
In Search of Tractability for Partial Satisfaction Planning

Michael Katz
IBM Watson Health, Israel

katzm@il.ibm.com

Vitaly Mirkis
Huawei Technologies, Israel
vitaly.mirkis@huawei.com

Abstract

The objective of partial satisfaction planning is to
achieve an as valuable as possible state, tacking
into account the cost of its achievement. In this
work we investigate the computational complex-
ity of restricted fragments of two variants of partial
satisfaction: net-benefit and oversubscription plan-
ning. In particular, we examine restrictions on the
causal graph structure and variable domain size of
the planning problem, and show that even for the
strictest such restrictions, optimal oversubscription
planning is hard. In contrast, certain tractability re-
sults previously obtained for classical planning also
apply to net-benefit planning. We then partially
relax these restrictions in order to find the bound-
ary of tractability for both variants of partial sat-
isfaction planning. In addition, for the family of
0-binary value functions we show a strong connec-
tion between the complexity of cost-optimal classi-
cal and optimal oversubscription planning.

1 Introduction
While in classical planning the concern is solely around the
cost of achieving all goals, in partial satisfaction planning
the restriction is relaxed, allowing to achieve only some of
the goals. This comes not without a price, resulting in an
empty plan being a trivial valid solution and requiring to aim
at achieving as large as possible value. However, the cost of
achieving these values must also be accounted for. In net-
benefit planning, the cost of achieving the values and the val-
ues themselves are assumed to be comparable and the objec-
tive is to maximize the achieved goals value minus the cost
of its achievement. Net-benefit planning was shown to be
PSPACE-complete [Briel et al., 2004] and to have a practical
mapping to classical planning [Keyder and Geffner, 2009].
A complexity investigation for restricted fragments of net-
benefit planning was recently performed [Aghighi and Jons-
son, 2014; Aghighi and Bäckström, 2015], focusing on PUBS
fragments [Bäckström and Nebel, 1995]. Further, Aghighi
and Jonsson (2014) in their discussion suggest that it might
be possible to obtain tractable fragments of net-benefit plan-
ning by restricting the causal graph structure.

In oversubscription planning the cost of achieving the val-
ues and the values themselves are not assumed to be com-
parable. To take the cost into account, a bound on the cost
or a budget is introduced [Smith, 2004], and the objective is
to maximize the achieved goals value, while the cost is con-
strained by the given budget. While heuristic search has been
playing a significant role in the progress of both cost-optimal
classical and net-benefit planning, optimal oversubscription
planning remained almost completely untouched. A signifi-
cant performance improvement for optimal oversubscription
planning was reported for the first time almost a decade af-
ter the oversubscription planning problem was initially intro-
duced [Mirkis and Domshlak, 2013], exploiting a heuristic
search approach with admissible heuristics based on the ex-
plicit abstraction paradigm [Edelkamp, 2001]. The abstract
oversubscription planning problems, tractable due to their
small size, were then additively composed to derive infor-
mative admissible estimates. The reported heuristic perfor-
mance, compared to the baseline algorithm, in some cases,
reduced the search space by three orders of magnitude.

The success of exploiting polynomial complexity frag-
ments for deriving admissible estimates for optimal oversub-
scription planning was not surprising, as in the classical plan-
ning literature the picture was virtually the same. However, in
contrast to both classical and net-benefit planning, oversub-
scription planning remains completely unexplored in terms
of complexity analysis. Optimal oversubscription planning is
PSPACE-complete even when severely restricting the value
function, as a result of a straightforward reduction from cost-
optimal classical planning. Even this result, however, to the
best of our knowledge does not appear in the literature.

To alleviate this gap, we investigate the tractability of both
optimal oversubscription and net-benefit planning for certain
classes of problems specified by their causal graph structure
and variable domain sizes [Helmert, 2004; Katz and Domsh-
lak, 2010]. Focusing on a most common class of value func-
tions, we show that the most structurally restricted fragments
are weakly NP-complete for optimal oversubscription plan-
ning and polynomial for optimal net-benefit planning. We
continue by relaxing the structural restriction and describe
a boundary of tractability for both net-benefit and oversub-
scription planning. Furthermore, for a restricted class of
value functions, we present a generic result relating tractable
fragments of oversubscription and classical planning. We

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3154

conclude by summarizing our results and presenting future
research directions. We find that net-benefit versions of
tractable cost-optimal planning problems tend to be tractable
as well, while complexity results for oversubscription prob-
lems carry over only in the presence of certain limiting as-
sumptions concerning the value function.

