg minU’;’U; X Ui — YU;' 2
where U! and Ué are k-dimensional linear projections for

each (covariate, output variable) pair (X;,Y"). Hence, MDR
is a two step framework of multiple regression:

(1) For each covariate X;, apply CCA for X; and Y, and
compute the prediction error e;.

ﬁ(l_ Zjej)'

The values of parameters Uy, Uy, w; are learnt from the train-
ing data as described in the steps above. The model thus
trained can be used to predict the output variable given the
input covariates. In our case, the task is to predict the de-
mand of EV charging at a new candidate location given the
covariates as explained earlier.

MDR is analogous to ensemble learning approaches where
multiple learning models are trained to solve a given problem.
In our case, we train multiple CCA-based regression models
in the first step and learn a weighted combination of models
based on training error in the second step. The weights w;
explain the importance of each covariate in the prediction
task. This procedure is flexible—any CCA-based solution can
be used in Step (1). In this work, we use a Bayesian solution
with group-wise sparsity proposed in [Klami et al., 2013].

(2) For each i, compute w;

Experimental Results for Demand Prediction: MDR is
evaluated on EV charging data obtained from 252 pub-
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Figure 1: Comparison of MDR against baselines.

lic charging points in North East England through UK’s
Plugged-In-Places program [Office for Low Emission Vehi-
cles, 2013]. The location of charging points was obtained
from UK’s National Charge Point Registry data [Office for
Low Emission Vehicles, 2012]. Pol information is extracted
from OpenStreetMap [Haklay and Weber, 2008] API for 11
categories: sustenance, education, transportation, financial,
healthcare, entertainment, sports, gardens, places of worship,
shops and public buildings. Finally, we use traffic data for
each junction-to-junction link on major road networks, pro-
vided by [Department for Transport, 2013].

The following data matrices are created: (i) Y €
represents hour-wise charging demand for each of 252 charg-
ing points, where Y[i, j] is the average energy consumed at
charging point i in hour j; (i) X; € R?52*%11 represents Pols,
where X [i, j] is the frequency of Pol category j within a ra-
dius of 500 meters around charging point 4; (i) X, € R252%3
represents traffic densities at 5 nearest traffic junctions to each
charging point; and (iv) X3 € R?2%5 represents charging
demands at 5 nearest charging points to each charging point.
Since charging data is sparse during early mornings and late
nights, only data from 07:00 hrs. till 23:00 hrs. is used.

MDR is evaluated in a leave-one-out cross-validation man-
ner by training on all but one instance (charging point) and
testing on the left-out instance. Prediction performance is
measured as the average Root Mean Square Error (RMSE)
over all test instances. MDR is compared against (i) Lin-
ear Regression(LR) - all covariates are concatenated feature-
wise similar to [Wagner er al., 20141, (ii) Multiple Linear Re-
gression (MLR) - weighted sum of multiple LR analogous to
MDR, and (iii) Bayesian CCA (bCCA) - group factor anal-
ysis [Virtanen et al., 2012]. Figure 1 shows the average er-
ror for each hour of the day over all charging stations; MDR
clearly outperforms the other three baselines giving an over-
all reduction in error by 27% compared to simple LR, 21%
compared to multiple LR and 18% compared to bCCA.

R252><24

3 Optimizing Placement of Charging Stations

In this section, we model the charging station placement
problem as a mixed packing and covering optimization prob-
lem, and present a family of heuristics to solve it.

3.1 Preliminaries

Let £ = {1,...,|L£]|} denote the set of all candidate sites for
placing a charging station. Let » € R, denote the desired
reachability radius, that is, the maximum distance to be trav-
elled in order to reach a charging station. Let Z denote the set
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Figure 2: Optimization Problems

of all locations of interest that are desired to be covered, that solution for MPC can be obtained by combining set cover
is, lie within the reachability radius from at least one charging and knapsack algorithms.

station. Let B denote the total budget available. . .

For each candidate site i € £: z; € {0,1}, d; € R, and 3.2 Solving the Mixed Pack & Cover Problem

