
Learning Predictive State Representations via Monte-Carlo Tree Search

Yunlong Liu1 Hexing Zhu1 Yifeng Zeng1,2 Zongxiong Dai1
1Department of Automation, Xiamen University, China

2School of Computing, Teesside University, UK
ylliu@xmu.edu.cn hxzhu xmu@foxmail.com yifeng.zeng.dk@gmail.com princejay11@sina.com

Abstract
Predictive State Representations (PSRs) are an ef-
ficient method for modelling partially observable
dynamical systems. They have shown advantages
over the latent state-based approaches by using
functions of a set of observable quantities, called
tests, to represent model states. As a consequence,
discovering the set of tests for representing the state
is one of the central problems in PSRs. Existing
techniques either discover these tests through iter-
ative methods, which can only be applied to some
toy problems, or avoid the complex discovery prob-
lem by maintaining a very large set of tests, which
may be prohibitively expensive. In this paper, with
the benefits of Monte-Carlo tree search (MCTS)
for finding solutions in complex problems, and by
proposing the concept of model entropy for mea-
suring the model accuracy as the evaluation func-
tion in MCTS, the discovery problem is formalized
as a sequential decision making problem. Then
such a decision making problem can be solved us-
ing MCTS, a set of tests for representing state can
be obtained and the PSR model of the underlying
system can be learned straightforwardly. We con-
duct experiments on several domains including one
extremely large domain and the experimental re-
sults show the effectiveness of our approach.

1 Introduction
Learning models of dynamical systems is a common and
challenging problem in science and engineering, the learned
model can be used in many tasks, such as prediction, plan-
ning, tracking, etc. [Hamilton et al., 2014]. Predictive state
representations (PSRs) offer an effective approach for mod-
elling partially dynamical systems. Unlike the latent-state ap-
proaches for modelling dynamical systems, such as Hidden
Markov Models (HMM) for uncontrolled systems, Partially
Observable Markov Decision Processes (POMDPs) for con-
trolled systems, PSRs represent states using a set of future
events, called tests, which are described as sequences of en-
tirely observable action-observation pairs. Compared to the
latent-state approaches, PSRs have shown many advantages,
such as the possibility of obtaining a global optimal model,

more expressive power and less required prior domain knowl-
edge, etc. [Singh and James, 2004].

Many attempts have been devoted to learning PSR models,
and one of the fundamental problems in learning PSR mod-
els is the discovery of the tests used as state representation.
After finding these tests, the PSR model can be built straight-
forwardly. However, as the search space for finding these
tests is so large, in the limit, is infinite as the future events
may be infinite. Until now, there is still a lack of efficient
algorithms for discovering these tests, especially in large do-
mains. Two main approaches exist for addressing the discov-
ery problem: one is the traditional iterative methods [James
and Singh, 2004], which can only be used in the toy prob-
lems; the other approach alleviates this problem by specify-
ing a large enough set of tests that contains a sufficient sub-
set, such as the spectral learning approach [Boots et al., 2011]
and the compressed sensing approach [Hamilton et al., 2014].
However, when limited training data is available, the estima-
tion for the probabilities of a large set of tests may be too in-
accurate to obtain a satisfying PSR model. At the same time,
too many tests can cause the manipulation of many high di-
mension matrices, the computational cost may be too high to
afford.

Recently, an approach, namely Monte-Carlo tree
search (MCTS) [Browne et al., 2012], is proposed for
finding optimal decisions in sequential decision making
problems. By building and expanding a search tree while
evaluating each state in the tree by the average outcome of
simulations from that state, MCTS provides several major
advantages over traditional search methods, and it can
quickly focus on the most promising regions of the search
space. MCTS has shown spectacular successes in some
problems, especially in large domains, such as computer
Go [Silver et al., 2016], where the size of the search space is
so large that it defies brute force search.

With the benefits of MCTS for finding solutions in complex
problems, in this paper, a MCTS-based approach for finding
the set of tests to represent the state is proposed. In this con-
text, we make the following contributions:

• We formalize the discovery problem in PSRs as a se-
quential decision making problem.

• A concept of model entropy that measures the model ac-
curacy is proposed.
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• MCTS is applied to solve the above decision making
problem by using the model entropy as evaluation func-
tion.

