
A POMDP Approach to Influence Diagram Evaluation

Eric A. Hansen, Jinchuan Shi, and Arindam Khaled
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu, jinchuanshi86@gmail.com, arindamkhaled@gmail.com

Abstract
We propose a node-removal/arc-reversal algorithm
for influence diagram evaluation that includes
reductions that allow an influence diagram to be
solved by a generalization of the dynamic pro-
gramming approach to solving partially observable
Markov decision processes (POMDPs). Among its
potential advantages, the algorithm allows a more
flexible ordering of node removals, and a POMDP-
inspired approach to optimizing over hidden state
variables, which can improve the scalability of
influence diagram evaluation in solving complex,
multi-stage problems. It also finds a more compact
representation of an optimal strategy.

1 Introduction
An influence diagram (ID) is a compact graphical model
of a decision-making problem under uncertainty [Howard
and Matheson, 1981]. Originally introduced as a front end
for decision trees that can facilitate analysis of complex
decision problems, IDs have since proven to be a useful
framework for developing efficient solution algorithms. The
class of problems represented by influence diagrams is very
closely related to the class of finite-horizon partially observ-
able Markov decision processes (POMDPs) [Monahan, 1982;
Kaelbling et al., 1998]. Interestingly, however, very different
algorithms have been developed for these two models.

Algorithms for solving IDs can be classified as indirect
and direct methods. Indirect methods convert an ID to a
secondary structure before solving it, which can be a deci-
sion tree that is solved by backwards induction or branch-
and-bound search [Howard and Matheson, 1981; Qi and
Poole, 1995; Yuan et al., 2010], a belief network that is
solved by probabilistic inference techniques [Cooper, 1988;
Shachter and Peot, 1992; Zhang, 1998], or a junction tree
that is solved by message-passing techniques [Jensen et al.,
1994]. Direct methods solve an ID in the course of per-
forming a sequence of value-preserving transformations on
the ID itself, which may involve removing one node at a
time from the network [Olmsted, 1983; Shachter, 1986;
Tatman and Shachter, 1990], or one variable at a time from
an equivalent mathematical formula [Dechter, 2000].

All of these different algorithms for ID evaluation represent
a solution, or strategy, in the same way – as a mapping from
a history of actions and observations to the choice of action,
with the strategy conditioned on an initial belief in the form
of a prior probability distribution over a state space. For the
related model of finite-horizon POMDPs, however, a solution
is often represented differently; at each stage, it is represented
as a mapping from belief states to the choice of action, where
a belief state is a vector of posterior probabilities over a state
space. Especially for problems with a horizon that is longer
than a couple of stages, the belief-based representation of a
strategy can be more compact, and sometimes much more
compact, than a history-based representation.

In this paper, we describe an algorithm for solving IDs that
leverages this alternative representation of a strategy, and the
related approach to dynamic programming originally devel-
oped for solving POMDPs. The new algorithm can be viewed
as an extension of the classic node-removal/arc-reversal algo-
rithm for ID evaluation that includes reductions that general-
ize the incremental pruning algorithm for POMDPs [Cassan-
dra et al., 1997]. It can also be viewed as a generalization
of the incremental pruning algorithm that solves any regular
and no-forgetting ID, and not just the special case of IDs that
correspond to finite-horizon POMDPs.

We show that this approach to solving IDs has some po-
tential advantages, especially in solving complex, multistage
problems. Among them, it allows a more flexible order of
node reductions, and it makes it possible to optimize over
unobserved state variables in a POMDP-inspired way, which
can improve the scalability of ID evaluation. It also finds a
more compact representation of an optimal strategy, which
can be easier to interpret.

The approach we develop also contributes to a better under-
standing of the relationship between IDs and finite-horizon
POMDPs. Previous work has shown how to use techniques
developed for solving IDs in order to solve POMDPs more ef-
ficiently, especially factored POMDPs [Boutilier and Poole,
1996; Hansen and Feng, 2000]. As far as we know, we are
the first to propose using techniques developed for solving
POMDPs in order to solve IDs more efficiently.

2 Influence diagrams and POMDPs
We begin with a brief review of relevant background about
influence diagrams and finite-horizon POMDPs.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3124

Figure 1: Influence diagram for oil wildcatter problem.

2.1 Influence diagrams
An ID is defined on a directed acyclic graph with three kinds
of nodes. Chance nodes, drawn as circles, represent random
variables, X = {X1, . . . , Xm

}, as in a Bayesian network.
Decision nodes, drawn as rectangles, represent controllable
decision variables, D = {D1, . . . , Dn

}. Value nodes, which
are drawn as diamonds and have no children, represent the
preferences of the decision maker. Figure 1 shows an ID for
the classic oil wildcatter decision problem [Raiffa, 1968].

Each random variable X
i

2 X is associated with a
conditional probability table, P

i

= P (X
i

|pa(X
i

)), where
pa(X

i

) ✓ X [D\{X
i

} denotes the set of parent vari-
ables of X

i

in the graph. Similarly, each decision variable
D

k

2 D has a parent set pa(D
k

) ✓ X [D\{D
k

}, denoting
the variables whose values are observed before the decision
is made. Each value node is associated with a value function
V
i

2 V = {V1, . . . , Vq

} that assigns a scalar value to each in-
stantiation of pa(V

i

) ✓ X [D. Given multiple value nodes,
we assume the total value is their sum.

