
Abstraction Heuristics for Symbolic Bidirectional Search

Álvaro Torralba
Saarland University

Saarbrücken, Germany
torralba@cs.uni-saarland.de

Carlos Linares López and Daniel Borrajo
Universidad Carlos III de Madrid

Madrid, Spain
{carlos.linares,daniel.borrajo}@uc3m.es

Abstract
Symbolic bidirectional uniform-cost search is a
prominent technique for cost-optimal planning.
Thus, the question whether it can be further im-
proved by making use of heuristic functions raises
naturally. However, the use of heuristics in bidi-
rectional search does not always improve its per-
formance. We propose a novel way to use abstrac-
tion heuristics in symbolic bidirectional search in
which the search only resorts to heuristics when
it becomes unfeasible. We adapt the definition of
partial and perimeter abstractions to bidirectional
search, where A⇤ is used to traverse the abstract
state spaces and/or generate the perimeter. The re-
sults show that abstraction heuristics can further
improve symbolic bidirectional search in some do-
mains. In fact, the resulting planner, SymBA⇤, was
the winner of the optimal-track of the last IPC.

1 Introduction
Most cost-optimal planners are based on A⇤ guided with an
admissible heuristic. Bidirectional search has not been ex-
plored so extensively, due to the inherent difficulties of re-
gression in planning and the computational cost of detecting
collisions between both frontiers [Alcázar et al., 2014]. Sym-
bolic search [McMillan, 1993] reasons over sets of states,
substantially reducing the cost of detecting the collision of
frontiers. Besides, recent advances have alleviated the prob-
lem of spurious states in symbolic regression [Torralba and
Alcázar, 2013]. Thus, symbolic bidirectional uniform-cost
search (SB) is among the best algorithms for cost-optimal
planning, outperforming not only A⇤-based planners but also
BDDA⇤, the symbolic search variant of A⇤.

These observations lead to the question of whether heuris-
tics can further improve SB. Bidirectional heuristic search
(BHS) has a long history [Pohl, 1969; de Champeaux, 1983],
but it has never convincingly outperformed A⇤ across a sig-
nificant number of domains. There have been various at-
tempts to explain the main reasons behind the limitations
of front-to-end BHS, from the search frontiers passing each
other without intersecting [Nilsson, 1982] to the hardness
of proving optimality [Kaindl and Kainz, 1997]. A re-
cent study conjectures that the quality of heuristics is a ma-

jor factor for explaining the disappointing empirical results
of BHS [Barker and Korf, 2015] and motivating new ap-
proaches [Holte et al., 2016].

Perimeter search is a variant of BHS that creates a perime-
ter around the goal, and uses heuristics that estimate the dis-
tance to the perimeter instead of to the goal [Dillenburg and
Nelson, 1994]. Abstraction heuristics are a good fit because
they precompute the heuristic, avoiding a large overhead dur-
ing the search [Eyerich and Helmert, 2013]. Moreover, sym-
bolic perimeter abstraction heuristics are state-of-the-art for
cost-optimal planning [Torralba et al., 2013].

We present a new planner, SymBA⇤, that combines sym-
bolic bidirectional search with perimeter abstraction heuris-
tics, exploiting their synergy to benefit from the advantages of
BHS and overcome its limitations. SymBA⇤ performs bidi-
rectional searches over different state spaces. It starts in the
original search space and, when the search becomes too hard,
it derives a perimeter abstraction heuristic. The planner de-
cides at any point whether to advance the search in the origi-
nal state space, enlarging the perimeter, or in an abstract space
to improve the heuristic. To that end, we introduce a new
type of abstraction heuristics that uses bidirectional search
combined with perimeter and partial abstractions. This is the
first time bidirectional search is used to explore abstract state
spaces to the best of the authors’ knowledge. Even though
the theory behind partial and perimeter abstractions has been
well studied, they have to be adapted for their combination
with bidirectional search. In particular, we study how partial
abstractions can be used when A⇤ search is used to traverse
the abstract state space and how the initialization of perimeter
abstractions can be improved in the bidirectional setting.