2 Technical Background
2.1 Predictive State Representations
As mentioned previously, the state of a PSR model is
represented by functions of some tests. For discrete dy-
namical systems with a discrete set of observations O =

{o1, o2, · · · , o|O|} and a discrete set of actions A =

{a1, a2, · · · , a|A|}, at time ⌧ , a test is a sequence of action-
observation pairs that starts from time ⌧ + 1. Similarly, a
history at ⌧ is a sequence of action-observation pairs that
starts from the beginning of time and ends at time ⌧ , which
is used to describe the full sequence of past events. The pre-
diction of a length-m test t at history h is defined as p(t|h) =
p(ht)/p(h) =

Qm
i=1

Pr(oi|ha1o1 · · · ai) [Mccracken and
Bowling, 2006]. Given a set of tests Q = {q

1

, q
2

, · · · , qk},
if its prediction vector p(Q|h) at any h captures all the infor-
mation in h relevant to predicting the future, i.e., there exists
some function ft to make p(t|h) = ft(p(Q|h)) for any test t,
such tests are called core tests. As p(Q|h) contains sufficient
information to calculate the predictions for all tests at h, it is
a sufficient statistic, thus the set Q can be used to represent
the state. The purpose of the discovery is to find Q efficiently.
Note that there may exist more than one set of core tests in a
system.

For linear systems, at any history h, for any test t, a length-
k weight vector mt exists such that the corresponding p(t|h)
can be calculated as p(t|h) = p(Q|h)Tmt. Then, in such sys-
tems, after the correct discovering of core tests Q, on taking
action a 2 A from history h and observing o 2 O, the next
state, i.e., the prediction vector of Q at hao, can be updated
according to Eq. 1:

p(Q|hao) =
✓
p(Q|h)TMao

p(Q|h)Tmao

◆T

, (1)

where Mao is a k⇥ k matrix and its ith column is maoqi . For
each a 2 A and o 2 O, mao and Mao can be easily calculated
when Q is known. Following is one simple approach:

mao = p(Q|H)

�1p(ao|H),

maoqi = p(Q|H)

�1p(aoqi|H),
(2)

where H is the set of possible histories, �1 indicates
(pseudo)inverse and P (Q|H), P (ao|H), p(aoqi|H) can be
estimated using the training data.

2.2 Monte-Carlo Tree Search
Monte-Carlo tree search method finds optimal decisions in
a decision space by combining Monte-Carlo simulation with
game tree search [Gelly et al., 2012]. It iteratively builds a
search tree by adding new nodes to the existing search tree
until some predefined condition is reached. Each node in the
tree corresponds to a state s, and contains an action value
Q(s, a), a visitation count N(s, a) for each action a 2 A and
a total count for the state, N(s) =

P
a N(s, a) [Gelly and

Silver, 2011].

Monte-Carlo simulation is used to compute state-action
values Q(s, a), where each simulation contains two stages:
a tree policy and a rollout policy. When state s is represented
in the existing search tree, the tree policy is used to select ac-
tions. Once simulation leaves the scope of the existing search
tree, the rollout policy is used until the termination of the sim-
ulation. After each simulation, one new node that is first vis-
ited in the second stage is added to the search tree. Then
Q(s, a) in the search tree is the mean outcome of all simula-
tions starting from s in which action a was selected in state
s [Browne et al., 2012]:

Q(s, a) =
1

N(s, a)

N(s)X

i=1

Ii(s, a)zi, (3)

where Ii(s, a) is an indicator function returning 1 if action a
was selected in state s during the ith simulation, and 0 oth-
erwise; zi is the outcome of the ith simulation. The outcome
plays an important role in the search process, which can pro-
vide simulations important guidance to promising paths. In
many games, it is typically assigned to be -1, 0 or 1 for loss,
draw, or win respectively.

The basic form of MCTS just selects the greedy action with
the highest value during the first stage and selects actions uni-
formly at random during the second stage. Such a strategy
can often be inefficient in constructing a search tree. By treat-
ing the choice of actions as a multi-armed bandit problem,
Kocsis et al. [Kocsis and Szepesvári, 2006] proposed the use
of the UCB1 algorithm for action selection in the search tree
of MCTS. The tree policy selects the action a⇤ maximizing
the augmented value:

Q�
(s, a) = Q(s, a) + c

s
logN(s)

N(s, a)
,

a⇤ = argmax

a
Q�

(s, a),

(4)

where c > 0 is the exploration constant. As can be seen, the
action value is augmented by an exploration bonus that is the
largest for the actions that have been tried the least number
of times and therefore the most uncertain. Such an action
selection strategy encourages the rarely visited actions to be
tried more frequently.