We assume that IDs are regular and no-forgetting, which
means there is a temporal ordering of the decision variables,
denoted D1, D2, . . . , Dn

, and a decision node and its par-
ents are parents of all subsequent decision nodes. The set of
chance variables observed before the first decision is denoted
I0, the set of chance variables observed between decisions
D

k

and D
k+1 is denoted I

k

, and the set of chance variables
that are never observed is denoted I

n

. We use dom(X) to
denote the domain of a variable X 2 X [D. By extension,
for W ✓ X [D, dom(W) =

Q
W2W

dom(W).
A strategy for an influence diagram is a list of decision

rules � = (�1, . . . , �n), one for each decision variable D
i

2
D, where a decision rule is a mapping, �

i

: dom(pa(D
i

)) !
dom(D

i

), that prescribes an action for each instantiation of
the parent variables pa(D

i

). An ID is solved by computing a
strategy with the maximum expected value, which is equal to

MEU =

X

I0

max

D1

. . .
X

In�1

max

Dn

X

In

0

@
mY

i=1

P
i

qX

j=1

V
j

1

A. (1)

Because the decision rule �
i

for the decision variable D
i

is conditioned on all possible instantiations of the set I0 [
D1 [I1 . . . Di�1 [I

i�1, the complexity of ID evaluation
can grow exponentially in the length of the history. (In lim-
ited cases, structural analysis of the ID can distinguish rele-
vant from irrelevant variables in this history, which can help
slow this exponential growth in complexity [Shachter, 1999;
Nielsen and Jensen, 1999; Lauritzen and Nilsson, 2001].)

Figure 2: Three-stage POMDP as influence diagram.

2.2 Finite-horizon POMDPs

A finite-horizon POMDP can be viewed as a special case of
an ID, defined as follows. For each stage t in a finite sequence
of stages, there is an unobserved state variable X

t

, an obser-
vation variable Z

t

, a decision variable D
t

, and a reward func-
tion V

t

. The state and observation variables correspond to the
chance nodes of an ID, the decision variables correspond to
the decision nodes, and the reward functions correspond to
the value nodes, as shown in Figure 2. The state variables at
each stage satisfy the Markov property, which means that the
state at stage t depends only on the state and action at the pre-
vious stage, and the observation and reward at stage t depend
only on the state at stage t and the previous state and action.

Two approaches to solving POMDPs by dynamic program-
ming have been explored in the literature. In one approach,
a decision tree is built where each node is associated with
a probability distribution over the state space, called a be-
lief state, which is updated by Bayesian conditioning. In this
form, the problem is solved by backwards induction or related
branch-and-bound search techniques [Satia and Lave, 1973;
Washington, 1997]. This approach is related to traditional al-
gorithms for solving IDs insofar as it considers and evaluates
each history beginning from the starting belief state.

In the second approach, the space of all possible belief
states is considered at each stage, instead of the space of pos-
sible histories, and strategies are built in the backwards di-
rection without considering the previous history. (Because
strategies are built in the backwards direction, we will in-
dex stages in backwards order from now on, so that t denotes
the number of stages remaining in the problem.) A key fea-
ture of this second dynamic programming approach is that the
value function is piecewise linear and convex, or, in the case
of maximization, concave [Smallwood and Sondik, 1973].
To illustrate this approach, we briefly review the incremen-
tal pruning algorithm [Cassandra et al., 1997].

Consider a finite-horizon POMDP that is stage-invariant
with a finite set of states X , a finite action set D, a finite
observation set Z, a set of transition probabilities Pr(x0|x, d)
that give the probability of a transition to state x0 after ac-
tion d is taken in state x, a set of observation probabilities
Pr(z|x0, d) that give the probability of observing z after ac-
tion d leads to state x0, and a reward function R(x, d) that
gives the expected reward for taking action d in state x.

When the number of actions and observations is finite,
the set S

t

of all possible t-stage strategies (sometimes called

3125

“policy trees”) can be defined recursively, as follows:
S1 = D, (2)
S
t

= {hd
t

,�
t

i|d
t

2 D,�
t

: Z ! S
t�1}, for t > 1, (3)

where si
t

2 S
t

denotes a specific t-stage strategy indexed by i.
A t-stage strategy si

t

is defined as a tuple hdi
t

,�i

t

i consisting
of an action di

t

2 D and a mapping �i

t

: Z ! S
t�1, such that

each observation z 2 Z is mapped to a (t� 1)-stage strategy.
A value vector for a t-stage strategy si

t

2 S
t

can be defined
recursively, as follows:

vd1(x)=R(x, d) (4)

vi
t

(x)=R(x, di
t

) +

X

x

02X,z2Z

Pr(x0, z|x, di
t

)v
�

i
t(z)

t�1 (x0
), (5)

where �i

t

(z) is the index of a (t � 1)-stage strategy in S
t�1,

and Pr(x0, z|x, d) = Pr(x0|x, d) · Pr(z|x0, d). Thus the
value of a t-stage strategy si

t

2 S
t

for a given belief state
b is given by the dot product of the value vector vi

t

and the
belief state b:

V i

t

(b) =
X

x2X

b(x) · vi
t

(x). (6)

Given a set S
t

of t-stage strategies with a corresponding set
of value vectors V

t

= {vi
t

|i = 1, . . . , |S
t

|}, a strategy si
t

2 S
t

is said to be dominated by the other strategies S
t

\{si
t

} if for
all belief states b:X

x2X

b(x)vi
t

(x)  max

v

k
t 2Vt\{vi

t}

X

x2X

b(x)vk
t

(x). (7)

The condition given by (7) can be tested by solving a linear
program, and Cassandra et al.(1997) describe an algorithm,
called PR(V

t

), that removes all dominated value vectors from
an input set V

t

, as well as all associated t-stage strategies from
the set St.

