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Abstract

Ensuring the stability is the most important re-
quirement for the navigation control of multi-robot
systems with no reference trajectory. The popu-
lar heuristic-search methods cannot provide theo-
retical guarantees on stability. In this paper, we
propose a Hierarchical Model Predictive Control
scheme that employs reachable sets to decouple
the navigation problem of linear dynamical multi-
robot systems. The proposed control scheme guar-
antees the stability and feasibility, and is more effi-
cient and viable than other Model Predictive Con-
trol schemes, as evidenced by our simulation re-
sults.

1

The navigation of multi-robot systems is the problem of
how to control a group of robots making them move from
starting states to their goal states. It has recently attracted
increasing attention in the robotics and multi-agent fields.
Most of existing work has been devoted to control prob-
lems in which a reference trajectory is given as a known
condition [Rosales et al., 2011; Antonelli et al., 2013;
Tian and Sarkar, 2012]. Given the reference trajectory, the
techniques aim to drive a group of robots to cooperatively
move toward a destination with a desired formation. Since
the predefined reference trajectory can act as explicit land-
marks to guide the robots in the navigation, convergence of
the methods, referred as stability, and the collision avoidance,
referred as feasibility, are naturally guaranteed.

We consider the case where no reference trajectory is
available in advance. The situation occurs in many practi-
cal applications, particularly when the knowledge of a nav-
igation environment cannot be sufficiently obtained. Un-
doubtedly, ensuring the stability is the most important re-
quirement of the method for no reference trajectory nav-
igation. Heuristic-search based methods are quite popu-
lar in this area [Calliess et al., 2014; Godoy et al., 2015;
Janovsky et al., 2014]. However, most of them are unable to
provide theoretical results aiding in guaranteeing the stabil-
ity and feasibility. They may produce trajectories that cause
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robots to stick at one point or never converge to the target po-
sition. That is why a failure ratio becomes a primary index
when different methods are compared.

Model Predictive Control (MPC) is one of the most popu-
lar optimal control techniques that derives the current con-
trol action of a system from its explicit model with con-
straints and its current state. For centralized MPC (CMPC),
the theory of feasibility and stability has been adequately
studied [Mayne et al., 2000; Olfati-Saber et al., 2003;
Dunbar and Murray, 2002]. However, as CMPC composes
together the cost function, the constraints and the dynamics
of every robot into a big optimal problem and relies on a cen-
tral controller to solve the input actions for all robots, it is
prone to be computationally prohibitive.

An intuitive method for solving the computational issue is
to decompose the big problem into many independent sub-
problems, distribute them to many robots and solve it in par-
allel. In basic distributed MPC (BDMPC) [Keviczky et al.,
2004b], each robot’s local controller only cares for its neigh-
bours and computes its own actions based on the local knowl-
edge of its neighbours. Such a decomposition simply drops
many constraints, thus in theory, it gives no guarantee on fea-
sibility and stability. Sequential distributed MPC (SDMPC)
[Kuwata and How, 2011] forces local controllers to make
computation according to a pre-defined order. Iterative dis-
tributed MPC (IDMPC) [Mercangdz and Doyle II1, 2007] in-
troduces an iterative computation process to determine the in-
put where each local controller uses MPC to predict its future
behavior based on the predicted behaviors of its neighbours
received in the last iteration and exchanges it with its neigh-
bours. The process repeats until the solution of the original
problem is found. Under certain conditions', SDMPC and
IDMPC can ensure stability and feasibility, but at the cost of
much more computational time.

The parallel decomposition of the navigation problem con-
tinues to be a challenging issue since a successful decom-
position must carefully decouple all couplings in the objec-
tive functions, constraints and dynamics. It should save the
computation time while ensuring stability and feasibility. In
this paper we propose a hierarchical MPC (HMPC) scheme to

'One such condition is that there are only convex constraints in-
volved and the neighbourhood topology for each robot remains un-
changed during the whole moving. However, the navigation problem
studied in the paper does not meet such a condition.



deal with the navigation problem of linear dynamical multi-
robot systems with no reference trajectory. Different from ex-
isting works, our HMPC employs a notion of reachable sets to
help with the decomposition. It ensures stability and feasibil-
ity while greatly reducing the computation time. It can also
deal with problems with nonlinear objective functions, com-
pared to the most recent work based on the Dantzig-Wolfe
decomposition [Bourdais er al., 2014] where their objective
functions (and constraints) have to be linear.