2 Background
In line with the SAS+ formalism for deterministic plan-
ning [Bäckström and Klein, 1991; Bäckström and Nebel,
1995], a planning task structure is given by a pair hV,Oi,
where V is a set of n finite-domain state variables, and O is
a finite set of operators. Each complete assignment to V is
called a state, and S = dom(v1)⇥ . . .⇥dom(v

n

) is the state
space of the structure hV,Oi. A partial assignments to V is
called a partial state. Each operator o is a pair hpre(o), e↵(o)i
of partial states called preconditions and effects, respectively.
Denoting by V(p) ✓ V the subset of variables instantiated
by a partial state p, operator o is applicable in a state s iff
s[v] = pre(o)[v] for all v 2 V(pre(o)). Applying o changes
the value of each v 2 V(e↵(o)) to e↵(o)[v]. The resulting
state is denoted by sJoK; by sJho1, . . . , okiK we denote the
state obtained from sequential application of the (applicable
in turn) operators o1, . . . , ok starting at state s.

The causal graph of a planning task structure hV,Oi is a
digraph CG = hV,Ei over the set of nodes V that contains
an arc (v, v0) iff v 6= v0 and both v 2 V(pre(o)) [V(e↵(o))
and v0 2 V(e↵(o)) for some o 2 O. The domain transition
graph DTG(v) of a variable v 2 V is an arc-labeled digraph
with nodes dom(v) that contains an arc (#,#0

) labeled with
pre(o) \ pre(o)[v] iff e↵(o)[v] = #0 and either pre(o)[v] = #
or v 62 V(pre(o)).

In classical planning, a planning task ⇧ = hV,O; s0, G, Ci
extends its structure with an initial state s0 2 S, a goal spec-
ification G, typically modeled as a partial state, and an oper-
ator cost function C : O ! R0+. An operator sequence ⇡ is
called a plan if it is applicable in s0, and G ✓ sJ⇡K. A plan is
optimal if the sum of its operator costs is minimal among all
plans. The objective in classical planning is to find a plan of
as low cost as possible, with optimal classical planning being
devoted to searching for optimal plans only.

The causal graph of the planning task ⇧ is the causal
graph of its structure. In this paper we investigate several
previously studied causal graph structures, exampled in Fig-
ure 1. First, fork and inverted fork structures are directed
graphs G = (N,E) such that there exists a node r 2 N
for which (u, v) 2 E () u = r, if the structure is
a fork, and (u, v) 2 E () v = r, if the structure
is an inverted fork. We refer to planning problems whose
causal graphs are (inverted) forks as (inverted) fork structured
planning problems. Optimal planning has been shown to be
tractable for fork structured planning problems if |dom(r)| =
2 and NP-complete for |dom(r)| > 2. For inverted fork
structured planning problems optimal planning is tractable
for any |dom(r)| 2 O(1)

[Katz and Domshlak, 2010;
Katz and Keyder, 2012]. Another previously studied structure
is a polytree. A polytree is a directed graph whose underlying
undirected graph is a tree. Plan generation for problems with

(a) (b) (c)

(d) (e)

Figure 1: Causal graph structures: (a) fork, (b) inverted fork,
(c) polytree, (d) semifork, and (e) hourglass.

polytree casual graphs and binary variable domains is NP-
hard, but becomes tractable when imposing a constant bound
on causal graph in-degree [Brafman and Domshlak, 2003;
Giménez and Jonsson, 2008]. Moreover, imposing this re-
striction makes even optimal planning tractable [Katz and
Domshlak, 2008a]. Alternatively, restricting the operators
to have at most one precondition also makes optimal plan-
ning for binary polytrees tractable [Katz and Domshlak,
2008a]. Lastly, a semifork structure consists of a fork struc-
ture, and the remaining nodes, called a hat, have edges either
among themselves or to the root of the fork (called a cen-
ter), and hourglass structure consists of both a fork and an
inverted fork rooted at the same variable (also called a cen-
ter). Semiforks with binary center variable domain and con-
stantly bounded hat and hourglasses with binary center vari-
able domain and operators with at most one precondition are
tractable for optimal planning [Katz and Keyder, 2012].

2.1 Oversubscription Planning
In contrast to classical planning, an oversubscription plan-
ning task ⇧ = hV ,O; s0, C , u, bi extends its structure with
four components: an initial state s0 2 S and an operator
cost function C : O ! R0+ as above, plus a succinctly
represented and efficiently computable state value function
u : S ! R0+, and a cost budget b 2 R0+. An opera-
tor sequence ⇡ is called a plan if it is applicable in s0, andP

o2⇡

C(o)  b; by ˆu(⇡) we refer to the value of the end-
state of ⇡, that is, ˆu(⇡) = u(s0J⇡K). While an empty operator
sequence is always a plan, the objective in oversubscription
planning is to find a plan that achieves an as valuable state as
possible, and optimal oversubscription planning is devoted to
searching for optimal plans only: A plan ⇡ is optimal if ˆu(⇡)
is maximal among all the plans.