With this background, it is possible to compute an opti-
mal piecewise-linear and concave value function V

t

for each
stage t, as well as a corresponding minimal set V

t

of undom-
inated t-stage strategies, as follows:

V
t

= PR([
a2A

Va

t

) (8)
Va

t

= PR(�
z2Z

Va,z

t

) (9)
Va,z

t

= PR({vi
t

|i = 1, . . . , |V
t�1|}) (10)

where the cross sum of two sets of vectors A and B is defined
as A�B = {a+ b|a 2 A, b 2 B}, and

vi
t

(x) = R(x, a)/|Z|+
X

x

02X

Pr(x0, z|x, a)vi
t�1(x

0
). (11)

Steps (10) and (11) are referred to as the backprojection
step of the algorithm, step (9) is referred to as the cross-sum
step, and step (8) is referred to as the maximization step. The
algorithm is called incremental pruning when the cross-sum
step is performed efficiently by pruning as follows:
Va

t

= PR(. . . PR(PR(V a,z1
t

�Va,z2
t

)�Va,z3
t

) . . .�Va,zk
t

).
(12)

The algorithm is well-described in the literature, to which we
refer for further details about its efficient implementation.

In the rest of the paper, we show how to generalize this
algorithm so that it solves any regular and no-forgetting ID.

3 New algorithm
The algorithm we describe next can be viewed as a synthesis
of the incremental pruning algorithm and the classic node-
removal/arc-reversal algorithm for ID evaluation [Olmsted,
1983; Shachter, 1986; Tatman and Shachter, 1990]. Briefly,
the algorithm is created by generalizing the cross sum and
maximization steps of incremental pruning to create new re-
ductions that apply to the observed chance nodes and the de-
cision nodes of an ID, respectively, and replacing the back-
projection step of the incremental pruning algorithm with re-
ductions used by the node-removal/arc-reversal algorithm.

3.1 Standard reductions
We start by summarizing all of the reductions of the node-
removal/arc-reversal algorithm except for the reduction for
decision nodes, which we will not use in our algorithm.

Barren node removal
A decision or chance node is said to be barren if it has no
children, in which case it can be removed without having any
effect on the value of an ID [Shachter, 1986, pp. 876].

Value node removal
Although the original node-removal/arc-reversal algorithm
assumed a single value node, it was later extended to allow
multiple value nodes. When there are multiple value nodes,
any two value nodes can be replaced by a single value node
that is equal to their sum [Tatman and Shachter, 1990, p. 374].
Let U

old

(pa(U)) denote the value function associated with
the value node U , and let V

old

(pa(V)) denote the value func-
tion associated with the value node V before the two value
nodes are merged. The value function associated with the new
value node V

new

that replaces the two merged value nodes is

V
new

(c) = U
old

(a) + V
old

(b), (13)

where A = pa
old

(U) is the original set of parents of U ,
B = pa

old

(V) is the original set of parents of V , and
C = pa

new

(V) = A [B is the new set of parents of V .
To gain computational leverage from decomposition of the

value function, it is well-understood that the merging of value
nodes should be delayed as long as possible.

Chance node removal
A chance node can be removed if it has a single child value
node [Shachter, 1986, pp. 876-7]. Let P

old

(X|pa(X))

denote the conditional probability table associated with a
chance node X , and let V

old

(pa(V)) denote the value func-
tion associated with its child value node V before remov-
ing X . After removing X , the parents of X are inherited
by the value node V , and the new value function associated
with V is

V
new

(c) =

X

x2X

P
old

(x|a) · V
old

(b), (14)

where A = pa
old

(X) is the original set of parents of X ,
B = pa

old

(V) is the original set of parents of V , and C =

pa
new

(V) = A [(B\{X}) is the new set of parents of V .
For reasons that we explain later, our algorithm only uses

this reduction for chance nodes that are unobserved.

3126

Arc reversal
Arc reversal uses Bayes’ rule to reverse the direction of an arc
between two chance nodes, while ensuring that the original
distribution is still correctly represented [Shachter, 1986, pp.
878]. An arc from a chance node X to a chance node Y with
parent sets A (parents of X only), B (parents of both X and
Y), and C (parents of Y only) can be reversed unless there is
another directed path from X to Y ; in that case, reversing the
arc would create a directed cycle.

When an arc (X,Y) can be reversed, the new distribution
for Y is obtained by marginalizing X from the joint, as fol-
lows:

P
new

(y|a,b, c) =
X

x2X

P
old

(y|x,b, c)P
old

(x|a,b). (15)

Since the chance node Y inherits the parents of X , its new
parents are pa

new

(Y) = pa
old

(Y)[pa
old

(X) = A[B[C.
The new distribution for Y is used to obtain the new distri-

bution for X , as follows:

P
new

(x|y,a,b, c) = P
old

(y|x,b, c)P
old

(x|a,b)
P
new

(y|a,b, c) . (16)

Since the chance node X is now a child of Y , and also inherits
the parents of Y , its new parents are pa

new

(X) = {Y } [
pa

old

(X) [pa
old

(Y) = {Y } [A [B [C.

