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Abstract

In many domains generalized plans can only
be computed if certain high-level state features,
i.e. features that capture key concepts to accurately
distinguish between states and make good deci-
sions, are available. In most applications of gen-
eralized planning such features are hand-coded by
an expert. This paper presents a novel method
to automatically generate high-level state features
for solving a generalized planning problem. Our
method extends a compilation of generalized plan-
ning into classical planning and integrates the com-
putation of generalized plans with the computation
of features, in the form of conjunctive queries. Ex-
periments show that we generate features for di-
verse generalized planning problems and hence,
compute generalized plans without providing a
prior high-level representation of the states. We
also bring a new landscape of challenging bench-
marks to classical planning since our compilation
naturally models classification tasks as classical
planning problems.

1

A generalized plan is a single solution valid for a set of
planning problems. Generalized plans are usually built with
branching and repetition constructs which allow them to solve
arbitrarily large problems, and problems with partial observ-
ability and non-deterministic actions [Bonet et al., 2010;
Hu and Levesque, 2011; Srivastava et al., 2011; Hu and De
Giacomo, 2013]. For many problems, generalized plans can
only be efficiently computed if branching (and/or repetition)
is done according to key features that allow high-level rea-
soning and help to accurately distinguish between states.

To illustrate this, consider the problem of finding the
minimum element in the following list of five integers:
(2,5,3,1,4). A classical plan for this problem is the 4-action
sequence (inc(i), inc(i),inc(i), j = i) where 4 and j are list
iterators that initially point to the first position in the list,
inc(t) increments iterator ¢, and j = ¢ assigns iterator ¢ to
7. The goal is for iterator j to point to the minimum element
in the list. The plan fails to generalize since it is no longer
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Figure 1: Planning program for finding the minimum element
in a list of integers of size n.

valid if the order of the integers in the list is changed or if
integers are added to (or deleted from) the list.

A generalized plan can solve this problem for different
list orders and sizes. In this work we focus on generalized
plans in the form of planning programs [Jiménez and Jons-
son, 2015; Segovia-Aguas et al., 2016]. Figure 1 shows the
planning program for finding the minimum element in a list
of integers of any size. Instructions on lines 0 and 3, repre-
sented with diamonds, are conditional goto instructions that,
respectively, jump to line 2 when *¢ £ *j and to line 0 when
1 # n. The outgoing left branch of a diamond indicates that
the condition holds and the right branch that it does not. In-
structions on lines 1 and 2 are sequential instructions and are
represented with boxes. Finally, end marks the program ter-
mination.

In this program, conditions *i < *j and ¢« == n are high-
level state features necessary to compactly represent a solu-
tion that generalizes. These features abstract different list
contents and sizes as well as different values for iterators
and j. Specifically, condition *i < %j abstracts the set of
states where the element pointed to by ¢ is smaller than that
pointed to by j. Likewise, ¢ == n abstracts the set of states



where iterator 7 reaches the end of the list, no matter the list
size.

In generalized planning problems, high-level state features
are traditionally hand-coded which requires significant hu-
man expertise. The contribution of this work is to automati-
cally generate the high-level features required to solve a given
generalized planning problem. We do so updating the notion
of planning programs and extending a previous compilation
of generalized planning into classical planning [Jiménez and
Jonsson, 2015; Segovia-Aguas et al., 2016] to tightly inte-
grate the computation of generalized plans with the computa-
tion of features in the form of conjunctive queries. The sec-
ond contribution of this work is bringing a new landscape of
challenging benchmarks to classical planning given that our
extended compilation naturally models classification tasks as
classical planning problems. This allows us to solve prob-
lems that integrate planning and classification using an off-
the-shelf classical planner.

2 Background

The planning model we consider is classical planning with
conditional effects. This formalism allows a generalized plan
to repeatedly refer to the same action, while the actual action
effects depend on the state in which the action is applied. In
this section we also define planning programs, the formalism
we use to represent and compute generalized plans.