3 MCTS-based Approach for Learning PSRs
As has been mentioned above, the outcomes of the simula-
tions, i.e., the evaluation functions, in MCTS guide the search
to promising paths. In games, the outcomes can be the results
of the games, such as 1 for win, -1 for loss. However, in
the discovery problem, no such results can be presented. At
the same time, MCTS is originally designed for finding an
optimal policy in a decision space, which cannot be applied
directly to the discovery problem.

As the purpose of the discovery is to find tests that can
lead to high accuracy of the obtained model, in this section,
we first propose a novel scheme to measure the accuracy of
the PSR model, which is used as the evaluation function of
MCTS; then we show how to formalize the discovery prob-
lem as a sequential decision making problem; finally, a solu-
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tion for solving such a decision problem by using MCTS is
presented.

3.1 Measurement of Model Accuracy
Given a set of tests X = {x

1

, x
2

, · · · , xi}, if it includes the
set of core tests and the number of possible p(X|·) is finite,
Proposition 1 holds.
Proposition 1 The Markov decision process (MDP) model
built by using p(X|·) as state representation and the action-
observation pair haoi as action is deterministic.
PROOF. Given X that includes the set of core tests, p(X|h)
is a sufficient statistic of the history and can serve as state.
Then, as shown in Eq. 1, the current state p(X|h) and the
action haoi fully determine the next state p(X|hao), the
entry of the state-transition functions in this MDP will be
either 0 or 1, i.e., the MDP is deterministic. ⇤

However, if X does not include the set of core tests, the
prediction vector p(X|·) is not a sufficient statistic of history.
At any time step, the prediction vector p(X|·) may actually
correspond to several PSR states. In such cases, the transi-
tion from p(X|h) to p(X|hao) usually becomes stochastic
and less information is included in X , more stochastic the
transition will usually be.

Inspired by the concept of Shannon entropy that measures
information uncertainty [Shannon, 1948], we define the en-
tropy of X in Eq. 5 to measure such stochastic as follows:

EM (X) = �
X

a2APP

1

r(Ta
)

r(Ta)X

i=1

c(Ta)X

j=1

T (si, a, sj) log T (si, a, sj), (5)

where T is the state-transition function of the MDP using
p(X|·) as state representation and haoi as action, APP =

A⇥ O the set of action-observation pairs in the original sys-
tem, r(T a

) and c(T a
) the number of rows and columns of the

state-transition matrix T a respectively.
According to Proposition 1 and Eq. 5, when X contains the

core tests, where the accuracy of the PSR model with p(X|·)
as state representation is the highest, the entropy of X reaches
to zero. As less information is included in X , where lower ac-
curacy the corresponding PSR model will be, the transitions
in the state-transition functions usually become more stochas-
tic. According to Eq. 5, the entropy value grows. Thus, the
entropy of X can be used as a measurement of the accuracy
of the corresponding PSR model. For the discovery problem,
the set of tests with the lowest entropy should be selected.

To calculate the entropy of a set of tests X , the
corresponding MDP model can be learned from training
data. To do so, we first translate the original randomly
generated action-observation sequences into the form of
haction-observationi-p(X|·) sequences. For example, a se-
quence d = ha

1

o
1

a
2

o
2

· · · akoki is converted into d0 =

ha
1

o
1

ip(X|a
1

o
1

)ha
2

o
2

ip(X|a
1

o
1

a
2

o
2

) · · ·
hakokip(X|a

1

o
1

a
2

o
2

· · · akok), where p(X|·) can be esti-
mated using the training data. Due to the sampling error,
it is unlikely that any of these estimated p( ˆX|·) will be ex-
actly the same, even if the true underlying p(X|·) are iden-
tical. Statistical tests can be used to estimate the number of
distinct underlying p(X|·) and cluster the estimated p( ˆX|·)

corresponding to the same true prediction vector into one
group(state) [Talvitie and Singh, 2011]. Subsequently, we
compute the state-transition functions in the transformed data
and build the MDP model.