2 Preliminaries
A planning task is a 4-tuple ⇧ = hV,A, I,Gi. V is a finite
set of variables v, each v 2 V being associated with a finite
domain Dv . A partial state over V is a function s on a subset
V (s) of V , so that s(v) 2 Dv for all v 2 V (s); s is a state

if V (s) = V . The initial state I is a state. The goal G is a
partial state. A is a finite set of actions, each a 2 A being a
pair (prea, e↵ a) of partial states, called its precondition and
effect. Each a 2 A has a non-negative cost, c(a) 2 R+

0 .
The state space of a planning task ⇧ is a labeled transition

system ⇥

⇧
= (S,L, T, s0, SG) where: S is the set of all

states; s0 is the initial state I of ⇧; s 2 SG iff G ✓ s; the

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3272

labels L correspond to the actions A, and s

a�! t is a transition
in T if s complies with prea, and t(v) = e↵ a(v) for v 2
V (e↵ a) while t(v) = s(v) for v 2 V \V (e↵ a). A plan for s
is a path from s to any sG 2 SG. The cost of a plan is defined
as c(⇡) =

P
ai2⇡ c(ai). The cost of a cheapest plan for s is

denoted h

⇤
(s) and the cost of the cheapest path from s0 to s

is denoted g

⇤
(s). A plan for s0 is a plan for ⇧, and is optimal

iff its cost equals h⇤
(s0).

Most cost-optimal planners use heuristic search with A⇤.
A heuristic is a function h : S ! R+

0 [{1} which estimates
the remaining cost to reach the goal. A heuristic is perfect if
it coincides with h

⇤, and it is admissible if it never overesti-
mates the optimal cost, that is, 8s : h(s) h

⇤
(s). A heuristic

is consistent if for every transition s

a�! t, h(s) h(t)+c(a).
A⇤ expands the nodes with lowest f(s) = g(s) + h(s) first
so that no node with f(s) > h

⇤
(I) is ever expanded. If the

heuristic is admissible A⇤ is guaranteed to return an optimal
solution. Moreover, if the heuristic is consistent, A⇤ always
closes states with their optimal g-value, g⇤(s), so it does not
re-expand any node.

2.1 Bidirectional Search
A bidirectional search, T is composed of a forward, Tfw , and
a backward, Tbw , unidirectional search. We use Tu to denote
a unidirectional search in an unspecified direction and T¬u

for the search in the opposite direction. Each search Tu con-
sists of an open, open(Tu), and a closed list, closed(Tu). We
denote by g(Tu) and f(Tu) the minimum g and f -values of
any state in open(Tu), respectively.

Nipping is an optimization that avoids expanding any
state if it has already been expanded in the opposite direc-
tion [Kwa, 1989]. We apply nipping at generation time in
order to avoid unnecessary evaluations. We rely on states
always being closed with their optimal g-value, g⇤, so that
g

⇤
(s) is known for all s 2 closed(Tu) and those s 2

open(Tu) with g

⇤
(s) g(Tu) + mina2A c(a). Thus, when-

ever a state s is generated or is going to be expanded in Tu,
if g

⇤
(s) is known for T¬u, we discard s (without introduc-

ing it in closed(Tu)) and store the plan through that state
if it is the best plan found so far. The algorithm terminates
when the best solution found so far, ⇡, has been proven op-
timal, i. e., c(⇡) max(f(Tfw), f(Tbw)). Both frontiers use
each other as a heuristic, assigning an admissible value of
g(T¬u)+mina2A c(a) to all states in open(Tu). As all states
in open(Tu) have the same heuristic value, this does not affect
to the expansion order of uniform-cost search, but allows to
terminate the algorithm whenever c(⇡) g(Tbw)+g(Tfw)+
mina2A c(a).

2.2 Abstraction Heuristics
An abstraction is a mapping ↵ : S ! S↵ from states to
abstract states. The abstract state space is a tuple ⇥

↵
=

hS↵
, L, T

↵
, I↵

,S↵
? i where S↵ is the set of abstract states,

L is the set of labels, T↵
= {(↵(s) a�! ↵(t)) | s

a�! t},
I↵

= ↵(s0) and S↵
? = {s↵ | 9s 2 S?, s

↵
= ↵(s)}. T ↵

denotes a bidirectional search in ⇥

↵, in contrast to the search
in the original state space, T ⇧. Abstraction heuristics use the
optimal solution cost in ⇥

↵, h↵, as an admissible estimation.
Similarly, g↵(s) is the optimal solution cost from I↵ to ↵(s).

There are different types of abstraction heuristics de-
pending on the mapping definition, ↵. Pattern Databases
(PDBs) [Culberson and Schaeffer, 1998; Edelkamp, 2001]
are projections of ⇧ onto a subset of variables (called pat-

tern), so that two states are equivalent iff they agree on the
value of variables in the pattern. Merge-and-shrink (M&S)
abstractions generalize PDBs, allowing abstractions that use
all variables [Helmert et al., 2007; 2014].