2.1 Classical Planning With Conditional Effects

We represent states in terms of propositional variables or
fluents and assume that fluents are instantiated from predi-
cates. Specifically, there exists a set of predicates ¥, and
each predicate p € W has an argument list of arity ar(p).
Given a set of objects 2, the set of fluents F' is induced by
assigning objects in € to the arguments of predicates in W,
ie. F = {p(w):pe ¥ we QP where, given a set X,
X™ is the n-th Cartesian power of X.

A literal [ is a valuation of a fluent f € F,ie.l = f or
Il = —f. A set of literals L represents a partial assignment of
values to fluents (WLOG we assume that L does not assign
conflicting values to any fluent). Given L, let =L = {=l: [ €
L} be the complement of L. A state s is a set of literals such
that |s| = | F|, i.e. a total assignment of values to fluents.

A classical planning problem with conditional effects is a
tuple P = (U, Q, A I,G), where U is a set of predicates
and () is a set of objects (inducing a set of fluents F'), A is a
set of actions, [ is an initial state and G is a goal condition,
i.e. a set of literals. Each action a € A has a set of literals
pre(a) called the precondition and a set of conditional effects
cond(a). Each conditional effect C > E € cond(a) is com-
posed of sets of literals C' (the condition) and F (the effect).

Action a is applicable in state s if and only if pre(a) C s,
and the resulting set of triggered effects is

J =

Cr>E€cond(a),CCs

eff(s,a) =

i.e. effects whose conditions hold in s. The result of applying
ain s is a new state 6(s,a) = (s \ —eff(s,a)) Ueff(s, a).

A plan for P is an action sequence m = {aq, ..., a,) that
induces a state sequence (s, $1, ..., Sp) such that s = T
and, for each ¢ such that 1 < ¢ < n, a; is applicable in s;_1
and generates the successor state s; = 6(s;_1, a;). The plan
7 solves P if and only if G C s, i.e. if the goal condition is
satisfied following the application of 7 in I.

2.2 Planning Programs

Our aim is to generate high-level state features to compute
generalized plans. Our definition of generalized planning is
loosely based on that of Hu and De Giacomo (2011). We
define a generalized planning problem P = {Py,..., Pr}
as a set of multiple individual planning problems that share
fluents and actions. Consequently, each individual planning
problem P, € P is defined as P, = (U, Q, A, I, G;), where
W, Q) and A are shared and only the initial state I, and goal
condition G differ from other planning problems in P.

To represent and compute generalized plans we exploit
a recent formalism called planning programs [Jiménez and
Jonsson, 2015; Segovia-Aguas et al., 2016]. Given a plan-
ning problem P = (¥, Q, A, I, G), a planning program II is
a numbered list of instructions with each instruction belong-
ing to one of the following three types:

1. Sequential instruction, i.e. an action in A.

2. Conditional goto instruction, goto(i', f) where, ¢’ is the
target program line and f € F' is the jump condition.

3. Termination instruction marking the program end.

To execute a planning program II on P, we maintain a cur-
rent state s, initialized to I, and a program counter pc, ini-
tialized to 0. Let w be the instruction on the line indicated
by pc. If w € A, we update s as s = 0(s, w) and increment
pe. If w = goto(i/,!f), we set pc to i’ if f does not hold
in s, and increment pc otherwise (as in the original work, we
jump whenever the condition f is false). Finally, if w is a
termination instruction, execution ends successfully.

Since conditional goto instructions may cause infinite
loops, execution fails whenever it reaches a pair of state and
program counter (s,pc) already visited. A planning pro-
gram II solves P if the execution ends successfully and the
goal condition holds in the resulting state, i.e. G C s. A
planning program II solves a generalized planning problem
P ={Py,...,Pr}ifitsolves every problem P, € P.

Jiménez and Jonsson (2015) described a compilation that
takes a generalized planning problem P = {Pi,...,Pr}
as input and produces a single classical planning problem
P, where n bounds the maximum number of program lines.
Briefly, P,, extends the set of fluents of instances in P with
new fluents for encoding the content of the n program lines
and the current value of the program counter. In addition, P,
replaces the actions of instances in P with new actions for
programming and executing the program instructions on the
different program lines. A solution plan to P,, corresponds to
a planning program II that solves every problem in P.