3.2 Discovery as Decision Making
The possible combinations of tests are infinite, which means a
large search space for finding the set of core tests. As MCTS
has had great successes in finding solutions in large decision
spaces, it is natural to apply MCTS to find the set of core
tests. However, MCTS is originally designed for finding op-
timal policies in sequential decision making problems, which
is obviously different from the discovery problem. To do so,
we first formalize the discovery problem as a sequential de-
cision making problem by treating each test as a candidate
action and the sequence of actions (tests) executed until now
as current state. As the goal of discovery problem is to find
a sequence of actions ⇡ (a set of tests) that leads to the PSR
model with a high accuracy, the entropy of the set of tests, i.e.,
the model accuracy measurement can be directly used as the
outcome and the evaluation function for each sequence of ac-
tions (tests), then the optimal policy ⇡⇤ is the one minimizing
EM (⇡):

⇡⇤
= argmin

⇡
EM (⇡). (6)

A specific characteristic of the resulting problem is that the
action order in the found action sequence is not important
and the same action is not allowed to appear in one sequence.
So, at any state s, the legal actions are the tests that are not
included in s, and the policies that contain the same set of
actions (tests) should be avoided.

3.3 Discovery Using MCTS
By formalizing the discovery problem as a sequential deci-
sion making problem and using the entropy as the evaluation
function of MCTS, the discovery process can be described by
four phases: descent, roll-out, backup and expand. During the
descent phase, from the empty state, MCTS iteratively selects
the action (test) according to Eq. 7:

a⇤ = argmin

a
(Q(s, a)� c

s
logN(s)

N(s, a)
), (7)

which takes into account both the value of the action and the
exploration bonus. At the end of descent phase, i.e., upon
reaching a leaf node of the current tree, the roll-out phase be-
gins, where a default policy is used to select a legal action
randomly until some predefined conditions are reached. At
the end of the roll-out phase, the sequence of the actions exe-
cuted from the root of the tree to the end of the roll-out phase
is evaluated by its entropy as Eq. 5 to determine the reward of
this set of tests. In the backup phase, for each node s visited
during descent, the action value Q(s, a) associated with the
node is updated according to the reward, and the number of
visits N(s) and N(s, a) is also updated. In the expand phase,
the first state visited in the roll-out is added to the tree, and
the statistics associated to it is initialized to zero.

Algorithm 1 shows our proposed algorithm in detail in
pseudocode, where s(v) denotes the corresponding state of
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node v, which is the set of actions(tests) starting from the
root node to node v.

Algorithm 1: The discovery using MCTS algorithm
function MCTSDiscovery

create empty root node v
0

with state s(v
0

) = {}
while within the predefined stop condition do
vl  TreePolicy(v

0

)

reward DefaultPolicy(s(vl))
BackUp(vl, reward)

function TreePolicy(v)
while v is nonterminal do
if v not fully expanded then

return Expand(v)
else

v  BestChild(v)
return v

function Expand(v)
choose a 2 legal actions
add a new child v0 corresponding to a taken from v
Q(s(v), a) 0; N(s(v), a) 0

return v0

function BestChild(v)

a⇤ = argmin

a
(Q(s, a)� c

q
logN(s(v))
N(s(v),a) )

return v0 corresponding to a⇤ taken from v
function DefaultPolicy(s)

while s is non-terminal do
choose a 2 legal actions(tests) uniformly at random
s s [ a

return reward EM (s)
function BackUp(v, r)

while v is not null do
v0  v; v  parent of v
a action taken from v to v0

N(s(v), a) N(s(v), a) + 1

Q(s(v), a) Q(s(v), a) + r�Q(s(v),a)
N(s(v),a)

After the tree has been built, the tests used for state repre-
sentation are the tests corresponding to the optimal policy of
the tree, that is, starting from the root, selecting actions (tests)
greedily.

4 Experimental Results
We evaluated the proposed technique in three domains of
different size, namely Cheese Maze, Hallway2 [Cassandra,
1999] and PocMan [Silver and Veness, 2010; Hamilton et al.,
2014]. The last environment is a partially observable version
of the video game PacMan, which has 4 actions, 1024 obser-
vations and an extremely large number of states (up to 10

56).