In what follows, we mostly focus on additive state value
functions, computed as a sum over the state variables u(s) def

=P
v2V

u(s[v]). However, in some cases a value function can
be given explicitly. One such special case is the so-called
0-binary value function, with its image restricted to at most
2 values [Domshlak and Mirkis, 2015]. Originally, 0-binary

3155

value functions were used in the context of explicit abstrac-
tions, and were defined on a small set of explicitly stated ab-
stract states. We extend the definition to general oversub-
scription planning tasks, however restricting ourselves to 0-
binary value functions compactly represented by a set of par-
tial states with non-zero values.

2.2 Net-Benefit Planning
Similarly, a net-benefit planning task ⇧ = hV ,O; s0, C , ui
extends its structure with three components: an initial state
s0 2 S, an operator cost function C : O ! R0+, and a
succinctly represented and efficiently computable state value
function u : S ! R0+, as above. An operator sequence ⇡ is
a plan if it is applicable in s0. The cost of a plan is defined
as a sum of its operators costs, and the value is defined by the
value of the reached state. The objective of net-benefit plan-
ning is to find a plan that maximizes the difference between
its value and its cost.

2.3 The Knapsack Problem
In what follows we will exploit two variants of the so-called
knapsack problem. The first variant is the 0-1 knapsack prob-
lem. Given n items to pack in some knapsack of capacity c,
each with a profit p and a weight w, the problem is to choose
which items to pack, such that the profit sum is maximized
without having the weight sum exceed c. The second vari-
ant is the multiple choice knapsack problem. Given k classes
N1, . . . , Nk

of items to pack in some knapsack of capacity
c. Each item j 2 N

i

has a profit p
ij

and a weight w
ij

, the
problem is to choose one item from each class such that the
profit sum is maximized without having the weight sum ex-
ceed c. Both 0-1 and multiple choice knapsack are NP-hard,
but both can be solved through dynamic programming in time
polynomial in the problem description size and in the unary
representation size of c [Dudziński and Walukiewicz, 1987].

3 Oversubscription Planning
In what follows we present a tractability analysis of the op-
timal oversubscription planning for fragments characterized
by variable domain size and causal graph structure.

3.1 Additive State Value Function
Focusing on the additive state value functions, we start with a
discouraging result, even for a severely structurally restricted
fragment.

Theorem 1 Optimal oversubscription planning for tasks
with additive state value function, binary variable domains,
and a causal graph with no edges, is weakly NP-complete.

Proof: Membership in NP: cheapest plans are never re-
quired to change the value of any variable more than once,
since all variables are independent of each other. The proof
of hardness is by reduction from the 0-1 knapsack prob-
lem. Given items N , with a profit p

i

and a weight w
i

, for
i 2 N , and a capacity c, the oversubscription planning prob-
lem ⇧ = hV ,O; s0, C , u, bi is defined as follows. The vari-
ables V = {v

i

| i 2 N}, each with domain {0, 1} represent

the items N . The initial state consists of all variables having
the value 0. The value function u is defined to be p

i

for the
value 1 of variable v

i

, and 0 otherwise, and the bound b is c.
The operators O = {o

i

| i 2 N} with pre(o
i

) = {v
i

= 0},
e↵(o

i

) = {v
i

= 1}, and C(o
i

) = w
i

, changing each vari-
able from its initial value, with the cost equal to the weight
of the item. A solution to the optimal oversubscription plan-
ning problem corresponds to the solution for the 0-1 knapsack
problem and vice versa.

While the result sounds extremely discouraging, recall that
the knapsack problem can be solved through dynamic pro-
gramming in time polynomial in the problem description
size and in the unary representation size of c, or a pseudo-
polynomial time. Thus, in what follows, we search for a
boundary of weak-NP-completeness. The first fragment of
oversubscription planning we consider is a fork-structured
causal graph with binary root domain and an additive state
value function.

Theorem 2 Given an oversubscription planning task ⇧ =

hV ,O; s0, C , u, bi with an additive state value function and
a fork causal graph rooted at r 2 V , if |dom(r)| = 2, then an
optimal plan for ⇧ can be found in time polynomial in ||⇧||
and the unary budget representation.

Proof: Let succ = V \ {r} denote the leaf variables of ⇧.
Observe that the fork structure of the causal graph CG(⇧) im-
plies that all the operators in ⇧ are unary-effect, and each leaf
variable v 2 succ preconditions only the operators affecting
v itself.

First, for |dom(r)| = 2, the algorithm below is based on
the following three properties satisfied by the cheapest plans
⇡ for ⇧ among those that achieve the same value. In what
follows, we restrict our attention to cheapest plans only.

(i) For any leaf variable v 2 succ, the path ⇡ #
v

from
s0[v] induced by ⇡ in the domain transition graph of
v, DTG(v), is either cycle-free or contains only zero-
cost cycles. This is the case because otherwise all the
nonzero-cost cycles can be eliminated from ⇡#

v

while
preserving its validity, violating the assumption that ⇡
is cheapest among those that achieve the same value.
Without loss of generality, in what follows we assume
that this path ⇡#

v

in DTG(v) is cycle-free; in the case of
fork causal graphs, we can always select a cost-minimal
⇡ that satisfies this requirement for all v 2 succ. Thus,
we have |⇡#

v

|  |dom(v)|� 1.
(ii) Having fixed a sequence of value changes of r, the

fork’s leaves become mutually independent; that is, our
ability to change the value of one does not affect our
ability to change the value of any of the others.