The optimal solution cost from every abstract state,
h

↵
(s

↵
), is precomputed and stored in a lookup table prior

to the search by performing a backward uniform-cost search
from the abstract goal, T ↵

bw . Partial abstractions do not search
the entire abstract state space completely [Anderson et al.,
2007; Edelkamp and Kissmann, 2008b]. Thus, h↵ is only
known for states that were expanded during the precompu-
tation phase or were left in open with g-value lower or equal
than g(T ↵

)+mina2A c(a). For every other abstract state, the
heuristic returns the minimum cost with which a state could
be generated g(T ↵

) + mina2A c(a). Partial abstractions are
admissible and consistent.

Perimeter abstractions construct a perimeter around the
goal in the original state space and use it to seed the search
in the abstract state space [Felner and Ofek, 2007; Eye-
rich and Helmert, 2013]. The perimeter is constructed by a
backward search, T ⇧

bw , which computes the perfect heuris-
tic for all states in closed(T ⇧

bw). For every state outside
the perimeter, an abstract search, T ↵

bw computes the min-
imum distance from each abstract state to the closest ab-
stract state in the perimeter. Formally, T ↵

bw is initialized with:
open(T ↵

bw)[g] = {s↵ | 9s2S,↵(s)=s↵ s 2 open(T ⇧
bw)[g]} and

closed(T ↵
bw) = {s↵ | 8s2S,s↵=↵(s) s 2 closed(T ⇧

bw)}.

2.3 Symbolic Search

Symbolic search algorithms use succinct data-structures like
Binary Decision Diagrams [Bryant, 1986] to efficiently rep-
resent and manipulate sets of states. BDDs offer a com-
pact representation of sets of states that sometimes can get
an exponential advantage in memory with respect to their ex-
plicit enumeration [Edelkamp and Kissmann, 2008a]. Fur-
thermore, BDD operations can be used to compute the union
or intersection of two sets of states. Using these operations,
it is possible to define symbolic versions of different search
algorithms like uniform-cost search or A⇤.

BDDA⇤ is the symbolic version of A⇤. As usual, it expands
states in ascending order of their f -value, but expanding at the
same time all the states sharing the same f and g values. A
difference with typical explicit implementations of A⇤ is that
it uses the opposite tie-breaking. In BDDA⇤ states with lower
g-value are preferred in order to generate all the states with
the same f and g value before expanding any of them.

Symbolic search is not limited to the original state space.
Symbolic PDBs take advantage of symbolic search in order
to traverse the abstract state space. This allows for the use of
larger patterns, since the state space is not explicitly enumer-
ated [Kissmann, 2012]. The combination of symbolic search
and perimeter abstractions is a state-of-the-art heuristic [Tor-
ralba et al., 2013], which we extend to the bidirectional case.

3273

3 SymBA⇤: Symbolic Bidirectional A⇤

SymBA⇤ performs several symbolic bidirectional A⇤

searches on different state spaces. First, SymBA⇤ starts a
bidirectional search in the original state space, T ⇧. At each
iteration, the algorithm performs a step in a selected direc-
tion, i. e., expands the set of states with minimum f -value
in the frontier. Since no abstraction heuristic has been de-
rived yet, it behaves like symbolic bidirectional uniform-cost
search. This search continues until the next layer in both di-
rections is deemed as unfeasible, because SymBA⇤ estimates
that it will take either too much time or memory. Only then, a
new bidirectional search is started in an abstract state space,
T ↵ initialized with the current frontiers of T ⇧. The ab-
stract searches provide heuristic estimations, increasing the
f -value of states in the original search frontiers. Eventually,
the search in the original state space will be simplified (as the
number of states with minimum f -value will be smaller)1 and
SymBA⇤ will continue the search in the original state space.

One important feature of the algorithm is the lazy evalua-
tion of the heuristics. The search in abstract state spaces is
delayed until strictly needed to simplify the original search,
allowing SymBA⇤ to use multiple abstraction heuristics with-
out a large overhead. We model this by considering a pool of
active searches and letting the algorithm decide which search
should be advanced at any step, as shown in Alg. 1. The
pool of searches is initialized with a bidirectional search in
the original state space. At each iteration, the algorithm fil-
ters the searches that are valid candidates from the pool and
selects the most promising one. The algorithm depends on
this search selection strategy, further explained in Section 7.