In the proposed HMPC, each local controller computes its
reachable set based on its dynamics and its current state, and
then reports it to the central controller. The central con-
troller combines the collected reachable sets with the ob-
jective function and the constraints to form an optimization
problem whose solution consists of the target states for every
robot. Then, each robot’s local controller computes its input
according to the target assigned to it. Our reachable set is
parameterized with the robot’s current state and can be de-
rived off-line. Compared with CMPC, the central controller
in HMPC needs to solve a much smaller problem as all vari-
ables, that are irrelevant to the objective function, global and
local constraints and to all the dynamics, are all shielded by
the reachable set. The computation of inputs for each robot
also gets an acceleration as they are performed in parallel.
In addition, the stability and feasibility of the HMPC can be
proved in the same way as the conventional CMPC. In this
context, this paper makes the following contributions:

e We propose a new control scheme HMPC to address the
navigation problem without a reference trajectory based on

a new efficient decoupling method via reachable sets.

e We prove the feasibility and stability of the HMPC scheme.

o We illustrate the performance for HMPC in several naviga-
tion scenarios and demonstrate its advantages in compari-
son to multiple MPC schemes.

2 Problem Formulation

We consider a multi-robot system § containing N robots on a
plane. The behavior of each robot is represented as a discrete-
time control sub-system and these sub-systems may differ in
the dynamic and sampling cycle. Given that the sampling in-
terval of the i-th robot is 7}, the interval of synchronization of
all the subsystems is the least common multiple of their sam-
pling intervals. We refer to the interval of synchronization as
one collaboration cycle. For the i-th robot, the collaboration
cycle is K; times its local control cycle.

A state of the i-th robot is denoted as ¢; = [z, y;, &4, U;
where ¢; pos = [, yi)T and gi per = [#i,9:)T denote the
position and velocity along the x-axis and the y-axis, respec-
tively. The dynamic model of the i-th robot is described as
the linear discrete-time time-invariant state equality below.

qi(k, kl+1):Az qi(k, k1)+Bz ui(k, ki), ngiSKifl,kZO (la)
with qi(k + 1,0) = qi(k, Kl) (1b)

k)

]T

where k denotes the k-th collaboration instant, k;€{0,1,
..., K'—1} represents the k;-th local control instant of the
i-th robot, and u; denotes the input. Equation (1b) defines
the beginning state of one collaboration cycle as the ending
state of the last collaboration cycle. For convenience, we

may use g;(k) and u;(k) to represent g;(k,0) and u;(k,0)
respectively. Let a convex polytope U; denote the feasible set
of input for the i-th robot:

u;(k, ki) € Us. 2
The input sequence of the i-th robot in the k-th collaboration
cycle is denoted by ; (k) = w;(k), ui(k, 1), ..., u;(k, K;—1).
The constraint set of the sequence (k) is denoted as U;:
’l]l(k) € Z/N[i, Z/N[i £ U; X ... x U; (3)
N————

For a multi-robot system S, let ¢(k) = [q1(k), ..., gn (k)]
denote the global state of S at the k-th collaboration instant,
a(k) = a1(k),...,un (k) denote the (list of) input sequence
of S in the k-th collaboration cycle.

In order to avoid collision during the navigation, we define
the collision avoidance specification requiring that the (infin-

ity norm) distance between any two robots must not be less
than a given safety distance dq:

h(q) <0,
h(q) = [hij(ai, @)1,

dsa'e - ) ‘7
hi,j(qi,q5) = { ! 7

> =

k>0, )
where

19i,pos — ’ILPOSHOO )
The infinite norm of a vector « = [x1, ..., z,]” is defined as
2]l o < max (1], ..., |zn]).

Following [Gondhalekar er al., 20091, we define two core
concepts for MPC, namely feasibility and stability.

Definition 1. (Feasibility) A MPC controller is recursively
feasible iff for any feasible initial state, the actual state
{q(t),t>0} computed by the controller at every collabo-
ration instant satisfies the collision avoidance specification
h(q(t))<0.