3 Generating High-Level State Features

This section defines high-level state features as conjunctive
queries and extends planning programs [Jiménez and Jons-
son, 2015; Segovia-Aguas et al., 2016] such that conditional
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equal(a,b) < Jx;.assign(a,x1),
assign(b, 7).

lessthan-pointers(a, b) < Jx1, x9.points-to(a, x1),
points-to(b, z2),
lessthan(z1, 23).

Figure 2: Derived predicates in the form of conjunctive
queries for finding the minimum number in a list.

goto instructions jump according to the value of a conjunctive
query. The section also extends the compilation from gener-
alized planning into classical planning to generate planning
programs with conjunctive queries using a classical planner.

3.1 High-Level State Features

The notion of a high-level state feature is very general and
has been used in different areas of Al and for different pur-
poses. If we restrict ourselves to planning, a high-level state
feature can broadly be viewed as a state abstraction to com-
pactly represent planning problems and/or solutions to plan-
ning problems. Diverse formalisms have been used to rep-
resent high-level state features in planning ranging from first
order clauses [Veloso et al., 1995] to description logic for-
mulae [Martin and Geffner, 2004], LTL formulae [Cresswell
and Coddington, 2004], PDDL derived predicates [Hoffmann
and Edelkamp, 2005] and, more recently, observation formu-
lae [Bonet et al., 2010].

In our formalism, states are represented in terms of flu-
ents that are instantiated from the set of predicates . We
consider high-level state features that are arbitrary formulae
over the predicates in W. A high-level state feature is also
known as a derived predicate if it produces a new predi-
cate whose truth value is determined by the corresponding
formula. Derived predicates have proven useful for con-
cisely representing planning problems with complex condi-
tions and effects [Thiébaux et al., 2005] and for more ef-
ficiently solving optimal planning problems [Ivankovic and
Haslum, 2015].

In this paper we restrict ourselves to formulae in the form
of conjunctive queries from database theory [Chandra and
Merlin, 1977]. Conjunctive queries are a fragment of first-
order logic in which formulae are constructed from atoms us-
ing conjunction and existential quantification (disallowing all
other logical symbols). A conjunctive query can be written as

QOZ(I'l,.. '7xM'¢1/\"'/\¢q7

where x1, . ..,z are free variables, T4 1, . .
variables, and ¢1, . .., ¢4 are atoms.

Figure 2 shows two derived predicates, in the form of con-
junctive queries, that correspond to features a == b and
xa < xb. In both predicates, a and b act as free variables
while 21 and x5 are bound variables. The first derived pred-
icate models whether two given iterators point to the same
memory address, while the second models whether the value
pointed to by an iterator is less than the value pointed to by

. 7$k).3$k+1, ..

., Ty, are bound
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another iterator. The example assumes that predicate assign
models the assignment of a memory address to a pointer vari-
able, points-to models the content of the associated memory
location, and lessthan models that a value is less than another.
Given a planning problem P = (U, Q, A, I, G), we define
a derived predicate on a set of variables X = {z1,..., %},
each with domain Q2. Each atom p(v) in the derived predicate
consists of a predicate p € ¥ and a tuple v € X *"(?) that as-
signs variables in X to arguments of p. In addition, we make
the following assumptions regarding predicates and objects:

1. We partition (2 into a set of variable objects §2, (not to
be confused with the variables of a conjunctive query)
and a set of remaining objects £2,,.

. For each predicate p € U we designate at most one argu-
ment as a variable argument to be filled by a variable ob-
ject (WLOG the variable argument always goes first). In
the example, the first argument of predicates assign and
points-to is a variable argument. For predicates without
variable arguments, such as lessthan, we simply remove
the variable argument and associated variable object.

. In a conjunctive query, free variables can only be as-
signed to variable arguments of predicates and have do-
main €, while bound variables can only be assigned to
non-variable arguments and have domain €2,,.

Note that we could get rid of variable objects and variable
arguments by redefining predicates (e.g. assign could become
assign-i, assign-j and assign-n). As a consequence, all vari-
ables of a conjunctive query would be bound. However, vari-
able objects offer flexibility, by allowing the variable objects
to vary, and by generating derived predicates that are valid
for a range of variable objects. For instance, the conditions
1 == n and *¢ < *j in the program of Figure 1 are generated
by assigning objects to a and b accordingly (this requires i, j
and n to be variable objects of the planning problem).