Once a search has been selected, the procedure
ExpandFrontier expands the set of states that have a
minimum g-value among those that have a minimum f -value,
as usual in BDDA⇤. If we progress the original search, a new
plan with a lower cost than the incumbent solution may be
found. If an abstract search is selected, we update the heuris-
tic value of states in searches in the opposite direction in the
pool, both in the abstract and original state spaces. If sev-
eral abstraction heuristics are generated, SymBA⇤ will use
their maximum value, so that the heuristic value of states
can only be increased. If there are no valid search candi-
dates (line 10), a new bidirectional search is added to the pool
(which amounts to two new searches). The abstraction strat-

egy relaxes the current frontiers of the original search, until
the frontier size is small enough to continue the search.

One of the main characteristics of SymBA⇤ is that the
heuristics change dynamically during the search. Not only
may the algorithm decide to initialize a new abstract search at
any point, but also every time that an abstract search performs
a step, the heuristic value of states in the original search may
increase. Re-evaluating the entire search frontier repeatedly
may be too costly if done naı̈vely, becoming a bottleneck and
making the entire algorithm unfeasible. We avoid this prob-
lem using the lazy implementation of BDDA⇤ [Edelkamp et

al., 2012], which keeps the states organized by g-value and
defers the heuristic evaluation. Thus, whenever the heuristic

1Having fewer states does not necessarily imply that the BDD is
smaller, but in most cases there is a positive correlation.

Algorithm 1: SymBA⇤

Input: Planning problem: ⇧ = hV,A, I,Gi
Output: Cost-optimal plan or “no plan”

1 SearchPool {T ⇧
fw , T ⇧

bw}
2 ⇡ “noplan

00

3 while max(f(T ⇧
fw), f(T ⇧

bw)) < cost(⇡) do
4 if 9T X

u 2 SearchPool s.t. Is-Candidate(T X
u)

then
5 T X

u Select-Search(SearchPool)

6 ⇡

0 Expand-frontier(T X
u)

7 if X = ⇧ ^ ⇡

0 6= ; ^ cost(⇡

0
) < cost(⇡) then

8 ⇡ ⇡

0

9 Notify-h(T X
¬u, T ⇧

¬u)

10 else
11 ↵ Select-abstraction(⇧, T ⇧

fw , T ⇧
bw)

12

D
T ↵
fw , T ↵

bw

E
 Apply(↵, T ⇧

fw , T ⇧
bw)

13 SearchPool SearchPool [{T ↵
fw , T ↵

bw}

14 return ⇡

changes in the middle of the search only the set of states cur-
rently selected for expansion must be re-evaluated, without
any additional computation in the open list.

The next sections describe the abstraction heuristics that
we use. Summarizing, (i) bidirectional search can be used in
the abstract state space allowing two searches, in opposite di-
rections, to exchange information and avoid redundant work;
(ii) partial abstractions allow SymBA⇤ to traverse larger ab-
stract state spaces with less effort, since exploring them com-
pletely is unnecessarily expensive; and (iii) perimeter abstrac-
tions take advantage of the searches in the original state space
in order to obtain better estimates, overcoming the limita-
tions of front-to-end BHS. Perimeter and partial abstraction
heuristics are not new and the conditions for consistency and
admissibility are well-known for them. However, the use of
bidirectional abstract searches and, in particular, the use of
A⇤ searches for exploring the abstract state space and con-
structing the perimeter, requires us to reconsider partial and
perimeter abstractions. Our aim is to obtain heuristic estima-
tions as informed as possible while preserving the optimality
of the algorithm. Inconsistency of heuristics is not necessar-
ily a problem [Felner et al., 2011], but states must be closed
with their optimal g⇤-value to ensure that perimeter abstrac-
tions are admissible.

4 Bidirectional Abstractions
To perform bidirectional search in abstract state spaces, a dis-
tinction must be made between the searches used in the orig-
inal and abstract state spaces. T ⇧ aims to find a plan. So,
whenever the two frontiers meet, a plan is retrieved and nip-
ping avoids the expansion of the state to eliminate redundant
work between T ⇧

fw and T ⇧
bw . On the other hand, searches on

abstract state spaces are used to derive heuristic estimates for
the original search. Therefore, nipping must be disabled in
order for the estimations to be admissible.