3.2 New reductions
Besides the reductions just summarized, the classic node-
removal/arc-reversal algorithm includes one more reduction,
which is for decision nodes [Shachter, 1986, pp. 877-8]. It
can be applied to a decision node if and only if it has a single
child node that is a value node, and all other parents of the
child value node are also parents of the decision node.

We do not use this reduction because it presupposes a
history-based strategy representation. Instead, we replace it
with two new reductions that represent strategies in a differ-
ent way. One is for decision nodes and the other is for chance
nodes that are observable, which we call observation nodes.

Strategy representation
Our new algorithm represents strategies in a way that is sim-
ilar to how they are represented in solving POMDPs. Let T
denote the total number of decision and observation nodes,
and let N

T

, N
T�1, . . . , N1 denote an ordering of the deci-

sion and observation nodes that respects the temporal order-
ing of the decision nodes of the ID, as well as a topologi-
cal ordering of the observation nodes. In this ordering, the
subscript t of N

t

indicates the number of stages until the
end of the problem. Thus any instantiation of the sequence
N

T

, N
T�1, . . . , N1 corresponds to a valid history.

We use the symbol N
t

for both decision and observa-
tion nodes because it simplifies our notation when specifying
strategies. For each node N

t

, let Act(N
t

) denote the set of
associated actions, and let Obs(N

t

) denote the set of associ-
ated observations. Of course, actions are only associated with
decision nodes, and observations are only associated with ob-
servation nodes. But if N

t

is a decision node, we can let
Obs(N

t

) equal a singleton set containing a dummy obser-
vation that provides no information. Similarly, if N

t

is an

observation node, we can let Act(N
t

) equal a singleton set
containing a dummy action that has no effect. This conven-
tion does not change the meaning of the ID, and using the
same notation for decision and observation nodes lets us re-
cursively define a set S

t

of t-stage strategies, as follows,

S1 = Act(N1), (17)
S
t

= {hd
t

,�
t

i|d
t

2 Act(N
t

),�
t

: Obs(N
t

) ! S
t�1},(18)

where a t-stage strategy s
t

2 S
t

specifies a strategy for the
last t stages of the problem, beginning from node N

t

, in much
the same way that strategies for a finite-horizon POMDP are
recursively defined by Equations (2) and (3).

Strategy node and strategy value node
Our new algorithm first solves an ID for the last stage of the
problem, then for the last two stages, then for the last three
stages, and so on, in a way that generalizes the incremental
pruning algorithm. It uses two nodes of the ID to hold the
solution as it is gradually constructed. The first node, which
we call the strategy node, is the last decision node in the ID.
It is used to hold a set S

t

of strategies, as defined by Equa-
tions (17) and (18). The second node, which we call the strat-
egy value node, is a child value node of the strategy node. It
serves as a piecewise-linear and concave value function for
the set of strategies, as we show below.

The two nodes are originally established in a simple initial-
ization step. First, the last decision node in the ID is identi-
fied. Then the standard reductions described above are used
to eliminate all of its descendants except for one value node
(which must exist if the decision node cannot be removed by
a series of barren node removals). Because the strategy node
is just a decision node used in a special way, and the strategy
value node is just its child value node, an ID with these two
nodes is well-defined.

Let D denote the strategy node, let V denote the strategy
value node, let X denote the set of parents of the strategy
value node that are unobserved chance nodes, and let Y de-
note the set of parents of the strategy value node that are
observation nodes or decision nodes, excluding the strategy
node. For each action d 2 Act(D), and for any instantiation
x 2 X of the hidden state variables, and for any instantiation
y 2 Y of the related decision and observation variables, the
value function V (d,x,y) associated with the strategy value
node gives the value of taking the action d. Moreover, for any
belief state b over instantiations of the hidden state variables
X (that is, for any probability distribution over instantiations
x 2 X), and for any instantiation y 2 Y of the related deci-
sion and observation variables, the expected value of decision
d is given by:

P
x

b(x)V (d,x,y). Finally, for any belief state
b over instantiations x 2 X of the hidden state variables, and
for any instantiation y 2 Y of the decision and observation
variables, the optimal value function is

V (b,y) = max

d2Act(D)

X

x2X

b(x)V (d,x,y). (19)

As this analysis shows, the value function associated with the
strategy value node is a piecewise linear and concave value
function, similar to the value function for a POMDP, and we
leverage this observation in the algorithm we describe next.

3127

Figure 3: Example of ID before (left) and after (right) a
decision node reduction. Tables show value function for value
node. Shaded strategies in the revised table are dominated.

Both the strategy node and the strategy value node play an
integral role in the following two new reductions.

Decision node reduction
We first describe a reduction for decision nodes. It can be
applied to a decision node if and only if its only children are
the strategy node and (possibly) the strategy value node. (It
is a parent of both, usually, because if it is not a parent of the
strategy value node, it has no effect on value.) Importantly,
and by contrast to the decision node reduction for the classic
node-removal/arc-reversal algorithm, it allows the child value
node of the decision node being reduced to have unobserved
chance nodes as parents.

The reduction removes the decision node N
t

, it modifies
the action set associated with the strategy node, and it modi-
fies the value function associated with the strategy value node.
Figure 3 shows a simple example of the decision node reduc-
tion. To indicate the special role played by the strategy node
and strategy value node, the strategy node is shown as a dou-
ble square labeled S, and the strategy value node is shown as
a double diamond labeled V .