The definition requires the collision avoidance specifica-
tion to be met at every control instant, as mentioned in [Gond-
halekar e al., 2009]. This definition of feasibility is sufficient
to assure that the trajectory satisfies the collision avoidance
specification everywhere, if the density of the collaboration
points is high enough. Let us assume there exist two robots
whose sampling points are disjoint but whose trajectories in-
tersect at one point (*). Provided that the interval of sampling
points is small enough, the assumption indicates that we find
a case that a discrete sequence of samples is unable to capture
all the information from a continuous-time signal (the trajec-
tories), which clearly contradicts with the Nyquist-Shannon
sampling theorem. Thus, the assumption (*) cannot be true.

Definition 2. (Stability) A MPC scheme is stable iff starting
from any feasible initial state, the state sequence {q(t)}2,
computed by the MPC controller converges to the goal state
and the input sequence of each subsystem {u;(t)};2,, for
i=1,..., N, converges to zero.

We shall now formulate the navigation control problem.
Problem 1. Given a multi-robot system S, where

o the i-th robot has the kinematic model described as in
(1a) (1b) and its input constraint described as in (2);

e S has an initial state q(0) = [q1(0), ..., qn (0)]7;
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e S has a goal state ¢ = [q}, ..., dx]T;
e the collision avoidance specification is given as in (4),

determine a control strategy to generate the input sequence
U; (k) for the i-th robot, i=1, ..., N, at each collaboration in-
stant k, so that the state of S is transformed from q(0) to ¢,
with the satisfaction of feasibility and stability.

3 Hierarchical Model Predictive Control

To implement a MPC control strategy for a multi-robot sys-
tem S, we give the function I(g(k|t), @(k|t)) to denote the cost
at the collaboration instant 7+k that is predicted at ¢:

Uq(k[t), a(k[t)) =lq(q(k[t)) + lu(a(k[t));
lq(q(k|t)) = max, (| (Cans(ai (k[t) — ai)]], +

maX
1<i,5<

|Gl kle) = a5 (k1)) = (af = )|

ch i (k[t)]],

The total cost [ consists of the state cost [, and input cost ,,
where the state cost [, is the metric of the absolute error and
relative error of states, the input cost [, is the input metric
referring to fuel consumption. Note that each function anno-
tated with ...|¢ in their argument denotes a value predicted at
t. For instance, q;(k, k;|t) is similar to ¢; (k+t, k;) that we have
seen in Equation (1a), except that this is not the actual value
at k+t+k; for the i-th robot, but a value predicted at ¢. Note
that (-);(k|t) is short for (-);(k,0|t). Similarly for the whole
multi-robot system, the notation (-)(k|¢) denotes the predic-
tive value at the (#+k)-th collaboration instant computed at
time ¢. Caps (resp. Cir) is the weighting factor of the absolute
(resp. relative) error, and C, is the weighting factor of the
input. For different navigation scenarios, their values can be
different. p is a constant and usually assigned 1, 2 or co. Note
that when p = 1 or o, [ is linear. When p = 2, [ is quadratic.

The HMPC scheme works as follows. It computes the
reachable set function of each robot off-line in advance, pa-
rameterized with state variables. At each collaboration in-
stant, the central controller obtains the reachable set of each
robot by instantiating the reachable set function with the cur-
rent state of the robot. It then calculates the control goal
that each robot should reach at the next collaboration instant.
Upon receiving its desired control goal, each robot then uses
its own local controller to find inputs that drive itself from the
current state to the desired goal. Compared with CMPC, the
central controller in HMPC solves a much smaller problem by
using the reachable set. The computation of inputs for each
robot also gets an acceleration as they are performed in paral-
lel. The stability and feasibility of HMPC are ensured by the
calculation of goals of all robots.

Uk\t

3.1 Computation of the Reachable Set Function

The reachable set of a robot describes the region that it can
reach at the next collaboration instant from the current state.
For alinear discrete-time time-invariant system, the reachable
set is a set-valued function of the initial state, which we refer
to as the reachable set function, and can be computed.

We first define what we mean by a reachable set.
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Definition 3. The m-step reachable set R;(q;(t), m) of the i-
th robot is defined as the set comprising all states that the i-th
robot can reach in m local steps from the state ¢;(t).