(iii) Because r is binary-valued, if v 2 succ is the “most de-
manding” leaf variable in terms of the number of value
changes required from r by the operator preconditions
along ⇡#

v

, then these are the only value changes of r
along ⇡, except for, possibly, a final value change to ob-
tain a different value of r. Thus, in particular, we have
|⇡#

r

|  max

v2succ

|dom(v)|.

3156

From (iii), it is sufficient to go over the polynomial num-
ber of value changing sequences of the root variable r, finding
for each such sequence the best plan in which the root vari-
able performs exactly that sequence. Thus, in what follows,
assume that � is the sequence of value changes performed by
the root variable r. From (ii), all other variables become mu-
tually independent. Thus, for v 2 succ, and for each domain
value # 2 dom(v), let ⇡�

v

(#) denote the cheapest sequence
of operators that corresponds to a path in DTG(v) from the
initial value s0[v] to # that can be achieved under the support
of �. In other words, ⇡�

v

(#) can be extended by � to a plan
for the task obtained by projecting away all other successors
of r. Since finding such a sequence corresponds to solving
oversubscription planning optimally for a planning task with
2 variables, all such sequences for all domain values can be
obtained in polynomial time.

We now construct a multiple choice knapsack MK(�)
problem as follows:

• For each state variable v 2 succ we have a class N
v

=

{# 2 dom(v) | u[v](#) > 0}[{s0[v]} of items to pack.
• The weight of each item # 2 N

v

is the cost of ⇡�

v

(#).
• The profit of each item # 2 N

v

is the value u[v](#).
• The overall capacity c is set to be b�C(�), where C(�) is

the cost of a cheapest sequence of operators performing
the sequence of changes � of the variable r.

Solving the multiple choice knapsack MK(�) problem opti-
mally results in one value #

v

2 N
v

✓ dom(v) being selected
for each v, maximizing the summed value such that the sum
of the costs of the cost-minimal paths from s0[v] to #

v

is un-
der the capacity b � C(�). A corresponding plan ⇡

�

is then
constructed by appending the cost-minimal paths ⇡�

v

(#
v

) be-
tween the r-changing operators, constructing a cost-minimal
path from s0[v] to #

v

for each v. Note that the plan ⇡
�

achieves the maximal value among all plans in which the
value changes of r are exactly �. The cost of the resulted plan
⇡
�

is thus C(⇡
�

) = C(�) +
P

v2succ

C(⇡�

v

(#
v

))  b. Going
over the polynomial number of possible sequences �, we can
now find the plan that achieves the maximal value among all
the plans ⇡

�

.
It is straightforward to verify that the complexity of the

above procedure equals to the complexity of the multiple
choice knapsack problem, which can be solved in time poly-
nomial in the problem description size and in the unary repre-
sentation size of c. Since c  b, the complexity of the above
procedure is polynomial in ||⇧|| and the unary representation
size of b. To prove correctness, we show that the plan ⇡0 re-
turned by the procedure for the task ⇧ satisfies ˆu(⇡0

) � ˆu(⇡)
for some optimal plan ⇡ for ⇧. Given an oversubscription
planning task ⇧, let ⇡ be an optimal plan for ⇧ with C(⇡)  b
and all ⇡#

v

for the leaf variables v being cycle-free. Let � be
the corresponding sequence of value changes of r. It is suffi-
cient to show that for the plan ⇡

�

found by our algorithm we
have ˆu(⇡

�

) � ˆu(⇡). For each v 2 succ, we have ⇡#
v

cor-
responding to a path in DTG(v) from the initial value s0[v]
to #

v

= s0J⇡K[v] that can be achieved under the support of
�. Thus, C(⇡#

v

) � C(⇡�

v

(#)), the cheapest such path. There-
fore, the collection {#

v

| v 2 succ} is a (not necessarily

optimal) solution to the multiple choice knapsack problem.
Thus,

P
v2succ

u(s0J⇡K[v]) 
P

v2succ

u(s0J⇡�

K[v]). Since
the root value for the resulting state for ⇡ is the same as for
⇡
�

, we thus have ˆu(⇡)  ˆu(⇡
�

), as desired.

Since additive state value functions may be used for en-
coding classical planning goals, hardness results from classi-
cal planning can be translated into corresponding results for
oversubscription planning. In particular, relaxing the restric-
tion on the root variable domain size causes the cost-optimal
classical planning fragment become (strongly) NP-complete
[Katz and Keyder, 2012], giving us the corresponding result
for oversubscription planning.