Let S
t�1 denote the set of (t�1)-stage strategies originally

associated with the strategy node (in its action set), and let
V
old

denote the value function originally associated with the
strategy value node. The reduction replaces the set S

t�1 with
a set S

t

of t-stage strategies based on Equation (18). That
is, for each strategy s

t�1 2 S
t�1 and for each action d

t

2
Act(N

t

) associated with the removed decision node, the new
set S

t

includes a strategy s
t

= hd
t

,�
t

i where �
t

maps the
dummy observation to the strategy s

t�1 2 S
t�1.

Let X denote the set of parents of the strategy value node
that are unobserved chance nodes, and let Y denote the set of
parents of the strategy value node that are either observation
nodes or decision nodes, excluding the strategy node and (re-
moved) decision node. When the decision node is removed,
the new value function for the strategy value node is:

V
new

(x,y, s
t

) = V
old

(x,y, d
t

, s
t�1). (20)

Note that the sets X and Y are not changed by removing the
decision node. Adopting a notation similar to the one we used
in the POMDP case, we also let vi

t

(x,y) denote the value
vector associated with a strategy si

t

2 S
t

.
After the decision node is removed, the last step of the re-

duction is to eliminate dominated strategies in the new set S
t

corresponding to the action set of the revised strategy node.
We consider two cases. In the first, X is empty, that is, the
strategy value node does not have any parents that are unob-
served chance nodes. This case is relatively easy: a strategy
si
t

2 S
t

with corresponding value vector vi
t

is dominated if

vi
t

(y)  max

v

k
t 2Vt\{vi

t}
vk
t

(y), 8y 2 Y, (21)

which is easily tested by enumerating all instantiations of Y.
In the second case, X is non-empty, that is, the strategy

value node has parents that are unobserved chance nodes.
This case requires reasoning about hidden state in a way that
generalizes the pruning step of the incremental pruning algo-
rithm for POMDPs. Given a set S

t

of t-stage strategies with
corresponding value vectors V

t

, a strategy si
t

2 S
t

is domi-
nated by the other strategies S

t

\{si
t

} if for all belief states b:
X

x2X

b(x)vi
t

(x,y)  max

v

k
t 2Vt\{vi

t}

X

x2X

b(x)vk
t

(x,y), 8y 2 Y.

(22)
Because this test considers all possible belief states, that is,
all probability distributions over the hidden states, it requires
use of linear programming. In the worst case, it solves a linear
program for each strategy si

t

2 S
t

and instantiation y 2 Y.

Observation node reduction
The observation node reduction we describe next can be ap-
plied to an observation node if and only if its only children
are the strategy node and (possibly) the strategy value node.

The reduction removes the observation node N
t

, it mod-
ifies the action set associated with the strategy node, and it
modifies the value function associated with the strategy value
node. Again, the algorithm replaces the set S

t�1 of (t � 1)-
stage strategies originally associated with the strategy node
with a new set S

t

of t-stage strategies based on Equation (18).
For each new strategy s

t

2 S
t

, where s
t

= hd
t

,�
t

i, d
t

is now
a dummy action that has no effect, and �

t

maps each obser-
vation z 2 Obs(N

t

) to a strategy s
t�1 2 S

t�1.
We must consider how the parent set of the strategy value

node is changed by this reduction, and how its new value
function is defined. Let A denote the parents of the strategy
value node before the reduction that are unobserved chance
nodes, and let B denote the parents of the strategy value node
before the reduction that are observation or decision nodes,
excluding the strategy node and (removed) observation node.
Let C denote the parents of the removed observation node
that are unobservable chance nodes, and let D denote the par-
ents of the removed observation node that are observation or
decision nodes. The new parent set for the strategy value node
consists of the unobservable chance nodes X = A [C and
the observation and decision nodes Y = B [D. The new
value function for the strategy value node is,

V
new

(x,y, s
t

) =

X

z2dom(Nt)

P (z|c,d) · V
old

(a,b, z,�
t

(z)),

(23)
where z 2 dom(N

t

) is an observation, and �
t

(z) maps the
observation z to a strategy in S

t�1.
Figure 4 show some simple examples of this reduction.

There is a subtle complication in determining the parent set of

3128

Figure 4: Examples of observation node reduction. Dominated strategies are shaded in the table for the value function.

the strategy value node after the reduction that we mention to
qualify the discussion in the previous paragraph. If a parent
node of the observation node is not connected to the strategy
value node by a path that does not go through the strategy
node, then it is irrelevant in a sense defined by Nielsen [2002]
and Jensen and Nielsen [2007, pp. 413-420], which means it
has no effect on expected value. Thus it can be excluded from
the parent set of the strategy value node after the reduction.
In the example shown in Figure 4(c), for example, the node
X is irrelevant and becomes barren after the reduction.

After the observation node has been removed, the last step
of the reduction is to eliminate dominated strategies in the
new set S

t

corresponding to the action set of the revised strat-
egy node. Adopting a notation similar to the one used in the
POMDP case, we let vi

t

(x,y) denote the value vector asso-
ciated with a strategy si

t

2 S
t

. As already explained in the
discussion of eliminating dominated strategies after the re-
duction of a decision node, there are two cases to consider.
In the first case, X is empty, that is, the strategy value node
does not have any parents that are unobserved chance nodes.
In this case, a strategy si

t

2 S
t

is dominated if it satisfies the
condition of Equation (21), which can be tested without linear
programming. In the second case, X is non-empty, that is, the
strategy value node has parents that are unobserved chance
nodes. In this case, a strategy si

t

2 S
t

is dominated by the
other strategies S

t

\{si
t

} if it satisfies the test of Equation (22)
for all belief states b over the hidden state variables X.