4.1 Experimental Setting
Evaluated Methods. We compared the discovery us-
ing MCTS algorithm with both the expectation maximiza-
tion (EM) algorithm and the spectral based method, i.e., the
transformed PSR (TPSR) [Boots et al., 2011]. For Poc-
Man, as it is a domain with a particular sparse structure

that is suitable for applying the compressed PSR (CPSR) ap-
proach [Hamilton et al., 2014], CPSR was also executed on
this domain, and the algorithm was given a sample of 10,000
training runs to learn a model representation of the domain
and tests of length at most five were used.

The EM algorithm was used to learn the POMDP model of
each environment (stopping after 10 iterations since the algo-
rithm converges in most of the times), where the initial values
of the POMDP models are random and for Cheese Maze and
Hallway2, they were initialized by fitting the data to the ac-
tual number of states in the underlying system. However, for
PocMan, it is too complex to feasibly train a POMDP with
the correct number of underlying states, POMDPs with 50-
300 states were used. For these domains, a uniformly ran-
dom generated sequence with different length was used as
the training sequence. For Cheese Maze, Hallway2 and Poc-
Man, the length of the training sequence is 20000, 20000 and
200000 respectively.

For the TPSR approach, a set of histories H that is as large
as possible was randomly generated, and then we estimated
the matrices PH , PT,H , PT,ao,H for each a 2 A, o 2 O,
which is necessary for building TPSR. PH is a |H|⇥1 vector
containing the marginal probabilities of each possible history.
PT,H is a |T | ⇥ |H| matrix which contains the joint proba-
bilities of all specified tests and possible histories. PT,ao,H

matrices are also of size |T | ⇥ |H|, which contain the joint
probabilities of observing each history, followed by a par-
ticular action-observation pair (corresponding to that matrix)
and a test [Hamilton et al., 2013]. Finally, the TPSR model
was built. As TPSR requires an extremely large number of
tests in order to contain a sufficient subset, the size of T
should be large enough. However, for large systems, even
in a simple case, these matrices will be too large to be manip-
ulated. Taking PocMan as an example, even T only contains
tests of length 1, the size of T will be 1024 ⇥ 4 = 4096,
which means we should manipulate more than 4096 matrices
of size |H| ⇥ 4096. So in the experiments, for PocMan, we
only considered tests of length 1 that occurred in the training
data (more than 500 tests) for not exceeding memory limits.

For our proposed algorithm, as can be seen from Algo-
rithm 1, we do not need to manipulate so many large matrices
as TPSR requires. After the set of tests ˆQ used for represent-
ing state has been found, which is usually a very small subset
of set T in TPSR, matrices P (

ˆQ|H), P (ao|H), p(aoq̂i|H)

were manipulated and estimated using the training data, then
the corresponding PSR model can be built. To accelerate the
search process and as the order of actions in the action se-
quence for our method has no effect on the final result, for
Cheese Maze, the number of legal actions at each node was
set to 10, the candidate actions were limited to the possible
length 1 and 2 tests; for Hallway2 and PocMan, the number of
legal actions at each node was set to 20, the candidate actions
were limited to the possible length 1 tests. The exploration
constant c was set to 0.001 and a state is considered to be ter-
minal when the search reaches a certain depth. To calculate
the entropy of a candidate set of tests Tc, a randomly gen-
erated 5,000-length action-observation sequence d was used,
and for each test t 2 Tc, p(t|·) was estimated by executing
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act(t) 100 times, where act(t) is the action sequence in test
t.
Performance Measurements. We evaluated the learned
models in terms of prediction accuracy, which is measured
by the difference between the true predictions and the predic-
tions given by the learned model over a test data sequence (for
PocMan, we cannot obtain the true predictions, Monte-Carlo
rollout predictions were used [Hamilton et al., 2013]).

Two error functions were used in the measurement. One is
the average one-step prediction error per time step on the test
sequence as shown in Eq. 8:

1

L

LX

t=1

|p(ot+1

|ht, at+1

)� p̂(ot+1

|ht, at+1

)|. (8)

p(·) is the probability calculated from the true POMDP model
or the Monte-Carlo rollout prediction and p̂(·) the proba-
bility obtained from the learned model. | · | refers to the
absolute value. L is the length of the test sequence used
in the experiments. For the average four-step prediction
error, the same equation with predicting four steps ahead
p̂(ot+1

ot+2

ot+3

ot+4

|htat+1

at+2

at+3

at+4

) was used.