Theorem 3 Optimal oversubscription planning for tasks
with an additive value function and a fork causal graph
rooted at a ternary domain variable is strongly NP-complete.

Proof: Membership in NP: cheapest plans are never required
to change the value of any non-root variable v more than
|dom(v)| times, and r, the only variable that can support such
changes, changes its value at most |dom(r)| = 3 times to
support each change. The proof of hardness is by reduction
from bounded classical planning. Given a classical planning
task ⇧

G

= hV,O; s0, G, Ci with fork structured causal graph
rooted at r 2 V with |dom(r)| = 3 and a bound b, the addi-
tive state value function u is defined by mapping the goal val-
ues G[v] for v 2 V(G) to 1 and others to 0. Thus, the value
of a goal state will be exactly |V(G)|, and strictly smaller for
all non-goal states. Thus, optimal oversubscription planning
plans that achieve the value |V(G)| correspond to bounded
planning plans and vice versa.

We now move to the second fragment, an inverted fork-
structured causal graph with constant-bounded sink domain.

Theorem 4 Given an oversubscription planning task ⇧ =

hV ,O; s0, C , u, bi with an inverted fork causal graph with
sink r 2 V , if |dom(r)| = O(1), then an optimal plan for ⇧
can be found in time polynomial in ||⇧|| and the unary budget
representation.

Proof: Let pred = V \ {r} denote the predecessors of r and
let |dom(r)| = d. Observe that the inverted-fork structure of
the causal graph CG(⇧) implies that all the operators in ⇧ are
unary-effect, and that the sink r preconditions only the opera-
tors affecting r itself. Hence, in what follows we assume that
u[r](#) > 0 for some # 2 dom(r); otherwise ⇧ breaks down
to an oversubscription planning problem over a set of inde-
pendent variables, which can be solved by a multiple choice
knapsack. Likewise, from the above properties of ⇧ it follows
that, if ⇡ is a cheapest plan for ⇧ among those that achieve
the same value, then the path ⇡#

r

from s0[r] to s0J⇡K[r] in-
duced by ⇡ in DTG(r) is either cycle-free or contains only
zero-cost cycles. The latter can be safely eliminated from ⇡,
and thus we can assume that ⇡#

r

is cycle-free. The algorithm
below is based on the following three properties satisfied by
the cheapest plans ⇡ for ⇧ among those that achieve the same
value. In what follows, we restrict our attention to cheapest
plans only.

3157

(i) There are ⇥(|O|d) cycle-free paths in the domain tran-
sition graph DTG(r) from s0[r] to all #

r

2 dom(r).
(ii) Having fixed a sequence � of value changing opera-

tors of r, the inverted fork’s parents change their values
to support the preconditions required along � indepen-
dently of each other.

(iii) For each variable v 2 pred, and each pair of v’s values
x, y 2 dom(v), the cost-minimal path ⇡

v

(x, y) from
x to y in DTG(v) can be computed in poly-time. The
whole set of such cost-minimal paths can be computed
using |V | � 1 applications of the Floyd-Warshall algo-
rithm on the domain transition graphs of the sink’s par-
ents pred, in O(

P
v2pred

|dom(v)|3).
From (i), it is sufficient to go over the polynomial number

of value changing sequences of the sink variable r, finding
for each such sequence the best plan in which the sink vari-
able performs exactly that sequence. Thus, in what follows,
assume that � is the sequence of value changing operators of
the sink variable r. Given �, for each v 2 pred, let ⇡

v

be
some cheapest sequence of v-changing operators achieving
the values of v in the order they appear in the preconditions
along the sequence �. Such sequences can be constructed
by a simple concatenation of the sequences computed in (iii),
with the last achieved value for each parent v is the precondi-
tion value that appears last in the sequence �, with ⇡

v

being
empty if no precondition is required from v along �. Let ⇢

�

be the applicable sequence of operators obtained by merging
� with all ⇡

v

for v 2 pred and let s
�

= s0J⇢�K be the state
resulting from applying ⇢

�

in the initial state.
We now construct a multiple choice knapsack MK(�)

problem as follows:
• For each state variable v 2 pred we have a class N

v

=

{# 2 dom(v) | u[v](#) > 0}[{s
�

[v]} of items to pack.
• The weight of each item # 2 N

v

is set to be the cost of
⇡
v

(s
�

[v],#).
• The profit of each item # 2 N

v

is the value u[v](#).
• The overall capacity c is set to be b� C(⇢

�

).
Solving the multiple choice knapsack MK(�) problem op-
timally results in one value #

v

2 N
v

✓ dom(v) being
selected for each v, maximizing the summed value such
that the sum of the costs of the cost-minimal paths from
s
�

[v] to #
v

is bounded by b�C(⇢
�

). A corresponding plan
⇡
�

is then constructed by appending the cost-minimal paths
⇡
v

(s
�

[v],#
v

) to the end of ⇢
�

. Note that ⇡
�

achieves max-
imal value among all plans in which the value changes of
r are exactly �. The cost of ⇡