Efficient implementation of this pruning step is more chal-
lenging for an observation node reduction than a decision
node reduction because the cardinality of the set of strategies
grows much more explosively when an observation node is
removed than when a decision node is removed. In the incre-
mental pruning algorithm, this step is referred to as the cross
sum step, and it can be performed efficiently by interleaving
generation and pruning of the new strategies. First, the al-
gorithm considers a partial mapping �

t

: Obs(N
t

) ! S
t�1

with just one value z 2 Obs(N
t

), generates all partial strate-
gies based on this mapping, and prunes dominated strategies.
Then it considers a more complex mapping with two values of
the observation variable, generates all strategies, and prunes
those that are dominated. It continues to generate and prune
partial strategies in this way until all values of the observation

variable have been considered. This “incremental” approach
to generating and pruning observation-based strategies is the
idea for which the incremental pruning algorithm is named.
We refer to Cassandra et al. [1997] for further details.

3.3 Correctness and order of reductions
The algorithm terminates when only the strategy node and
strategy value node remain, at which point the strategy node
holds an optimal strategy represented as an acyclic graph we
call a strategy graph. The correctness of the algorithm fol-
lows from the fact that all reductions are value-preserving,
in the sense defined by Shachter [1986]. The new deci-
sion and observation node reductions are value-preserving be-
cause they transform the ID into a smaller ID without chang-
ing the value of the strategies, and elimination of dominated
strategies leaves the optimal strategy unaffected.

In contrast to the classic node-removal/arc-reversal algo-
rithm, our algorithm allows more flexibility in the order in
which nodes are removed from the ID. This flexibility makes
it more effective in solving some problems, as we will see, al-
though it also means the algorithm’s efficiency depends criti-
cally on choosing an appropriate order of reductions.

4 Examples and analysis
To illustrate the algorithm, and especially the performance of
different heuristics for determining the order of reductions,
we consider three IDs from the literature.

4.1 Oil Wildcatter
In this problem, shown in Figure 1, a wildcatter must decide
whether or not to drill for oil. The amount of available oil
is a hidden state variable with three possible states: dry, wet,
and soak. Before deciding whether to drill, the wildcatter can
perform a seismic test with three possible outcomes (closed,
open, and diffuse), to estimate how much oil is present.

Figure 5 shows how our algorithm solves this ID using two
different orders of reductions. In Figure 5(a), the unobserv-
able chance node for Oil is removed before any other nodes
are removed. As a result, there is no need to reason about
hidden state or use linear programming to prune dominated
strategies. The classic node-removal/arc-reversal algorithm
removes nodes in exactly the same order.

3129

Figure 5: For oil wildcatter problem: (a) sequence of reductions with unobservable node removed first, (b) sequence of reduc-
tions with unobservable node removed last, and (c) optimal strategy graph for all belief states (arrow for initial belief state).

Figure 5(b) shows an order of reductions that is not possi-
ble using the classic approach: the unobservable chance node
for Oil is removed after all the other nodes are removed. As a
result, removing the observation node (Seismic) and decision
node (Test) requires adopting the POMDP approach to reason
about hidden state and prune dominated strategies. Our algo-
rithm solves this ID in a small fraction of a second regardless
of which of these two orders of reductions is used.

It is interesting to consider panel 5 of Figure 5(b), which
shows the ID at the point where all of the nodes have been
removed except for the unobservable chance node for Oil (as
well as the strategy node and strategy value node). Figure 5(c)
shows the set of undominated strategies at this point, which is
represented compactly as an acyclic graph we call a strategy
graph. The solution shown in Figure 5(c) includes an optimal
strategy for every possible prior probability distribution for
the unobserved state variable for Oil, which means it is a more
general solution than usually found by ID algorithms. The
decision about which of the four nodes on the left to start with
depends on the prior probability distribution. When the prior
state probability distribution is 0.5 for dry, 0.3 for wet, and
0.2 for soak, it is best to start in the node marked by an arrow.
The final reduction, which removes the hidden state variable
for Oil, uses this prior probability distribution to select this
optimal strategy, and discards the unreachable parts of the
strategy graph.

4.2 Maze navigation
We next consider a partially observable maze navigation
problem introduced in previous work on limited-memory in-
fluence diagrams [Nilsson and Hohle, 2001]. Figure 6(a)
shows the maze. The shaded tiles represent walls, the white
tiles represent movable space, and the white tile with a star is
the goal state. A robot in the maze has four available actions;
it can move a single step in any of the four compass direc-
tions. The robot successfully moves in the intended direction
with probability 0.89. It fails to move with probability 0.089,
it moves sideways with probability 0.02 (0.01 for each side),
and it moves backward with probability 0.001. If movement
in some direction would take it into a wall, that movement

has probability zero, and the probability of not moving is in-
creased. The robot has four sensors, one for each direction,
which accurately sense whether the neighboring tile in that
direction is a wall. Because different states can result in the
same observation, the problem is partially observable.

A robot is randomly placed in a non-goal state (i.e., the
prior probability distribution is uniform), and performs an ac-
tion at each of a sequence of ten stages. If it reaches the goal
state by the final stage, it receives a reward of 1; otherwise, it
receives a reward of 0. Thus the objective is to maximize the
probability of reaching the goal state within ten stages.