We need to compute the reachable set function in a collab-
oration cycle of each robot, i.e. R;(¢;(t), K;),s=1,---,N.
For the dynamic model of the i-th robot specified by
Equation (1a), (1b), (2). Recall that
= Ai(Ai qi(k, Ki—2) + Biui(k, Ki—2))
+ B; uq(k, Ki—l)

Ki—1

(A5 (k) + 3 (A" Byu(h,p),
p=0

ui(k,p) € Us,p =0, ...

,Ki—1

Notice that (A;)% =P~ Byu;(k,p), ui(k, p) € U; is a convex
polytope.  So 3701 (Ai) P Bouy(k, p), wi(k, p) € Us is
actually the Mlnkowskl sum of K;—1 convex polytopes. It
is also a polytope [Gritzmann and Sturmfels, 1993], and
can be computed by the multi-parametric toolbox [Herceg
et al., 2013], which is the K;-step reachable set from the
origin, i.e. R;(0, K;). Then we have the reachable set function

Ri(i(k), ki) = {a: (¢ — (A)"*qi(k)) € Ri(0, Ki)}.

3.2 The HMmPC Scheme

The HMPC consists of two successive steps.

Compute the target states
At a collaboration instant #, the central controller collects the
current state ¢(t) and solves the following optimization prob-
lem so as to find the states leading to a minimal total state
cost (including a terminal cost /) while satisfying the corre-
sponding constraint system:

H-1
Ji(q(t)) = lo(q(klt)) +1 H|t
(a) £ guin, 5 to(alklt) + b (a(aT1)
k>0, i=1,..,N,
h(gq(klt)) <0, k=1,..,H-1,
qa(H|t) € Qr,q(0]t) = q(t)
where Q(H|t) £ q(1|t), ..., q(H]|t) is a feasible solution of the
optimization problem (5). Let Q*(H|t) = ¢*(1]t), ..., ¢* (H|t)

denote the optimal solution. The first sample ¢*(1|t) will be
used as the desired states ¢(¢t+1) at the instant ¢+1.

q(t+1) = ¢ (1]t)

For the vector g(t41) = [q1 (t+1), ..., gn (t+1)]%, its i-th ele-
ment g;(t+1) specifies the objective state of the i-th robot at
the collaboration instant ¢+1. Thus, we refer to ¢(¢+1) as the
control goal at the instant ¢+1.

Compute the inputs

At the collaboration instant ¢, the local controller of the i-th
robot receives the control goal ¢;(t+1) and solves the follow-
ing optimization problem, which minimizes the total input



cost, ensuring the robot can drive to the state ¢;(t+1) from
q;(t) in the t-th collaboration cycle.

T @(0)0:(+1) £ min 1 (as(6)
s.t. qi(t,k¢+1) :Aiqi(t,ki) +Bz~ui(t, ki),
0<k <Ki—1, 6)
with  qi(t+1) = qi(t, Ki),
ui(t7 kl) S Z/{Z', 0<k <K;—1

The optimal solution @} (¢) is the actual input sequence ;(¢)
for the i-th robot in the next collaboration cycle: @;(¢)=u; (¢).

The overall HMPC scheme for the navigation control of a
multi-robot system S is summarized as follows:

1. Let # denote the current collaboration instant: 7 := 0.

2. The central navigation controller measures the current
global state g(¢) at the 7-th collaboration instant. If ¢(t)
is the goal state ¢, end; else, move on to the step 3;

The central controller solves the optimization problem
(5) and obtains the optimal solution Q* (H |t);

Each element of the first sample ¢*(1]t) of Q*(H|t) is
transferred to the corresponding robot as the control goal
for the next instant ¢t+1;

Upon receiving the control goal ¢;(t+1), the dynamic
controller of the i-th robot solves the optimization prob-
lem (6) to obtain the optimal solution @; (¢),: =1, ..., N;
6. The i-th robot applies input sequence @; (¢), i=1, ..., N.
7. Increase t: t := t+1. Go to the step 2.

4 Feasibility and Stability

Consider the HMPC optimization problems (5) and (6). Note
that as long as the control goal of the i-th robot is determined
by (5), the solution of (6) ensures that the control goal is
achieved. It implies that the feasibility of HMPC is deter-
mined by its central controller. Since the central controller
knows the complete state of the whole system and solves
the optimization problem that contains the complete collision
avoidance specification, feasibility is automatically assured.