�

is thus C(⇡
�

) = C(⇢
�

) +P
v2pred

C(⇡
v

(s
�

[v],#
v

))  b. Going over the polynomial
number of possible sequences �, we can now find the plan
that achieves the maximal value among all the plans ⇡

�

.
The complexity of the above procedure equals to the com-

plexity of the multiple choice knapsack problem, which can
be solved in time polynomial in the problem description size
and in the unary representation size of c. Since c  b, the
complexity of the above procedure is polynomial in ||⇧||
and the unary representation size of b. To prove correct-
ness, we show that the plan ⇡0 found by running the pro-
cedure on task ⇧ satisfies ˆu(⇡0

) � ˆu(⇡) for some optimal

plan ⇡ for ⇧. Given an oversubscription planning task ⇧,
let ⇡ be an optimal plan for ⇧ with C(⇡)  b and ⇡ #

r

for the sink variable r being cycle-free. Let � be the cor-
responding sequence of value changes of r. It is sufficient
to show that for the plan ⇡

�

found by our algorithm we have
ˆu(⇡

�

) � ˆu(⇡). For each v 2 pred, we have ⇡#
v

corre-
sponding to a path in DTG(v) from the initial value s0[v]
to #

v

= s0J⇡K[v], passing through the precondition values
required along �. Let s

v

be the last such value, if exists,
otherwise s

v

= s0[v]. Note that s
v

= s
�

[v] for all parents
v 2 pred. The value s

v

separates the sequence of operators
⇡#

v

into two sequences ⇡#
v

(s0[v], sv) from the initial value
to s

v

and ⇡#
v

(s
v

,#
v

) from s
v

to the final value #
v

. Thus,
C(⇡#

v

(s
v

,#
v

)) � C(⇡
v

(s
�

[v],#
v

)), the cheapest such path.
Therefore, the collection {#

v

| v 2 pred} is a (not necessar-
ily optimal) solution to the multiple choice knapsack prob-
lem. Thus,

P
v2pred

u(s0J⇡K[v]) 
P

v2pred

u(s0J⇡�

K[v]).
Since the sink value for the resulting state for ⇡ is the same
as for ⇡

�

, we thus have ˆu(⇡)  ˆu(⇡
�

), as desired.

Here as well, relaxing the restriction on sink variable do-
main size make optimal oversubsctiption planning (strongly)
NP-complete, even if the domain transition graphs of all the
state variables are strongly connected.

Theorem 5 Optimal oversubscription planning for tasks
with an additive value function and an inverted fork causal
graph with strongly connected domain transition graphs of
all the state variables is strongly NP-complete.

Proof: Membership in NP: cheapest plans are never required
to change the value of the sink variable r more than |dom(r)|
times, and for an operator o changing the sink variable, each
parent v can achieve o’s precondition with at most |dom(v)|
value changes. The proof of hardness is by reduction from
bounded classical planning. Given a classical planning task
⇧

G

= hV,O; s0, G, Ci with inverted fork structured causal
graph with sink r 2 V and a bound b, the additive state value
function u is defined by mapping the goal values G[v] for v 2
V(G) to 1 and other to 0. Thus, the value of a goal state will
be exactly |V(G)|, and strictly smaller for all non-goal states.
Thus, optimal oversubscription planning plans that achieve
the value |V(G)| correspond to bounded planning plans and
vice versa, and the hardness stems from the corresponding
result for cost optimal planning [Helmert, 2004].

3.2 0-Binary Value Function
The results of Theorem 1 leave virtually no hope for deriv-
ing tractable fragments of oversubscription planning for the
additive state value functions, and thus here we turn our at-
tention to other families of value functions. One such family
that was shown useful for deriving heuristic values is 0-binary
value function [Mirkis and Domshlak, 2013]. In case of a 0-
binary value function compactly described by a set of partial
states with a non-zero value, let us denote such a set by S

f

for
a value function f . The following theorem establishes a con-
nection between tractable fragments of cost-optimal classical
planning and oversubscription planning with the aforemen-
tioned restriction on the value function.

3158

Theorem 6 Given an oversubscription planning task ⇧ =

hV ,O; s0, C , u, bi with a 0-binary value function u described
by a set Su of partial states with a non-zero value, if the clas-
sical planning task ⇧

G

= hV,O; s0, G, Ci is optimally solv-
able in time polynomial in ||⇧

G

|| for any G 2 Su, then opti-
mal oversubscription planning for ⇧ is also solvable in time
polynomial in ||⇧|| and |Su|.

Proof: For each partial state G 2 Su, solve the classical plan-
ning task ⇧

G

= hV,O, s0, G, Ci optimally. Let ⇡
G

be some
cost-optimal plan for the classical planning task ⇧

G

. If for
some G 2 Su we have C(⇡

G

)  b, then ⇡
G

is an optimal plan
for ⇧. Otherwise, the empty plan is an optimal plan for ⇧.