4.2 Performance Evaluation
In this section, for each algorithm, we report the perfor-
mance results as the mean error over 10 trials. For each
trial, a uniform randomly generated test sequence with length
L = 10, 000 was used for testing the accuracy of the learned
model.

Fig. 1 compares the prediction accuracy of the evaluated
methods in the three domains for one-step and four-step er-
ror respectively. In these figures, the x-axis is the number of
nominal-states used for building the POMDP model (EM al-
gorithm), the dimension of the representation used for repre-
senting state (TPSR/CPSR) or the number of discovered tests
used for state representation, i.e., the search depth (Our ap-
proach, MCTS); the y-axis represents the mean error of the
ten trials.

As can be seen from Fig. 1, both for the one-step and four-
step predictions, in almost all the cases, our algorithm per-
forms very well and outperforms the other approaches. TPSR
outperforms the EM algorithm. As the EM algorithm usu-
ally suffers from local minima, its performance is the poor-
est and the most unstable. For PocMan, although it is a do-
main suitable for the CPSR approach, compared to CPSR,
our approach is still competitive. Considering the error re-
ported is only the prediction error for one time step, the im-
provement on prediction accuracy on a long sequence is re-
markable. Meanwhile, as the number of tests used for rep-
resenting state increases, our algorithm reduces its prediction
error while the other algorithms except for CPSR with in-
creasing state number or dimension of the representation do
not improve their performances and are unstable. We observe
that in the lower dimension of the representation/number of
tests, TPSR performs better than our method, however, in
some cases, with increasing dimension of the representation,
TPSR even performs worse. The intuitive explanation for this
is that TPSR uses singular value decomposition (SVD) for

dimension reduction, rather than just considering the infor-
mation contained in the columns corresponding to the set of
core tests, some information besides the set of core tests is
also included in the obtained set of representation. When the
dimension of the representation is far less than the number
of the core tests, such information may be helpful; however,
with the increase of the dimension of the representation, such
information may add noise into the representation as we only
need the information contained in the core tests.

5 Related Works
In the PSRs literature, much attention has been devoted to
learning PSR models. There are two main problems related
to learn a PSR model [Rosencrantz et al., 2004]. One is the
discovery problem, i.e., finding a small sufficient set of tests,
called core tests, that can represent the state for the dynamical
systems; the other is how to learn the model parameters to
maintain a probability distribution over the discovered tests as
the dynamical system progresses. As discussed in Technical
Background section, once the set of core tests can be found,
the model parameters can be learned easily.

According to the manner of how to address the discovery
problem, there are two main approaches. One approach dis-
covers the set of core tests using iterative methods. For linear
PSRs, the vast majority of the literature on PSRs, one can de-
rive the PSR model from a system dynamics matrix (SDM)
that contains conditional probabilities of all possible tests
given the past sequences [Singh and James, 2004]. The rank
of the SDM is the linear dimension (denoted as k) of the dy-
namical system. The discovery problem is to find the tests
corresponding to the k linearly independent columns of the
SDM. As the number of tests in the SDM is infinite, the iter-
ative approach works iteratively to obtain these tests. At each
iteration, there is a current set ˆQ of core tests found so far,
then the algorithm constructs two sub-SDMs, one sub-SDM’s
columns correspond to ˆQ, the other sub-SDM’s columns cor-
respond to ˆQ[ao ˆQ for each a 2 A and o 2 O. If the rank of
these two sub-matrices equals to each other, ˆQ is used as the
set of core tests. During the early stages of the PSRs research,
almost all the work uses such iterative methods to discover the
set of core test [James and Singh, 2004; Wolfe et al., 2005;
Liu and Li, 2009; Liu et al., 2015]. However, such an ap-
proach is computation-expensive and time-consuming, also,
the calculation of the rank of a noise matrix is usually not ac-
curate and not stable, it is very difficult to find a satisfying
set of core tests. This method is only applied to some toy
problems with no more than dozen of states.