3.2 Planning Programs with Conjunctive Queries

To incorporate conjunctive queries into planning programs
we simply replace the fluent f of conditional goto instruc-
tions goto(i',!f) with a conjunctive query . The execution
of a planning program with conjunctive queries proceeds as
explained in Section 2, except when the instruction associ-
ated with the current program counter is a conditional goto
instruction goto(i’, ). In that case, pc is set to i’ if ¢ does
not unify with the current state s, else pc is incremented.

Let p = (xl,...,xk).ﬂxk+1,...,xm.¢1 AN--- N\ ¢gbea
conjunctive query, and let u € Q¥ be an assignment of vari-
able objects to the free variables z1,...,z;. We describe a
strategy for unifying ¢ with the current state s. The idea is to
maintain a subset ® C Q7" of possible joint assignments of
objects to the bound variables xy1,. .., Z,. We then unify
the atoms of ¢ with s one at a time, starting with ¢, and
update the set & as we go along. After processing all atoms,
© unifies with s if and only if ® is non-empty, i.e. if there
remains at least one possible joint assignment to the bound
variables.

To illustrate this idea, consider again the example problem
introduced in Section 1 for finding the minimum element in



the integer list (2, 5,3,1,4). Consider the derived predicate
lessthan-pointers(a, b) from Figure 2, and let (4, ) be the as-
signment of variable objects to the free variables a, b. Assume
that in the current state s, iterator ¢ points to the third position
of the list while iterator j points to the first position. Unifica-
tion proceeds one atom at a time, and initially ® = Qg i.e. all
joint assignments to the bound variables x, x5 are possible.
The first atom points-to(4, x1) unifies with 1 = 3, the
element in the third position of the list. Consequently, joint
assignments in ® that do not assign the value 3 to x; are no
longer possible and thus removed. Likewise, the second atom
points-to(j, x2) unifies with zo = 2, and joint assignments
that do not assign the value 2 to x5 are removed from ®. As
a result, ® contains a single possible joint assignment (3, 2)
to x1, 2. Since 3 is not less than 2, no joint assignment in
® unifies with the third atom lessthan(x1, z2). As a result, &
becomes empty, and ¢ is considered non-unifiable with s.

3.3 Computing Planning Programs with
Conjunctive Queries

In this section we extend the compilation of Jiménez and Jon-
sson (2015) to compute planning programs with conjunctive
queries. The extended compilation takes as input a general-
ized planning problem P = {Pi,..., Pr} and constants n,
q and m (that bound the number of program lines, atoms and
bound variables, respectively) and outputs a single planning
problem P . A solution to P;", corresponds to a planning
program II with conjunctive queries such that II solves P.
Since programming and executing sequential and termina-
tion instructions is identical to the original compilation, we
only describe here the part of P, that corresponds to pro-
gramming and evaluating conjunctive queries. We define a
set of bound variables X = {z1,...,z,,} and a set of slots
¥ ={o01,...,04}. Eachslotis a placeholder for an atom of a
conjunctive query, and we also define a dummy slot . The
compilation is extended with the following novel fluents:

e For each pair of program lines 4,4’ such that 7’ # ¢ + 1,
a fluent ins; go10(;7) indicating that the instruction on line

i is a goto instruction goto(i’, lp).

For each slot 0, € X U {o¢}, a fluent slot” indicating
that o}, is the current slot.

For each line 7 and slot ;. € X2, a fluent eslo’ci?c indicating
that slot oy, on line ¢ is empty.

For each line ¢, slot o, € X, predicate p € W, vari-
able object v € 2, and variable tuple (y2, ..., Yar(p)) €

Xor®)=1 a fluentatom-p¥ (v, Yo, . . ., Yar(p)) indicating
that p(v, y2, - - ., Yar(p)) is the atom in slot oy, of line 7.

For each slot o, € X and object tuple (01,...,0,) €
Qm, a fluent poss®(o1,...,0,,) indicating that at oy,
(01,...,0m) is a possible joint assignment of objects to
the bound variables x4, ..., Zy,.
A fluent eval indicating that we are done evaluating a
conjunctive query and a fluent acc representing the out-

come of the evaluation (true or false).