Note that even with such 0-binary value functions optimal
oversubscription planning is at least as hard as cost bounded
classical planning for tasks of the same structure, for the same
reasons as for additive value functions.

Following Theorem 6, we can obtain tractable fragments
of oversubscription planning from the tractable fragments of
cost-optimal planning whose tractability is not dependent on
a specific goal state. In particular, the following tractable
fragments fit the setting of Theorem 6: forks with binary root
variable domain and inverted forks with constantly bounded
sink variable domain [Katz and Domshlak, 2008b]; polytrees
with either 1-dependent operators or O(1)-bounded in-degree
[Katz and Domshlak, 2008a]; hourglasses with binary center
variable domain and operators with at most one precondition
or semiforks with binary center variable and O(1)-bounded
size hat [Katz and Keyder, 2012].

4 Net-Benefit Planning
Following the suggestion of Aghighi and Jonsson (2014), we
now turn our attention to the net-benefit planning. Focus-
ing on the additive state value functions, observe that the re-
formulation suggested by Keyder and Geffner (2009) can be
adapted to the multi-valued SAS+ formalism as follows. Let
⇧ = hV ,O; s0, C , ui be a net-benefit planning task. The
cost-optimal planning encoding X(⇧) = hV,O0

; s0, G, C0i
of ⇧ is constructed by adding an auxiliary value ✏

v

to each
variable v with non-zero utility values. The goal G is the col-
lection of these values. Let m

v

= max{u(#) | # 2 dom(v)}
be the maximal utility value for each variable. First, the
operator set O0 includes all the operators O from the net-
benefit planning task. Further, for each varaible v and each
value # 2 dom(v), O0 consists of an operator o(v,#) with
pre(o(v,#)) = {v = #}, e↵(o(v,#)) = {v = ✏

v

}, and
C0
(o(v,#)) = m

v

� u(#). Each such operator changes a sin-
gle variable, and thus does not contribute any edges to the
causal graph. In words, the reformulation allows to achieve
the goal from any state by paying the difference between the
maximal possible utility and the obtained one. The suggested
encoding turns out to be a useful tool, allowing us to derive
tractability of optimal net-benefit planning from the results
for cost-optimal planning. We start with the fork fragment.

Theorem 7 Given a net-benefit planning task ⇧ =

hV ,O; s0, C , ui with an additive state value function and a

fork causal graph rooted at r 2 V , if |dom(r)| = 2, optimal
net-benefit planning for ⇧ is polynomial in ||⇧||.

Proof: Let X(⇧) be the cost-optimal planning task obtained
from ⇧ by the adapted reformulation of Keyder and Geffner
(2009). Thus, X(⇧) has a fork structure with an at most
ternary root variable domain. In the case of a ternary root
domain, the goal value of the root is a terminal value, with no
outgoing edges, and thus the proof of Theorem 4 in Katz and
Domshlak (2010) can trivially be adapted to X(⇧).

Note that the simplest fragment from Theorem 1 for over-
subscription planning, namely binary variable domains and
causal graph with no edges is a subcase of the fork fragment
above, and thus is also polynomial, in contrast to the results of
Theorem 1. While the fork fragment requires a minor adapta-
tion of the original proof for the cost-optimal planning frag-
ment, the tractability of the inverted fork fragment stems di-
rectly from the cost-optimal planning result.

Theorem 8 Given a net-benefit planning task ⇧ =

hV ,O; s0, C , ui with an inverted fork causal graph with sink
r 2 V , if |dom(r)| = O(1), optimal net-benefit planning for
⇧ is polynomial in ||⇧||.

Proof: Let X(⇧) be the cost-optimal planning task obtained
from ⇧ by the adapted reformulation of Keyder and Geffner
(2009). X(⇧) has an inverted fork structure with constant
valued root variable domain, and thus is tractable due to The-
orem 5 of Katz and Domshlak (2010).

The hardness results also hold for fragments that corre-
spond to Theorems 3 and 5. The proofs follow the same path
as the proofs for these theorems and thus are omitted here.

5 Summary and Future Work
We presented new results for the complexity of optimal over-
subscription and net-benefit planning for additive state value
functions, drawing a boundary between tractable and NP-
complete cases for net-benefit planning and between weakly
NP-complete and strongly NP-complete cases for oversub-
scription planning. We show several fragments that are
polynomial for optimal net-benefit planning but weakly-NP-
complete for optimal oversubscription planning. As even
severely structurally restricted fragments of optimal oversub-
scription planning are already weakly NP-complete, the fea-
sibility of exploiting these fragments for deriving informative
utility estimates remains an open question. Further, an inves-
tigation is needed into which additional restrictions should be
imposed to make optimal oversubscription planning tractable.
Theorem 1 hints that the only possible direction is to restrict
the value functions.