Theorem 1. The HMPC scheme is feasible.

Stability is a key issue in MPC. The terminal constraint set
and cost function methods are widely used to ensure the sta-
bility of traditional MPC approaches. Different terminal con-
straint sets and cost function methods may differ from each
other in the setting of parameters, but they share the same
basic idea — that is to make the optimal cost sequence com-
puted at all sampling instants (the collaboration instants in
our setting) monotonically decreasing and convergent to ori-
gin. Based on the idea, a sufficient condition is given for MPC
stability [Mayne et al., 2000]: a MPC is stable, if its chosen
parameters (namely, a terminal cost [z, a terminal constraint
set O and a controller function «(-)) satisfy:

Al ¢'€Q; : Oy C {q|h(q) < 0}, Oy closed

A2 Vq(t)€Qy: r(q(t) €U

A3 Vg(t)eQy: gt +1) € of

A4 Vq(t)eQy: Lu(q(t+1)—lu(q(t))<—1(q(t), u(t))

where ¢(t + 1) denotes the state at ¢+1 computed from ¢(¢)
and the input x(q(t)).
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Intuitively they signify that : Q; satisfies the collision
avoidance constraints (A1), the input generated by the con-
troller « satisfies the input constraints (A2) and makes the
state g(¢t+1) to stay in Qs (A3), and that the terminal cost
monotonically decreases from ¢(t) to q(t+1) in Qf (A4).

Since centralized MPCs (CMPCs) deal with the multi-robot
system as a whole, the above-mentioned sufficient condition
ensures the stability of CMPCs. In what follows, we show that
any setting of parameters that meet the properties (A1-A4 in
a specified CMPC) can also ensure the stability of HMPC.

Theorem 2. If a given set of parameters L, Qy, ¢ (-) satisfy
assumptions (Al-A4) for a specified CMPC, the same param-
eter setting also ensures the stability of HMPC.

Proof. Treating the multi-robot system as a whole like
CMPC, we construct the following CMPC problem:

A
= H
J(q( U?}iﬂ) l (k[t), a(k|t)) + Lu (q(H|t)))
s.t. q(k—|—1|t) Aq(k:|t)—|—Bu(k|t), k=1,...H-1, o
a(klt) €Uy x ... xUn, k=1,...,H-1,
h(qee) <0, k=1,.., H—1,
q(0[t) = q(), Q(Hlt) €9y,
where
a1 AF17 BBy
aRN ARNT By BN

Provided that 15, O, k4 (-) satisfy assumptions (A1-A4) for
(7). We need to prove lx, Qf, ks(-) satisfy (A1-A4) for (5).

Note that (1) is equivalent to the reachable set expression
in the optimization problem (5). So the difference between
two problems (7) and (5) is the absence of the input cost [,, in
(5). So Al, A2 and A3 are obviously satisfied for (5). A4 is
satisfied for (5) due to that we have Yq(t) € Qy,

Lr (q(t + 1)(q(t), r(q(t))) — L (a(t))

< l((q(t) u(t)) (A4 holds for (7))
= —lq(q(t)) — lu(u(t)) (defn of cost func.)
< —lq(q(1)) (lu(@) = 0,Vi)

Notice that each robot is ensured by (6) to reach its con-
trol goal computed by the central controller in each collab-
oration cycle. Stability provided by the central controller in
turn guarantees that the HMPC scheme is stable. O

5 Simulations

We have implemented the proposed HMPC and other MPC
schemes, including centralized MPC (CMPC), basic dis-
tributed MPC BDMPC) ([Keviczky et al., 2004b], sequential
distributed MPC (SDMPC) [Kuwata and How, 20111, and it-
erative distributed MPC (IDMPC) [Mercangéz and Doyle III,
2007]. We conduct a number of simulations in the multi-robot
navigation problem, and compare them in terms of effective-
ness and efficiency. Notably, the problem studied here in-
volves non-convex constraints and the neighbourhood topol-
ogy of each robot can change at any collaboration instant,
and none of the above-mentioned distributed approaches can
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(a) HMPC (b) CMPC (c) BDMPC (d) SDMPC (e) IDMPC
Figure 1: Trajectories of robots in the stationary formation scenario
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Figure 2: Trajectories of robots

guarantee the stability and feasibility for such a problem.
While we currently do not consider stationary obstacles and
constraints on robots’ states, they can be incorporated into
HMPC using coordination constraints in the same way as col-
lision avoidance constraints.