In the initial state, all fluents above appear as false except
slot?, indicating that we are ready to program and unify the
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atoms of any conjunctive query. The initial state on other
fluents is identical to the original compilation, as is the goal
condition. We next describe the set of actions that have to
be added to the original compilation to implement the mech-
anism for programming and evaluating conjunctive queries.
A conjunctive query ¢ is activated by programming a goto
instruction goto(i’, !¢) on a given line 7. As a result of pro-
gramming the goto instruction, all slots on line ¢ are marked
as empty. For each pair of program lines 4,4, the action
pgoto, ;, for programming goto(i’, !y) on line i is defined as

pre(pgoto; ;1) = {pc;,ins; nit},
cond(pgoto; ;) = {0 > {=ins; nil, iNS; goto(i) }»
1
0> {eslot;, ..., eslot!}}.
The precondition contains two fluents from the original com-
pilation: pc;, modeling that the program counter equals ¢, and
ins; nil, modeling that the instruction on line 7 is empty.

Once activated, we have to program the individual atoms
in the slots of the conjunctive query . After programming
an atom, the slot is no longer empty. For each line i, slot
or € X, predicate p € W, variable object v € 2, and tuple
of bound variables (y2, ..., Yar(p)) € Xar()=1 the action
patom-p¥ (v, ya, ... s Yar(p)) is defined as

Yar(p))) = {PC;, slot" ! eslot} },
7yar(p)))
{0 > {—eslot?, atom-p¥ (v, ya, . . .

pre(patom-pf(v, Yo, .-

cond(patom-p¥ (v, o, . . .

ayar(p))}}'

Note that the action patom-p¥(v,ys, ..., Yar(p)) assigns a
concrete variable object v to its only free variable, i.e. the
conjunctive queries that we generate already assign variable
objects to free variables.

The key ingredient of the compilation are step actions that
iterate over the atoms in each slot while propagating the re-
maining possible values of the bound variables. For each line
i, slot o, € X, predicate p € W, variable object v € 2, and
tuple of bound variables (y2, ..., Yar(p)) € Xor®) =1 step

action step-p¥ (v, ya, . . . s Yar(p)) 18 defined as

pre(step—pf (Uv Y2y, yar(p))) =

{pcia SIOtk_lv atom'p’lic (Uv Y2, -, yar(p))}a

cond(step-pf (v, ¥, . . . , Yar(p))) = {0 > {=slot"! slot*}}
U {{posskil(olv cee 70m)7p<v7 0(y2)7 s 70(ya7(p)))}l>
om)} (o1, 0m) € Q).

To apply a step action, an atom has to be programmed first.
The unconditional effect is moving from slot o1 to slot oy.
In addition, the step action updates the possible assignments
to the bound variables x4, ..., x,,.

For an assignment (o1, . . ., 0,,) to be possible at slot ¥, it
has to be possible at ¢*~1, and the atom p(v, Y2, ... ,yar(p))
programmed at slot k£ has to induce a fluent that is currently
true. Let o(y) denote the object among o1, ..., 0, that is
associated with the bound variable y. For example, if y =
X9, then o(y) = o(xz) = o02. Then the induced fluent is

{poss® (o1, ..



given by p(v,0(y2),...,0(Yar(p))). Note that there is one
conditional effect for each possible assignment (01, ..., 0, ).
If k = 1, the condition poss*~! (o1, ..., 0,,) is removed since
all assignments are possible prior to evaluating the first atom.

Once we have iterated over all atoms, we have to check
whether there remains at least one possible assignment,
thereby evaluating the entire conjunctive query. For each line
1, let eval; be an action defined as

pre(eval;) = {pc,,slot?},
cond(eval;) = {0 > {eval}}
U {{poss?(01,...,0m)} > {acc} : (01,...,0m) € QU'}.

Action eval; is only applicable once we are at the last slot o,.
The conditional effects add the fluent acc if and only if there
remains a possible assignment to z1, ..., T, at o,.