¢; € R, denote, respectively, whether a charging station is Our goal is to introduce a general methodology for algo-
placed, the demand for service, and the cost of setting up a rithms to solve MPC, which is NP-hard, by breaking it down
charging station at ¢. S} C T is the cover set of ¢, thatis, the  into the well-known Knapsack (KP) and the Set-Cover (SC)
set of locations of interest that would be covered (within a  problems (see Figure 2). Let, KP (£, {d;}icc,{¢i}icc, B)

driving distance of r) if a charging station is placed at 1. and SC(L,Z,{ci}ier, {Si}ticr) be any pair of algorithms
that solve KP and SC, respectively. KP () (respectively,
Optimizing for Demand: For a given reachability radius »,  SC()) need not be optimal, but it must be nontrivial in

set of candidate sites £, and set of locations of interest Z, the the sense that its solution must be maximal (respectively,
cover sets {S]},., can be precomputed. Given predicted ~ minimal). That is, it should not be possible to add (remove)
demand and charging duration, a queueing model [Kleinrock, ~ an item and still satisfy the packing (covering) constraint(s).
1975] can estimate the number of charging slots required
at each candidate site to meet a given constraint on waiting ~ The Iterative Pack And Cover (IPAC) Framework: The
times, which is then used to precompute the costs {c;},. . available budget could be used very differently if the problem
Then, the optimization problem to be solved is the Mixed ~ had been a pure packing problem (where maximizing the de-
Pack & Cover (MPC) problem shown in Figure 2a. mand is the only concern) or a pure covering problem (where
satisfying the covering constraints is the only concern). Thus,
Approximation Algorithm for a Transformed Problem: 2 good solution to the mixed packing and covering problem
MPC (Figure 2a) is NP-hard as it contains as a special case, ~ Should achieve an appropriate balance by dividing the avail-
the set-cover problem [Vazirani, 2001]. For a closely related ~ able budget between these two concerns. The core idea be-
pure covering problem called Demand & Set-Cover (DSC, ~ hind the Iterative Pack And Cover (IPAC) framework is to
Figure 2e), an approximation algorithm is described next. iteratively ;earch for such an optimal split.

DSC has as subproblems, two well-known NP-hard prob- ~Ir.l each iteration, the budget B can be thought of as com-
lems, Set-Cover (SC) [Vazirani, 2001] and Minimization  Prising three parts: B¢, B”, and some excess (due to the inte-
Knapsack (MinKP) [Csirik ef al., 19911, which are given in grality constraint). Here, B is the portion of the budget used
Figures 2¢ and 2d, respectively. Consider, an fs. factor ap- by a solution to a covering problem, and.Bp is the portion
proximation algorithm A, for set cover and an fy,, factor ap- of the budget used by a solution to a packm% problem when
proximation algorithm Ay, for minimization knapsack. Let cocnstralned by a reduced budget of B — B¢ Starting with
L. and Ly, (subsets of £) be the solutions returned by A, B¢ = 0 (pure packing) and the corresponding solution from

and Ay, respectively. Consider algorithm Ay, for DSC that KP 0, du’{lng cach teration, B°is 1ncreased.unt11 a “cover-
uses Ag. and Ay, as subroutines, and returns the union of the M8 check” (performed using SC () to determine whether the

solutions returned by the two subroutines, that is, Lsc U Lgp, remaini.ng budget B N BY is sufficient to gatisfy Fhe covering
as a solution for DSC. Lemma 1 (proof deferred to the full constraints left upsatlsﬁed) passes, at which point the.solu-
version [Gopalakrishnan ef al., 2016]) establishes that Ay, ~ 1ODS of the packing and covering problems obtained in the

is an (fse + frp) factor approximation algorithm for DSC. last iteration are merged.” The resulting solution is guaran-
o teed to be a feasible solution to the MPC problem (Figure

Lemma 1 Ay, returns a feasible solution for DSC whose  2a). Optionally, KP () can be invoked one final time to use

cost is at most (fsc + frp) times the optimal cost. up any remaining portion of the budget. In the worst case, the
o o iterations continue until B¢ = B, at which point it becomes
The heuristic framework for MPC presented next is in- 4 pyre covering problem, and if the covering check still fails,

spired by Agsc and the observation that, similar to DSC, @ then IPAC fails to find a feasible solution to MPC. (But if

. this happens, it cannot necessarily be concluded that MPC is
SThe total demand satisfied by installing charging stations at a

subset of candidate sites may be less than the sum of the predicted 7 As an extension, note that B° need not necessarily increase in
demands at those sites due to overlapping reachability regions. We each iteration, as long as it can be shown that the procedure will
ignore this in order to keep the optimization problem simple. terminate in finite time.
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Algorithm 1 TPAC

Input: £,7Z,{d;}icc,{ci}ticc, B, {S:}7E£~ KP(), SC(), RANK()
Output: {z;}icc

{zi}iec <+ KP(L,{di}iec, {ci}icc, B);
LP+—{i€L : xz; =1} BP « Y CiTq;
ZP « Useepr Sis
/I TP < elements of Z covered by LP.
{z{}iec\cp < SC(L\LP, I\Z?, {ci}ico\cr» {S] Yier\cp)s
B® = Yicp\ep iy BITC «— B— BP;
while (B¢ > Bf"°¢ and B¢ < B) do
/I pis LP in increasing order of importance.
p = BANK(LP, {d:i}iccr. {¢i}iccr. {Si tiecr):
// Remove least important items.
Jj <0
while Bf™°¢ < B¢ do
j+—J+ 1;:L‘p[j] +— 0; Bfree  pfree + ¢plh15

i€L

// Recompute quantities.