Recently, some work has been proposed to alleviate the dis-
covery problem by specifying a large enough set of tests T so
that it almost certainly contains a set of core tests [Boots et
al., 2011; Boots and Gordon, 2011; Hamilton et al., 2013;
2014]. In these work, the discovery problem is avoided.
The two main methods using such a strategy are transformed
PSR (TPSR) and compressed PSR (CPSR). Currently, these
two methods are also the most successful two learning meth-
ods for PSRs. For the TPSR approach [Boots et al., 2011;
Boots and Gordon, 2011], to build the PSR model, one should
estimate and manipulate two observable matrices PT,H , PH ,
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Figure 1: Prediction errors for difference cases in three problem domains.

and |A| ⇥ |O| observable matrices PT,ao,H . Although De-
nis et al. [Denis et al., 2014] showed that the concentration
of the empirical PT,H around its mean does not highly de-
pend on its dimension, which gives a hope for alleviating the
statistical problem when using large set of T and H as the ac-
curacy of the learned model is directly connected to the con-
centration, manipulating these matrices is still too expensive
to afford in large systems. At the same time, the TPSR ap-
proach requires singular value decomposition (SVD) on ma-
trix PT,H , for large set of T and H , such an operation is also
prohibitively expensive. In our approach, instead of specify-
ing and manipulating a large enough set of tests T in advance,
we only use the found set of core tests (usually a very small
subset of T ) to estimate and manipulate the related matrices
for building the PSR model, which is computationally cheap
and more easy to manipulate.

By introducing a particular weighted loss function,
Kulesza et al. [Kulesza et al., 2015a] proved that in the ideal
setting where one can have access to the infinite SDM, com-
pared to traditional spectral learning approaches, the perfor-
mance of the learned TPSR model will be more stable and be-
have in a predictable way. They also demonstrated both the-
oretically and experimentally the importance of using large
set of T and H when learning TPSR models. However, the
statistic and computation issues are still not addressed.

To reduce the computational cost, rather than specifying a
large enough set of tests, Kulesza et al. [Kulesza et al., 2015b]
also tried to choose strategically a finite set of tests. How-
ever, there are important differences between their approach
and ours, namely: (i) While our approach finds the core tests
using MCTS directly, they first select a set of tests, then spec-
tral method is applied by using these tests; (ii) MCTS can
find the solution in a large space, while the work of [Kulesza
et al., 2015b] just uses iterative approaches for selecting sets
of tests, only a tiny part of the possible sets of tests can be
considered; (iii) Most importantly, the key idea in [Kulesza et

al., 2015b] is that as in the limiting-case, the singular values
of the learned TPSR parameters are bounded, then under an
assumption that smaller the singular values of the learned pa-
rameters are, more accuracy the learned TPSR model will be,
they just select the tests that can cause smaller singular val-
ues of the learned TPSR parameters. However, no any formal
guarantees are provided for such an approach.

Hamilton et al. [Hamilton et al., 2013; 2014] presented the
CPSR model. This technique learns approximate PSR mod-
els by combining dimensionality reduction, incremental ma-
trix decomposition, and compressed sensing. Compared to
TPSR, CPSR allows for an increase in the efficiency and pre-
dictive power. However, different from our approach that has
no prior assumptions on the environments to be modelled,
CPSR can be only applied to domains with a particularly
sparse structure.

6 Conclusion and Future Work
In this paper, by utilizing the great merits of MCTS for find-
ing solutions in large search spaces, a MCTS-based approach
for discovering the set of core tests is presented, then the PSR
model can be learned directly. In the process, the discovery
problem is formalized as a sequential decision making prob-
lem and a concept of model entropy is proposed as the eval-
uation function of MCTS. Experimental results demonstrate
the performance of our techniques. As also shown in the ex-
periments, in order to accelerate the search process, we have
focused our search on a limited search space by restricting
the number of the legal actions at each node and the num-
ber of candidate actions, however, our methods still achieved
significant performance compared to other approaches. With
the expansion of the search space, we believe our method can
achieve much better performance.

As MCTS requires computationally cheap reward to be
computed in each iteration, in the future, we will focus our
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research on finding more efficient evaluation function for the
discovery problem. Future work also includes verifying the
effectiveness of our approach on more problems and planning
with the learned PSR model.
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