Finally, we can now use the result of the evaluation to de-
termine the program line that we jump to. For each pair of
lines i, ', let jmp, ;, be an action defined as

pre(jmp; ;) = {PC;, NS goto(ir), Slot?, eval},
cond(jmp; ;) = {0 > {—-pc;, —eval, macc, —slot?, slot"}}

U {{—acc} > {pc; }, {acc} > {pc; 1 }}
U {0 > {=poss”(o1,...,0m): 1 <k < q,Vj.0; € Qo}}.

The effect is to jump to line 4" if acc is false, else continue
execution on line ¢ + 1. We also delete fluents eval and acc,
as well as all instances of poss” (o1, ..., 0,,) in order to reset
the evaluation mechanism prior to the next evaluation of a
conjunctive feature. The current slot is also reset to 0.

4 C(lassification with Planning Programs

Our extension of planning programs with conjunctive queries
allows us to model supervised classification tasks as if they
were generalized planning problems. Formally, the learn-
ing of a noise-free classifier from a set of labeled examples
{e1,...,er}, where each example e;, 1 < ¢t < T, is labeled
with a class in {c1,...,cz}, can be viewed as a generalized
planning problem P = { P}, ..., Pr} such that each individ-
ual planning problem P, = (U, Q, A I,,G;), 1 <t < T,
models the classification of the ¢*" example:

e U () induces the set of fluents F' representing the learn-
ing examples and their labels.

e A contains the actions necessary to associate a given ex-
ample with a class. For instance, in a binary classifica-
tion task, A = {setPositive, setNegative}.

e I, contains the fluents that describe the t*" example and

G the fluent that describes the label of the t** example.

The solution II to a generalized planning problem P that
models a classification task is a noise-free classifier that cov-
ers all learning examples.

This model is particularly natural for classification tasks in
which both the examples and the classifier are described us-
ing logic. Michalski’s train [Michalski et al., 2013] is a good
example of such tasks. It defines 10 different trains (5 travel-
ing east and 5 traveling west) and the classification target is
finding rules that cause a train to travel east or west. Trains
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2. wagons(two)
3. setWest

~

4. end

Figure 3: Planning program that encodes a noise-free classi-
fier for the Michalski’s train problem.

are defined using the following relations: which wagon is in
a given train, which wagon is in front, the wagon’s shape,
its number of wheels, whether it has a roof or not (closed or
open), whether it is long or short, the shape of the objects the
wagon is loaded with and the class of the train.

In more detail, the generalized planning problem encoding
the Michalski’s train task would be:

e Fluents F' induced from ¥ = {(wagons ?Number),
(hasCar ?Car), (infront ?Car ?Car), (shape ?Car ?Shape),
(wheels ?Car ?Number),  (closed ?Car),  (open ?Car),

)

(long ?Car), (short ?Car), (double ?Car), (jagged ?Car),
(load ?Car ?Shape ?Number), (eastbound), (westbound)}.

e Actions A = {setWest}. We assume that any example
has initial class eastbound, causing the resulting plan-
ning programs to be more compact.

pre(setWest) = {0},
cond(setWest) = {() > —eastbound},
{0 > westbound}.

e Each initial state I, defines the ¢*" train and G; defines
its associated class (east or west).

Figure 3 shows a planning program encoding a noise-
free classifier for the Michalski’s train problem. As ex-
plained, the program assumes that examples initially have
class eastbound. Line 1 of the program is an unconditional
jump to line 3.

5 [Evaluation

In all experiments, we run the classical planner Fast Down-
ward [Helmert, 2006] with the LAMA-2011 setting [Richter
and Westphal, 2010] on a Intel Core i5 3.10GHz x 4 with a
4GB memory bound and time limit of 3600s.



Lines Slots Vars Time Len

List 3 2 1 1.0 135

Summatory 3 2 1 130 40
 Trains 5 (4,1, d,1,1) 61.0 101

And 4 (2,2) (1,1) 0.7 49

Or 4 (2,2) (1,1) 14 49

Xor 4 2,2) 2,1) 1.5 44

Table 1: Program lines, slots and variables of the features,
time (in seconds) elapsed while computing the solution, and
plan length required to generate and verify the solution.