LV —{ie L+ i =11TP < U;epp Sis

{ziYiecrcr « SC(L\LP, I\IP, {c;i}ico\cp, {S] Yiec\cp)s
B® «+ ZiEC\LP T

if B¢ > B then EXIT;

: // Add required items to knapsack.

for iin L\LP do x; + x; + x7;

: // Add more items if possible.

LY +—{ie Ll : z; =1}; B «+ Zieﬁc,ﬂ,x,ﬂ,;

s {zitiernce + KP(L\LP, {di}ieo\cp. {ci}ice\cp, B — BP);

infeasible, unless SC () is optimal, which is unlikely in poly-
nomial time since the set-cover problem is NP-hard.) See the
full version [Gopalakrishnan er al., 2016] for an expanded
description of IPAC with an illustration.

The above framework is quite generic and encompasses a

large class of algorithms. A particular instantiation of the
framework is described in Algorithm 1.
The RANK () Function: The effectiveness of IPAC depends
on the choice of methods for KP (), SC (), and RANK ().
There are several choices in the literature for the first
two [Vazirani, 2001], so we briefly discuss one possible
choice for the third. A general observation is that an item
1 € L is more important or desirable if its demand d; is high,
and/or its cost ¢; is low, and/or if the number of elements
it covers |S;| is high. Based on this, a viable candidate for
RANK (L, {d; }iec,{¢i}tier, {Si}tier) would be a method
that ranks items in increasing order according to the value
(ijz T T ‘lszi‘l) /ci, where T = | J, . S; denotes the
set of all elements covered by items in L.

v; =

Computing Charging Station Costs: We estimate the setup
costs ¢;, based on (i) the number of charging slots necessary
at 7 to satisfy any desired service level agreement (SLA) on
waiting times, and (ii) per-slot setup cost, including infras-
tructure as well as land/licensing costs. Data on the per-unit
costs are generally available; so we focus on (i), for which we
model candidate charging stations as a multi-server queue.
One possible way to model each candidate charging
station at location ¢ in order to estimate its size (and hence
cost) is using a multi-server queue that follows an M/M/N;
discipline, where N; € Z. is the number of charging slots
to be set up. Customers arrive into the queue according to a
Poisson process with rate \; per time unit. The service time
for each customer is exponentially distributed with mean
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1/p; time units. A; can be derived from the demand d;,
whereas p; can be derived from existing data on the average
customer service time in nearby existing charging stations.
The average time a customer waits before service is then

. ErlC(Ni,%)

given by E[W] = TN where Er1C(N,p) =
N _ 5 )N .

(% %) / (Z;vzol [Ji. + lNi'Nifp) [Kleinrock, 1975].

Suppose the SLA to be met is given by E[WW] < ¢;. Then,
because it is well-known [Kleinrock, 1975] that E[W] is a
decreasing function of N;, we simply choose the smallest NV,
(e.g., using binary search) such that the SLA is satisfied.

3.3 Experimental Results

We conduct experiments to evaluate the performance of IPAC
using data from North East England. We use parking loca-
tions in North East England for both the candidate sites for
placing charging stations, as well as the locations of inter-
est that need to be covered. Accordingly, the cover set S}
for each candidate site 7 consists of the candidate sites that
are within a distance of r from ¢. The charging demands at
candidate sites are predicted using the MDR model trained in
Section 2. The costs are computed as ¢; = N;(L; + F;); we
estimate each of these components as follows:

1. N, the number of charging spots: We assumed a Level 2
charging rate of 6.4kW and set, for each candidate site, IV;
to be the minimum number of Level 2 charging spots nec-
essary (using a queueing model) to ensure that the average
peak-demand waiting time (taken as the estimated maximum
hourly demand at the candidate site over two years) is less
than 5 minutes.

2. L;, per-spot land cost: We consider realistic land cost,
based on the Pol types within 1 km of the candidate site and
the minimum per-unit land cost in the region (computed using
data obtained from [Valuation Office Agency, 2011]).