Although Nilsson and Hohle [2001] model the problem as
an ID, it is a very difficult problem for traditional ID algo-
rithms to solve. (This fact motivates their use of limited-
memory IDs.) At each stage, the robot receives one of 16
observations and performs one of 4 actions, which means that
64

10 different histories are possible over ten stages. Given so
many histories, traditional algorithms for ID evaluation can-
not solve this problem. Even representation of a strategy as a
simple mapping from histories to actions is infeasible with so
many histories.

Surprisingly, the problem can be solved in less than a
minute by our new node-removal/arc-reversal algorithm, if
it adopts an order of reductions that reflects the POMDP ap-
proach and allows hidden state at each stage. We use the fol-
lowing heuristic to order reductions. If the last decision node
before the strategy node is not yet eligible to be removed, we
consider its descendants. We remove value node descendants
first (except the strategy value node, of course). Then we re-
move unobservable chance nodes (which may require arc re-
versals), then observation nodes, and finally the decision node
itself. The process then repeats with the next decision node
before the strategy node. With this order of reductions, the
algorithm performs the same computations as the incremen-
tal pruning algorithm. The maze problem is easily solved by
this approach because an optimal strategy for this problem
can be represented compactly by a strategy graph with only
123 action nodes.

3130

Figure 6: (a) Maze problem. (b) Mildew influence diagram. (c) Optimal strategy graph for mildew problem.

4.3 Mildew treatment
Finally, we consider a simple ID that models the problem of a
farmer deciding how to eliminate mildew in a wheat field by
selecting among fungicide treatments. The example is origi-
nally described by Jensen and Nielsen [2007, pp. 282-283],
with more details given at the HUGIN website.1

As shown in Figure 6(b), the ID has one decision node (A)
with four options for fungicide treatment (none, light, mod-
erate, and heavy). It has two observation nodes: observation
of the crop state (OQ), with 4 possible values (fair, average,
good, and very good), and observation of the mildew situa-
tion (OM), with 4 possible values (none, little, moderate, and
severe). It has four unobservable chance nodes. The initial
crop state (Q) has 4 values. The crop state at harvest (H) has
7 values. Both the mildew situation before treatment (M) and
the mildew situation after treatment (M*) have 4 values.

Two of the unobserved chance nodes (H and M*) must be
removed before the decision node and observations nodes are
removed. The other two unobserved chance nodes (Q and
M) can be removed either before the two observation nodes
are removed or after they are removed. If they are removed
before the observation nodes are removed, the problem is
solved in a fraction of a second by our algorithm. (Note that
this order of node removals is the same order in which the
nodes would be removed by the traditional node-removal/arc-
reversal algorithm.) If the two unobserved chance nodes are
not removed until all of the other nodes are removed, in-
cluding the observation nodes, the problem cannot be solved
within 30 minutes by our algorithm because of the large num-
ber of undominated strategies.

For this problem, it is better to remove all unobservable
chance nodes before the two observation nodes because there
are only 64 histories, while the number of possible strate-
gies is 4

16, and many are undominated. Thus our algorithm
is no faster than (though it is as fast as) the classic node-
removal/arc-reversal algorithm in solving this problem. But it
does have the advantage that it represents the optimal strategy
more compactly, as shown in Figure 6(c).

4.4 Heuristics for ordering reductions
A key difference between our algorithm and the traditional
node-removal/arc-reversal algorithm for IDs is that our algo-
rithm allows unobservable chance nodes to be removed after
decision and observation nodes are removed, which requires

1See http://www.hugin.com/technology/samples/mildew.

reasoning about hidden state and use of linear programming
to eliminate dominated strategies. This approach is effective
for problems where the number of histories is extremely large
but the number of undominated strategies is relatively small,
as in the last stages of complex, multistage IDs, such as the
maze problem. In fact, the maze problem provides both a
best-case example for the POMDP approach and a worst-case
example for the approach of traditional ID algorithms, which
struggle to solve IDs with a large number of histories.

An attractive property of our algorithm is that it can adopt
whichever order of reductions is best for a given ID. When the
number of histories is much larger than the number of undom-
inated strategies, as it is for the maze problem, it should order
reductions in a way that favors the POMDP approach. When
the number of undominated strategies is much larger than the
number of histories, as it is for the mildew problem, it should
order reductions in the traditional way, where unobservable
chance nodes are removed first. By allowing flexibility in the
order of reductions, our algorithm combines the advantages
of POMDP algorithms and traditional ID algorithms.

5 Conclusion
We have described a node-removal/arc-reversal algorithm for
ID evaluation that includes reductions that allow an ID to be
solved by a generalization of the dynamic programming ap-
proach to solving POMDPs. The algorithm allows a more
flexible ordering of node removals, and a POMDP-inspired
approach to optimizing over hidden state variables, that can
improve the scalability of ID evaluation in solving complex,
multi-stage problems. Because the algorithm can remove
nodes in the same order as they are removed by the traditional
node-removal/arc-reversal algorithm, it can perform at least
as well as the traditional algorithm, and potentially better us-
ing a different order of reductions that reflects the POMDP
approach. It relies on heuristics to select the order of reduc-
tions that leads to the best performance for a given problem.

Even when the new algorithm removes nodes in the same
order as they are removed by the traditional algorithm, it has
the advantage of finding a more compact representation of
an optimal strategy. Instead of representing a strategy as a
simple mapping from histories to actions, a strategy is repre-
sented as an acyclic graph, which can be easier to interpret.