5.1 Stationary Formation

Let us consider two scenarios, namely stationary formation
and moving aggregation, with 6 robots to compare the effec-
tiveness of these MPC schemes. We simulate the five MPC
schemes and report some interesting results.

The parameter setting in the simulation is as follows. First,
the sampling interval of i-th robot is defined:

0.075, imod3 =1,
sampling interval of i-th robot = < 0.1, imod3 =2,
0.15, imod3 =0.

The dynamics (specified by Eq. (1a), (1b)) of the i-th robot
is obtained by discretizing a double integrator at its sampling
frequency. The input constraint of the i-th robot is:

Ui ={u:|ul < [2,2]T}
The safety distance is ds = 0.6. In practice, most works
[Rawlings and Muske, 1993; Sznaier and Damborg, 1987]
advocate choosing the horizon H online or big enough so
that the optimal state q(H |t) obtained by solving problem (5)

without the terminal constraint actually satisfies g(H|t) € Q.
Also, a large enough weight of [ can ensure Assumption A4
to be met. Accordingly we give the configuration of parame-
ters to make CMPC stable (hence, so is our HMPC):

lu(q) = 10l,(q); Qp=R'; H=9

p = 2inthe cost function, i.e. [ is quadratic. Other parameters
will be chosen differently for each scenario.

in the moving aggregation scenario

To simulate the two scenarios, (5) can be rewritten as mix
integer programming and we use the CVX - a Matlab-based
package - [CVX Research, 2012; Grant and Boyd, 2008] for
solving optimization problems in multiple MPC schemes.

Stationary formation is a basic navigation scenario, where
each robot moves from a stationary initial position to a sta-
tionary goal position. From the initial states of the robots, we
intuitively assume robot i has neighbour i-/ and i+/. Weight-
ing factors in the cost function are chosen to be

Cabs = C’rel = ]47 Cu = 00112

where I,, € R™ denotes the n-dimension identity matrix.

We show the trajectories computed by five MPC schemes
in Fig 1. Blue *’s denote the initial positions, black x’s denote
the goal positions, and other shapes denote the trajectories of
robots respectively. CMPC and HMPC successfully complete
the formation, as shown in Fig 1b and 1a. BDMPC also fin-
ishes the simulation while SDMPC and IDMPC fail.

In the simulation of SDMPC, as shown in Fig 1d, the dis-
tance between the /st robot and the 5th becomes 0.5371 at the
7-th collaboration instant, which is less than the given safety
distance 0.6. The reason is due to the assumption that the
neighbourhood topology for each robot remains unchanged
in DMPC schemes [Keviczky et al., 2004al. The topology
structure seems appropriate in the beginning of the simula-
tion. However, we can see that at the 7-th collaboration in-
stant, the /st robot and the 5th robot become neighbours. The
unexpected change of the topology structure causes such a
feasibility problem. A potential improvement is to update the
topology structure at each collaboration instant. Notably, it
cannot settle the problem as the topology may even change
unexpectedly when robots are predicting their future actions.

In the simulation of IDMPC, as shown in Fig le, the robots
cannot even make the first step. Actually, at the first collab-
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oration instant, the prediction for the 3rd robot in the 2nd
iteration is infeasible, which means no feasible solution ex-
ists when the 3rd robot receives the corresponding prediction
values from its neighbours. Since each robot predicts its own
dynamics only based on its neighbours, the choice made by
some robots may be too aggressive for others.

5.2 Moving Aggregation

Moving aggregation is relatively complex since the initial and
goal velocities are both non-zero, where the goal states indi-
cate that the desired formation is an arrow shape. In detail, the
initial and the goal velocity vectors of each robot are [0, —1]
and [1,0], respectively. The topological matrix remains the
same as the stationary aggregation scenario. Different from
the stationary formation, the moving aggregation scenario ex-
cludes the goal position from the cost function by setting the
weighting factor of absolute position to 0:

0 0

Cabs = I:O [2

} , Crei=1I1, Cy=0.01ls.