We evaluate our method in two kinds of benchmarks. We
first consider benchmarks from generalized planning where
the target is generating a plan that generalizes without pro-
viding any prior high-level representation of the states. This
set of benchmarks include iterating over a list and computing
the n'" term of the summatory series. On the other hand, we
consider binary classification tasks which include Michalski’s
train (cf. Section 4) as well as generating the classifiers cor-
responding to the logic functions and(X1, Xs), or(X;, X5)
and zor(Xy, X3). Table 1 summarizes the obtained results.
We report the number of program lines used to solve the gen-
eralized planning problem, the number of slots and bound
variables required to learn the features (a list means that more
than one feature was learned), the time taken to generate the
program, and the plan length.

We briefly describe the features and the programs learned
for the different domains. In the list domain we learn
the feature 1 n for the program (0. visit, 1. inc(i),
2. goto(0,i!=n)). In the summatory domain we learn the
feature b 0 for the program (0. sum(a,b), 1. dec(b),
2. goto(0,b!=0)). For Michalski’s train we learn the pro-
gram and features shown in Figure 3. The programs for
and(Xy, X2), or(X1, Xs) and zor(X;, X2) have the same
structure: they learn a first feature that captures if a vari-
able is false (true for the or function, and one true and one
false for xor) and a second feature to capture that the class of
the example was set to negative. This is the 4-line program
for the and(X;, X2) function: (0. goto(3,!X = False),
1. setFalse, 2. goto(4, class = False), 3. setTrue, 4. end).

6 Related Work

Our approach for learning high-level state features (and clas-
sifiers) is inspired by version space learning [Mitchell, 1982].
The hypothesis to learn consists of logic clauses and exam-
ples are logic facts that restrict the hypothesis forcing it to be
consistent with the examples. Inductive Logic Programming
(ILP) [Muggleton, 1999] also intersects Machine Learning
(ML) and Logic Programming to generate hypotheses from
examples. ILP has traditionally been considered a binary
classification task but, in recent years, it covers the whole
spectrum of ML such as regression, clustering and associa-
tion analysis. The main contribution of our approach with
respect to version space learning and ILP is the use of a clas-
sical planner to build and validate the learned hypotheses.
Previous work on computing generalized plans in the form
of generalized policies already attempted to automatically
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generate higher-level state representations [Khardon, 1999].
Two examples are learning generalized policies from solved
instances using description logic [Martin and Geffner, 2004]
and taxonomic syntax [Yoon et al., 2008] to represent and
reason about classes of objects. In these works, planning and
learning were clearly separate phases producing noisy learn-
ing examples in many cases. In contrast, our approach tightly
integrates planning and learning.

Generating high-level state features for generalized plan-
ning is also related to previous work on First Order
MDPs [Boutilier et al., 2001; Gretton and Thiébaux, 2004].
These works adapt traditional dynamic programming algo-
rithms to the symbolic setting and automatically generate
first-order representations of the value function with first-
order regression. The main contribution of our approach with
respect to this research line is that we follow a compilation
approach to generate useful state abstractions with off-the-
shelf planners.

7 Conclusion

In generalized planning problems, high-level state features
are traditionally hand-coded which requires significant hu-
man expertise. We have proposed a novel approach to au-
tomatically generating these features by tightly integrating
the computation of planning programs with the computation
of the features. This integration is achieved incorporating
conjunctive queries into planning programs and extending an
existing compilation from generalized planning to classical
planning [Jiménez and Jonsson, 2015; Segovia-Aguas et al.,
2016] such that it can be exploited by an off-the-shelf planner.

Currently we are only able to generate high-level state fea-
tures in the form of conjunctive queries, and hence we cannot
model features with unbounded transitive or recursive clo-
sures. This kind of features are known to be useful for some
planning domains, e.g. the above feature, the transitive clo-
sure of on, for the Blocksworld domain. In the near future we
would like to extend our approach to generating more expres-
sive features.

In addition, our approach naturally models classification
tasks in which both examples and classifiers are represented
using logic. The aim of this research direction is not com-
peting with existing ML algorithms; indeed, we cannot deal
with noisy examples. Instead, our aim is to provide a new
formalism capable of representing tasks that integrate classi-
fication and planning. Moreover, we bring a new landscape
of challenging benchmarks to classical planning.
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