3274

Thus, the interaction between both searches is reduced to
use each other as a (perfect) heuristic. But, otherwise, they do
not directly interact to detect the collision of their frontiers.
Hence, bidirectional searches in the abstract state space are
two A⇤ searches using each other as a heuristic. They must
redundantly expand states that have already been expanded
in the other direction in order to provide admissible estima-
tions to the original search. In the worst case, if both abstract
searches traverse the entire abstract state space, the search ef-
fort is doubled plus an overhead for using heuristics. Here it
is where partial abstractions come in handy to avoid the ex-
ploration of the entire abstract state space.

5 Partial Abstractions with Heuristic Search
SymBA⇤ uses partial abstractions to traverse large abstract
state spaces that could not be entirely explored otherwise. In
order to compute the heuristic value of every state, we will
likely need to expand most parts of the abstract state space.
For example, if one single state is a dead-end both in the orig-
inal and the abstract state space, the abstract state space must
be completely traversed before continuing the search. Most
parts of that computation are irrelevant, since the termination
criterion of A⇤ is that, for every state s not expanded yet,
f

⇤
(s) � c(⇡). In other words, the heuristic value of a state

does not matter provided it is large enough to guarantee that
its f -value is not the minimum among the current f -value of
other states in the search. To simplify the notation, we assume
wlog (the same arguments hold for opposite directions) that a
backward abstract A⇤ search, T ↵

bw guided with an admissible
estimation of g↵ is used to compute h

↵ in order to inform a
forward search in the original state space, T ⇧

fw .
In partial abstractions, abstract states can be classified de-

pending on whether h↵
(s) is known or not. h

↵
(s) is known

for those abstract states that have already been expanded and
those that remain in open with a g-value lower or equal than
g(T ↵

bw)+mina2A c(a). The question is which heuristic value
do we assign to states for which h

↵
(s) is not known. The

usual answer is to use the minimum g-value with which they
could be generated, g(T ↵

bw) + mina2A c(a). Usually, this is
a satisfactory lower bound because the abstract state space
is explored with a uniform-cost search so g(T ↵

bw) is con-
stantly increasing. However, in SymBA⇤ the abstract state
space is explored with an A⇤ search because it uses the other
frontier as (perfect) heuristic. Thus, a bound only based on
g(T ↵

bw) is no longer useful, because it may remain constant
as the search progresses. Therefore, states, we set a bound
for the f -value of the states, based on the following inequal-
ity: f(T ↵

bw) f

↵
(s) f

⇤
(s). As f(s) = g(s) + h(s),

we can translate the bound for f(s) to a heuristic value that
depends on the g-value of s: h(s) = f(T ↵

bw)� g(s).
Proposition 1. Let T ↵

bw be a search in ⇥

↵
and s 2 S be a

state s.t. ↵(s) 62 closed(T ↵
bw). Then f(T ↵

bw)� g(s) h

⇤
(s).

Proof. By definition g(s) � g

⇤
(s). Also, f(T ↵

bw) f

↵
(s)

f

⇤
(s) = g

⇤
(s) + h

⇤
(s). Thus, the inequality holds: h⇤

(s) =

f

⇤
(s)� g

⇤
(s) � f

⇤
(s)� g(s) � f(T ↵

bw)� g(s).

The problem is that such heuristic may be inconsistent, as
illustrated by Figure 1. Consistency requires that for every

I↵ G↵

↵(s)

↵(t)

g(T ↵
bw) I↵ G↵

↵(t)

g(T ↵
bw)

↵(s)

h↵(s)
g↵(s)

Figure 1: T ↵
bw with uniform-cost search (left) and A⇤ (right).

s

a�! t, h(s) h(t) + c(a). However, if ↵(s) has been
expanded by the abstract search and ↵(t) not, the bound for
↵(t), f(T ↵

bw) � g(t) might be a lot weaker than h

↵
(s), gen-

erating an inconsistency. This may cause t to be expanded
before s with a suboptimal g-value. In order to avoid clos-
ing any state with a suboptimal g-value, one must ensure that
the lower-bound h

↵
(s) is only used when f(T ↵

bw) is large
enough to satisfy h

↵
(s) f(T ↵

bw) � g(t). So, the abstract
search cannot be stopped at any point, it must continue until
f(T ⇧

fw) f(T ↵
bw). We model this by computing the mini-

mum between h

↵ and our f -based bound.
Definition 1 (Partial abstraction heuristic). Let T ↵

bw be an A

⇤

search over ⇥

↵
informed with an admissible and consistent

heuristic. We define the bound for unexplored states B, as

B(s, T ↵
bw) := max{f(T ↵

bw)� g(s), g(T ↵
bw) +mina2A c(a)}.