The trajectories computed by five MPC schemes are
shown in Fig 2. CMPC and HMPC still successfully com-
plete the formation as shown in Fig 2b and 2a. However, only
SDMPC finishes the simulation among three DMPCs.

In the simulation of BDMPC, as shown in Fig 2c, the dis-
tance between the 4th and 5th robots becomes 0.5823 at the
5th collaboration instant, which is less than the given safety
distance 0.6. The reason is that in BDMPC, the i-th robot
only computes its action and predicts the behavior of its
neighbours once at a collaboration instant. However, these
neighbours often make different choices from what the i-th
robot predicts since they may have different neighbourhoods.
When two adjacent robots both make wrong predictions on
each other’s behavior, a collision may occur.

In the simulation of IDMPC, as shown in Fig 2e, the robots
cannot make the first step. This time, at the first collabora-
tion instant, the iteration process cannot stop since it is non-
convergent. In fact, the iteration process runs for 30 minutes
and the number of iterations is more than 90 before we stop
it, while CMPC and HMPC both take less than 10 seconds at
each collaboration instant. Although IDMPC can work well
in the scenarios where constraints are all convex, it still needs
further study to ensure the convergence of its iteration process
in the scenarios with non-convex constraints.

Overall, the simulation in two scenarios shows that HMPC
is as effective as CMPC, while most popular DMPC schemes
have some troubles for the problem.

5.3 Efficiency

We simulate the stationary formation scenario with differ-
ent numbers of robots N=3,6,9, 12,15, 18, 21, 24 for the effi-
ciency comparison purpose. We set p = 1 in the cost function,
i.e. [ is linear. The performance of multiple MPC schemes is
intuitively presented in Fig 3. Only if a MPC scheme finishes
a certain simulation scenario, the average computation time
at each collaboration instant in terms of the scenario is plot-
ted. Although BDMPC is faster in the first two small-scale
problems, few DMPC schemes can finish the simulation due
to various problems encountered, including what we have dis-
cussed in the previous sub-section. HMPC and CMPC are the
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only two survivors under all the scenarios. It is empirically
verified that HMPC is more efficient than CMPC from Fig 3.

103

HMPC
— 8 —CMPC

—-+-— BDMPC

SDMPC

% _IDMPC

Average Computation Time at Each Step (s)

9 12 15 18 21 24
Number of Robots

6

Figure 3: Performance of five control strategies. The incom-
plete lines are due to the method failure in complex scenarios.

The principle behind is more worthy of discussion. Since
there has been no explicit conclusion on complexity of Mixed
Integer Programming so far, we conduct the complexity anal-
ysis based on the number of variables and constraints used by
CwMmPcC and HMPC. By replacing the state equations and input
constraints, input variables and intermediate state variables
treated by a central controller in CMPC with the reachable set,
the problem computer by the centralized controller of HMPC
is much simpler. Furthermore, the optimization problem in
each robot restricts to local state equations and input con-
straints in HMPC, whose scale is small. And all the problems
are solved concurrently. So it is not surprised that HMPC re-
quires much less time than CMPC.

When applied to real world problems, if the time given
to the controller synthesis is too short, similar to existing
heuristic-search methods, HMPC will let robots stop and wait
at each collaboration instant, until the controller is derived.
Also, the computation time can be further reduced by remov-
ing certain constraints in the central optimization problem.
For example, collision avoidance constraints between robots
that are not close to each other may be safely removed.

6 Conclusion

We propose a hierarchical Model Predictive Control (HMPC)
for the navigation problem of linear dynamical multi-robot
systems with no reference trajectory. Using reachable set
function computed off-line, our proposed HMPC scheme can
successfully decouple constraints in objective functions and
constraints, thus allowing computation to be distributed to the
local controller of each robot and to run in parallel. There-
fore, HMPC is computationally more efficient than CMPC as
evidenced by our simulation. On the other hand, while the
DwmPC schemes cannot always ensure feasibility and stability,
HMPC can guarantee its feasibility and stability in the same
way as CMPC, therefore can be more viable, which is also
evidenced by our simulation. In essence, the proposed HMPC
combines the merits from both CMPC and DMPC schemes.
An immediate future work is to expand HMPC for multi-robot
systems with non-linear dyamics.
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