We have sketched the algorithm in broad outline in this
paper. In future work, we will refine its details and consider
ways to improve its performance, including the development
of more sophisticated heuristics for ordering reductions.

3131

Acknowledgments
This research was partially supported by NSF grant IIS-
1219114.

References
[Boutilier and Poole, 1996] C. Boutilier and D. Poole. Com-

puting optimal policies for partially observable Markov
decision processes using compact representations. In Pro-
ceedings of the 13th National Conference on Artificial In-
telligence, pages 1168–1175, 1996.

[Cassandra et al., 1997] A. Cassandra, M. Littman, and
N. Zhang. Incremental pruning: A simple, fast, ex-
act method for partially observable Markov decision pro-
cesses. In Proceedings of the 13th Conference on Uncer-
tainty in Artificial Intelligence, pages 54–61, 1997.

[Cooper, 1988] G. Cooper. A method for using belief net-
works as influence diagrams. In Proc. of the 4th Conf. on
Uncertainty in Artificial Intelligence, pages 55–63, 1988.

[Dechter, 2000] R. Dechter. A new perspective on algo-
rithms for optimizing policies under uncertainty. In Steve
Chien, Subbarao Kambhampati, and Craig A. Knoblock,
editors, AIPS, pages 72–81. AAAI, 2000.

[Hansen and Feng, 2000] E. Hansen and Z. Feng. Dynamic
programming for POMDPs using a factored state repre-
sentation. In Proc. of the 5th International Conf. on AI
Planning Systems (AIPS-2000), pages 130–139, 2000.

[Howard and Matheson, 1981] R. Howard and J. Matheson.
Influence diagrams. In Ronald Howard and James Mathe-
son., editors, The Principles and Applications of Decision
Analysis, pages 719–762, Menlo Park, CA, 1981.

[Jensen and Nielsen, 2007] F. Jensen and T. Nielsen.
Bayesian Networks and Decision Graphs. Springer, New
York, 2nd edition, 2007.

[Jensen et al., 1994] F. Jensen, F. V. Jensen, and S. Dittmer.
From influence diagrams to junction trees. In Proc. of the
10th Conference on Uncertainty in Artificial Intelligence,
pages 367–373, 1994.

[Kaelbling et al., 1998] L. Kaelbling, M. Littman, and
A. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence, 101:99–
134, 1998.

[Lauritzen and Nilsson, 2001] S. Lauritzen and D. Nilsson.
Representing and solving decision problems with lim-
ited information. Management Science, 47(9):1235–1251,
2001.

[Monahan, 1982] G. Monahan. A survey of partially observ-
able Markov decision processes: Theory, models, and al-
gorithms. Management Science, 28:1–16, 1982.

[Nielsen and Jensen, 1999] T. Nielsen and F. V. Jensen.
Well-defined decision scenarios. In Proceedings of the
15th Conference on Uncertainty in Artificial Intelligence
(UAI-99), pages 502–511, 1999.

[Nielsen, 2002] T. Nielsen. Decomposition of influence
diagrams. Journal of Applied Non-Classical Logics,
12(2):135–150, 2002.

[Nilsson and Hohle, 2001] D. Nilsson and M. Hohle. Com-
puting bounds on expected utilities for optimal policies
based on limited information. Technical Report 94, Danish
Informatics Network in the Agricultural Sciences, 2001.

[Olmsted, 1983] S. Olmsted. On representing and solving
decision problems. PhD thesis, Stanford University, 1983.

[Qi and Poole, 1995] R. Qi and D. Poole. A new method for
influence diagram evaluation. Computational Intelligence,
11:498–528, 1995.

[Raiffa, 1968] H. Raiffa. Decision analysis. Addison-
Wesley, Reading, MA, 1968.

[Satia and Lave, 1973] J. Satia and R. Lave. Markovian de-
cision processes with probabilistic observation of states.
Management Science, 20(1):1–13, 1973.

[Shachter and Peot, 1992] R. Shachter and M. Peot. Deci-
sion making using probabilistic inference methods. In
Proc. of the 8th Conference on Uncertainty in Artificial
Intelligence (UAI-92), pages 276–283, 1992.

[Shachter, 1986] R. Shachter. Evaluating influence dia-
grams. Operations Research, 34:871–882, 1986.

[Shachter, 1999] R. Shachter. Efficient value of information
computation. In Proc. of the 15th Conf. on Uncertainty in
Artificial Intelligence, pages 594–601, 1999.

[Smallwood and Sondik, 1973] R. Smallwood and
E. Sondik. The optimal control of partially observ-
able Markov processes over a finite horizon. Operations
Research, 21:1071–1088, 1973.

[Tatman and Shachter, 1990] J. Tatman and R. Shachter. Dy-
namic programming and influence diagrams. IEEE Trans.
on Systems, Man and Cybernetics, 20(2):365–379, 1990.

[Washington, 1997] R. Washington. BI-POMDP: bounded,
incremental partially observable markov model planning.
In Proceedings of the 4th European Conference on Plan-
ning, pages 440–451, 1997.

[Yuan et al., 2010] C. Yuan, X. Wu, and E. Hansen. Solv-
ing multistage influence diagrams using branch-and-bound
search. In Proc. of the 26th Conference on Uncertainty in
Artificial Intelligence (UAI-10), pages 691–700, 2010.

[Zhang, 1998] N. Zhang. Probabilistic inference in influ-
ence diagrams. Computational Intelligence, 14(4):475–
497, 1998.

3132