We define the partial abstraction heuristic as:

hT ↵
(s) =

⇢
min(h↵(s), B(s, T ↵

bw)) if h↵(s) is known in T ↵
bw

B(s, T ↵
bw) otherwise

hT ↵ is still an inconsistent heuristic because if neither
h

↵
(s) nor h↵

(t) are known, B(s, T ↵
bw) = f(T ↵

bw)� g(s) and
B(t, T ↵

bw) = f(T ↵
bw) � g(t) then h(s) = f(T ↵

bw) � g(s) and
h(t) = f(T ↵

bw) � g(t). This is clearly inconsistent since it
may be that g(s) ⌧ g(t), since g

⇤
(t) g

⇤
(s) + c(a) but s

has not been expanded yet so g

⇤
(t)⌧ g(t) is possible. How-

ever, then f(s) = f(t), and the one with lower g-value is
selected for expansion. Theorem 2 proves this in general.
Theorem 2. Let T ⇧

fw be an A

⇤
search that breaks ties in favor

of states with lower g-value

2
and is informed with a hT ↵

.

Then, for any s 2 closed(T ⇧
fw), g(s) = g

⇤
(s).

Proof Sketch. (Full proof in TR) Suppose that g(s) > g

⇤
(s).

By Lemma 1 in [Hart et al., 1968], there exists a state r 2
open(T ⇧

fw), r 6= s, which is in the optimal path from I to s

such that g(r) = g

⇤
(r) g

⇤
(s) < g(s). Since s was selected

for expansion, f(s) < f(r). This leads to contradiction for
any possible values of hT ↵

(s) (and hT ↵
(r)):

• Assume hT ↵
(s) = h

↵
(s). As hT ↵

(r) h

↵
(r), this

leads to contradiction with the consistency of h↵.
• Assume hT ↵

(s) = f(T ↵
bw) � g(s). As g(s) � g

⇤
(r) =

g(r), it follows that B(r, T ↵
bw) = f(T ↵

bw)� g(r). There-
fore, f(r) f(T ↵

bw) = f(s) with contradiction.
• Assume hT ↵

(s) = g(T ↵
bw) + mina2A c(a). As g(s) �

g

⇤
(r) = g(r), it follows that B(r, T ↵

bw) = g(T ↵
bw) +

mina2A c(a). Hence, h(r) f(s) with contradiction.
⇤

2The tie-breaking condition is not needed if f(T ↵
bw) > f(T ⇧

fw).

3275

6 Perimeter Bidirectional Abstractions
Perimeter abstractions must also be redefined to handle
bidirectional and heuristic searches appropriately. First,
in bidirectional search we have forward and backward
perimeters. This can be leveraged in the initializa-
tion of the abstract searches by ignoring states in both
closed lists. The abstract bidirectional search T ↵ is ini-
tialized with the perimeter of T ⇧ as: open(T ↵

u)[g] =�
s↵j | 9s2S ↵(s) = s↵j ^ s 2 open(T ⇧

u)[g]

and closed(T ↵
u) =�

s↵j | 8s2S ↵(s) = s↵j =) s 2 closed(T ⇧
fw) [closed(T ⇧

bw)

.
Second, the perimeter search is carried out with A⇤ instead

of uniform-cost search. Hence, the perimeter is not uniform,
i. e., it has not only expanded all states up to a fixed radius.
The resulting heuristic is still admissible as long as every state
in the perimeter is closed with its optimal value, g⇤(s) in T ⇧

fw

and h

⇤
(s) in T ⇧

bw . However, non-uniform perimeters may
cause the heuristic to be inconsistent. For example, consider
two states s, t such that s a�! t, s 2 closed(T ⇧

bw) and t 62
closed(T ⇧

bw). In this case, h(s) = h

⇤
(s) and h(t) = h

↵
(t),

so consistency may be violated: h(s) 6 h(t) + c(a). How-
ever, this poses no problem if nipping is used to eliminate
all states in the opposite perimeter because the heuristic will
never be evaluated on those states anyway. Theorem 3 proves
that the perimeter abstraction heuristic is still admissible and
consistent for all relevant states, i. e., those that are not pruned
by nipping.

Theorem 3. Let T ↵
u be a perimeter abstraction in ⇥

↵
ini-

tialized with the perimeters of T ⇧
. Then, h is admissible and

consistent for any state s 62 closed(T ⇧
fw) [closed(T ⇧

bw).