Following that direction, for 0-binary value functions, we
present a general result relating tractable fragments of over-
subscription and classical planning, for value functions that
are compactly represented by a set of partial states for non-
zero utility values. Another option would be to compactly
represent a 0-binary value function by the set of states with
zero utility values. One interesting question is whether simi-
lar results can be devised for such value functions.

3159

Acknowledgments
We thank Emil Keyder for discussions and comments that
greatly improved the paper.

References
[Aghighi and Bäckström, 2015] Meysam Aghighi and

Christer Bäckström. Cost-optimal and net-benefit plan-
ning - A parameterised complexity view. In Proceedings
of the 24th International Joint Conference on Artificial
Intelligence (IJCAI 2015), pages 1487–1493, 2015.

[Aghighi and Jonsson, 2014] Meysam Aghighi and Peter
Jonsson. Oversubscription planning: Complexity and
compilability. In Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence (AAAI 2014), pages
2221–2227. AAAI Press, 2014.

[Bäckström and Klein, 1991] Christer Bäckström and Inger
Klein. Planning in polynomial time: the SAS-PUBS class.
Computational Intelligence, 7(3):181–197, 1991.

[Bäckström and Nebel, 1995] Christer Bäckström and Bern-
hard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11(4):625–655, 1995.

[Brafman and Domshlak, 2003] Ronen I. Brafman and
Carmel Domshlak. Structure and complexity in planning
with unary operators. Journal of Artificial Intelligence
Research, 18:315–349, 2003.

[Briel et al., 2004] Menkes Van Den Briel, Romeo Sanchez,
Minh B. Do, and Subbarao Kambhampati. Effective ap-
proaches for partial satisfaction (over-subscription) plan-
ning. In Proceedings of the Nineteenth National Confer-
ence on Artificial Intelligence (AAAI 2004), pages 562–
569. AAAI Press, 2004.

[Domshlak and Mirkis, 2015] Carmel Domshlak and Vitaly
Mirkis. Deterministic oversubscription planning as heuris-
tic search: Abstractions and reformulations. Journal of
Artificial Intelligence Research, 52:97–169, 2015.

[Dudziński and Walukiewicz, 1987] Krzysztof Dudziński
and Stanisław Walukiewicz. Exact methods for the
knapsack problem and its generalizations. European
Journal of Operational Research, 28(1):3–21, 1987.

[Edelkamp, 2001] Stefan Edelkamp. Planning with pattern
databases. In Amedeo Cesta and Daniel Borrajo, editors,
Proceedings of the Sixth European Conference on Plan-
ning (ECP 2001), pages 84–90. AAAI Press, 2001.

[Giménez and Jonsson, 2008] Omer Giménez and Anders
Jonsson. The complexity of planning problems with sim-
ple causal graphs. Journal of Artificial Intelligence Re-
search, 31:319–351, 2008.

[Helmert, 2004] Malte Helmert. A planning heuristic based
on causal graph analysis. In Shlomo Zilberstein, Jana
Koehler, and Sven Koenig, editors, Proceedings of the
Fourteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2004), pages 161–170. AAAI
Press, 2004.

[Katz and Domshlak, 2008a] Michael Katz and Carmel
Domshlak. New islands of tractability of cost-optimal
planning. Journal of Artificial Intelligence Research,
32:203–288, 2008.

[Katz and Domshlak, 2008b] Michael Katz and Carmel
Domshlak. Structural patterns heuristics via fork
decomposition. In Jussi Rintanen, Bernhard Nebel,
J. Christopher Beck, and Eric Hansen, editors, Pro-
ceedings of the Eighteenth International Conference on
Automated Planning and Scheduling (ICAPS 2008), pages
182–189. AAAI Press, 2008.

[Katz and Domshlak, 2010] Michael Katz and Carmel
Domshlak. Implicit abstraction heuristics. Journal of
Artificial Intelligence Research, 39:51–126, 2010.

[Katz and Keyder, 2012] Michael Katz and Emil Keyder.
Structural patterns beyond forks: Extending the complex-
ity boundaries of classical planning. In Jörg Hoffmann
and Bart Selman, editors, Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence (AAAI 2012),
pages 1779–1785. AAAI Press, 2012.

[Keyder and Geffner, 2009] Emil Keyder and Héctor
Geffner. Soft goals can be compiled away. Journal of
Artificial Intelligence Research, 36:547–556, 2009.

[Mirkis and Domshlak, 2013] Vitaly Mirkis and Carmel
Domshlak. Abstractions for oversubscription planning.
In Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi,
and Simone Fratini, editors, Proceedings of the Twenty-
Third International Conference on Automated Planning
and Scheduling (ICAPS 2013), pages 153–161. AAAI
Press, 2013.

[Smith, 2004] David E Smith. Choosing objectives in
over-subscription planning. In Shlomo Zilberstein, Jana
Koehler, and Sven Koenig, editors, Proceedings of the
Fourteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2004), pages 393–401. AAAI
Press, 2004.

3160