3. Fj, the per-spot infrastructure cost: For Level 2 charging,
we set F; = $1852 from Table 6 of [Chang er al., 2012].

The predicted demands and estimated costs of the candi-
date sites are then used to find the optimal locations using
IPAC (Algorithm 1), where, for both XP () and SC (), we
choose the well-known greedy approximation algorithms
introduced in [Vazirani, 2001], and for RANK (), we use the
function proposed in Section 3.2.

Performance: To evaluate the performance of IPAC, we
compare it with (i) a naive heuristic that first solves the cov-
ering problem using SC (), and then invokes KP () on the
remaining budget to add unselected candidate sites, (ii) the
optimal ILP solution of the MPC problem (Figure 2a), and
(iii) a solution to the LP relaxation of MPC problem, which
gives an upper bound on the actual ILP optimization problem.
We use a budget of B = $6M. The number of pairwise dis-
tances between candidate sites is prohibitively large for our
experiment; so, we used values of 7 (in units of km), from the
set {1,...,40}. The results are plotted in Figures 3a-3b.

As we increase the reachability radius r, the set of alloca-
tions that satisfy the covering constraints steadily gets larger,
until, for a large enough radius, any allocation would satisfy
the covering constraints, reducing the optimization to a pure
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Figure 3: Experimental Results for North East England

packing problem. Since the feasibility set only gets larger
with r, the demand covered should also increase accordingly.
The graphs validate this expected behavior. In addition,
we observe that the demand captured by IPAC is far closer
to that of the ILP solution than that captured by the naive
heuristic. In particular, from Figure 3b, we can see that when
r = 6km, the IPAC heuristic already captures almost 90%
of the LP relaxation demand and its performance is always
better than the naive heuristic. Also, the time taken to obtain
the ILP solution for a given radius using [CPLEX, 2009],3
ranges from 23 — 30 hours for most instances, whereas IPAC
finished in less than 0.5 seconds.

Feasibility: Since IPAC is a heuristic, it may falsely deem an
instance of the MPC problem (Figure 2a) infeasible, when in
fact, feasible solutions exist. An instance of MPC is feasible
if and only if the available budget B is greater than or equal
to the minimum required budget determined by solving the
corresponding instance of the set-cover subproblem (Figure
2c¢). In the case of IPAC, it reduces to whether the available
budget B is greater than or equal to the minimum required
budget as determined by SC () .

Therefore, given an instance of MPC, we look at the cor-
responding set-cover subproblem and compare its solutions
(the minimum required budgets) as obtained by (i) using the
greedy approximation algorithm in [Vazirani, 2001], and
(i) directly solving its relaxed LP. We use different values
of r (in units of km) to generate instances. The results are

$Intel(R) Xeon (R) CPU @ 2.2 GHz (16 cores), 32GB RAM,
64-bit Windows.

Computing ILP solutions for feasibility analysis exactly is pro-
hibitively time-consuming, since it must be computed for various r
and B values.
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plotted in Figure 3c. (Since the LP relaxation allows for
fractional allocations, the corresponding solution is only a
lower bound on the minimum budget required for feasibility.)

Accounting for Noisy Costs: Since our model for estimating
the costs may not be accurate, we perform experiments for
two additional scenarios, where we add zero-mean gaussian
noise to the costs — one with a standard deviation of $1000
and another with a standard deviation of $3000. In each case,
we compare IPAC and the naive heuristic:
Performance: Using a budget of $6M, we calculate the differ-
ence in the demands satisfied by the solution obtained using
IPAC and the naive heuristic. Figure 3d shows this difference
as a percentage, for several values of the reachability radius.
IPAC’s advantage is significant (8-18% in most cases).
Feasibility: We calculate the minimum reachability radius for
which IPAC and the naive heuristic are able to find a feasible
solution to MPC. TPAC is always able to find feasible solu-
tions for smaller radii. Figure 3e shows this difference as a
percentage, for several values of the available budget. IPAC’s
advantage over the naive heuristic is particularly remarkable
(10-15% in most cases) when the budget is scarce.
Summary: Experimental results show that IPAC’s feasibil-
ity gap as compared to the LP-Relaxation is not significant,
and IPAC’s performance quickly approaches that of the op-
timal demand. Further, in terms of both feasibility and per-
formance, it can be seen that the advantage of IPAC over the
naive heuristic is significant (10-15% in most cases) and this
advantage is fairly robust to noise in the estimated costs.
Further analysis of the family of IPAC algorithms would
be of interest, in particular, exploring provable performance
guarantees of an IPAC algorithm, e.g., Algorithm 1, in terms
of those of its constituent knapsack and set-cover algo-



rithms. Another interesting direction would be to integrate
the demand prediction model into the placement optimiza-
tion framework, since the placement of a charging station at
one site would likely affect demands at nearby sites.
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