Proof. A heuristic h is consistent if and only if h(s)
h(t) + c(a) 8s a�! t. In our case, we only contemplate states
s, t 62 closed(T ⇧

fw) [closed(T ⇧
bw), so ↵(s) and ↵(t) will not

be introduced in closed(T ↵
u) when initializing the abstract

search. ↵(t) may be generated by T ↵
u or not. If not, h(t) =

1 and consistency follows. If ↵(t) is expanded by T ↵
u , ↵(s)

will be inserted in open(T ↵
u) and later expanded. Hence, by

consistency of h↵, it follows that h(s) h(t) + c(a).

Therefore, bidirectional A⇤ guided with perimeter abstrac-
tion heuristics returns the optimal solution since the heuristic
is consistent for every state outside the perimeter and nipping
prevents its evaluation in states in the perimeter.

7 Search Selection Strategy
The core of SymBA⇤, as outlined in Algorithm 1, is how to
decide which search should be pushed forward at each iter-
ation. A search is a valid candidate if and only if it is both
feasible and useful. A search is feasible if the estimated time
and number of nodes needed to perform the next step does not
surpass any of the bounds imposed as parameters. The search
in the original search space is always useful. A search in an
abstract search space is useful if and only if it can further in-
form the next layer in the original search space, i.e., it has the
potential of simplifying the search in the original state space
by changing which states are selected for expansion.

Definition 2 (Useful abstract search). Let T ⇧
u be an A

⇤

search over ⇥

⇧
and let T ↵

¬u be an abstract search over ⇥

↵
in

the opposite direction. Let Sf be the set of states currently

selected for expansion in T ⇧
u , i. e., a subset of those with

minimal f -value according to any given tie-breaking crite-

ria. We say that T ↵
¬u is useful for T ⇧

u if f(T ↵
¬u) f(T ⇧

u)

and 9s2Sfh
↵
(s) is not known or B(s, T ↵

¬u) < h

↵
(s).

Theorem 4. Let T ⇧
u be an A

⇤
search informed with a heuris-

tic generated by an abstract search T ↵
¬u. If T ↵

¬u is not useful

for Tu, continuing the abstract search cannot alter the set of

states selected for expansion, Sf .

Proof Sketch. (Full proof in TR) Continuing T ↵
¬u can only

increase the h-value of the states. Therefore, the only way to
alter Sf is to increase the heuristic value of some s 2 Sf .
Since h

↵
(s) B(s, T ↵

¬u), h(s) can only be increased if
h(s) < h

↵
(s), which cannot be true if the search is not use-

ful.
• If f(T ⇧

u) = f(s) < f(T ↵
¬u) then hT ↵

(s) < B(s, T ↵
¬u)

and h(s) = h

↵
(s).

• If h↵
(s) is known and h

↵
(s) B(s, T

↵
¬u) then h(s) =

h

↵
(s).

⇤

The search in the original state space is preferred whenever
it is feasible. Otherwise, among all the abstract searches that
are valid candidates, we prefer those that have a greater min-
imum f -value, just because they are closer to proving that the
current solution is optimal. In case of a tie, the search whose
next step is expected to take less time is selected.

In summary, in order to prove optimality, it is enough to
expand abstract searches until f(T ↵

) � h

⇤
(I). All the states

whose abstract counterparts have not been expanded in any of
the abstract searches do not need to be explored because their
f -value is guaranteed to be non-optimal.

8 Experiments
SymBA⇤ is implemented on top of Fast Downward [Helmert,
2006] and uses h

2 in a precomputation step to remove irrel-
evant actions and obtain mutex constraints for pruning the
symbolic search [Alcázar and Torralba, 2015]. For our exper-
iments we used the version of SymBA⇤ that was submitted
to IPC’14 after fixing some bugs. We run experiments on the
optimal-track STRIPS planning instances from IPC’98 until
IPC’14. All experiments were conducted on a cluster of Intel
E5-2660 machines running at 2.20 GHz, with time (memory)
cut-offs of 30 minutes (4 GB).

We consider a search feasible if the frontier has less than 10

million BDD nodes and each step takes less than 45 seconds,
which are adequate values for the memory and time limits
of our experiments. SymBA⇤ can use any abstraction func-
tion that can be efficiently represented as BDDs such as PDBs
and M&S with linear merge strategies [Edelkamp et al., 2012;
Helmert et al., 2015]. In our evaluation we focus on the sim-
pler variant, PDBs. To select the “pattern” of the PDBs we
follow a strategy previously used for symbolic perimeter ab-
stractions [Torralba et al., 2013], which selects a variable or-
dering and relax variables one by one until the search can be

3276

SB SymBA⇤
Metis

PDB ipc1 ipc2 ;
cgl rev lev rnd gcl cgr ¬P ¬B

Airport(50) 27 27 27 27 27 27 27 27 27 27 27 27 29
Barman(34) 18 17 17 17 17 17 17 17 17 17 17 18 11
Blocks(35) 31 31 31 31 31 32 32 31 31 30 31 30 28

Childsnk(20) 4 4 4 4 4 4 4 4 4 4 4 4 6
Depot(22) 7 7 7 7 7 7 7 7 7 7 7 7 9

Driverlog(20) 12 14 13 13 14 13 14 14 14 14 14 12 14
Elevators(50) 44 44 44 44 44 44 44 43 43 44 44 43 40
Floortile(40) 34 34 34 34 34 34 34 34 34 34 34 34 16
FreeCell(80) 23 22 21 23 23 26 25 25 23 21 25 21 15

GED(20) 20 19 19 19 19 19 19 19 19 19 20 19 15
Grid(5) 3 3 3 3 3 3 3 3 3 3 3 2 2

Hiking(20) 15 15 15 15 19 18 18 20 20 18 20 15 14
Logistics(63) 23 25 25 25 25 25 24 25 25 25 25 23 27
Miconic(150) 112 107 108 108 109 108 108 108 108 108 108 108 144

Mprime(35) 24 23 25 24 25 25 25 25 24 25 24 23 24
Mystery(30) 15 15 15 15 15 15 15 15 15 15 15 15 18

NoMyste(20) 14 14 14 17 14 16 14 15 15 14 17 14 17
Openstk(100) 90 90 90 90 90 90 90 90 89 90 89 89 53
ParcPrint(50) 37 37 37 37 37 37 37 37 37 37 37 37 50

Parking(40) 6 4 4 4 4 4 4 3 2 1 3 1 8
PegSol(50) 48 48 48 48 50 48 49 48 48 48 50 48 48

PipesNT(50) 15 15 15 15 15 15 15 15 15 15 15 15 21
PipesT(50) 17 16 16 16 16 16 16 16 16 16 16 16 17
Rovers(40) 14 14 13 14 14 14 13 14 13 14 14 12 10

Satellite(36) 9 10 9 9 10 9 9 9 9 9 10 9 16
Scanlz(50) 21 21 21 21 21 21 21 21 21 21 21 21 31

Sokoban(50) 48 48 48 48 48 48 48 48 48 48 48 48 50
Tetris(17) 10 10 10 10 10 10 10 10 10 9 10 9 8

Tidybot(40) 25 20 20 20 20 20 20 17 27 27 27 17 23
TPP(30) 9 8 9 9 8 9 8 8 8 8 8 8 8

Transport(70) 33 31 31 31 31 31 31 31 31 31 31 33 24
VisitAll(40) 18 18 18 18 18 18 19 19 19 18 18 18 18

Woodwrk(50) 45 45 45 45 45 45 44 43 43 43 43 43 48
Zenotrvl(20) 10 11 12 11 11 12 12 12 12 12 11 10 13
Total(1607) 968 954 955 959 965 967 963 960 964 959 973 936 962

Score(40) 20.93 20.78 20.81 20.93 21.09 21.17 21.06 21.11 21.24 21.00 21.44 20.04 19.99

Table 1: Coverage of SymBA⇤ with different abstraction
strategies, compared with SB and Metis.

continued. We use six different variable orderings. lev and
rev use the variable ordering of the BDD and its reverse, re-
spectively. rnd is a completely random ordering. cgl and
cgr preserve variables interconnected in the causal graph giv-
ing preference to goal variables and breaking ties by lev or
rnd, respectively. Finally, gcl preserves goal variables pre-
ferring those that are interconnected in the causal graph and
breaking ties by lev. We also include the two configurations
of SymBA⇤ used in IPC’14, which use a combination of ab-
straction strategies in a round-robin schema. ipc1 uses cgr,
gcl and rev. ipc2 uses the same PDB strategies plus a M&S
strategy based on bisimulation with a limit of 10 000 abstract
states. Finally, ; is a strategy that stops the algorithm in-
stead of using any abstraction, to understand in which cases
abstractions are being used. As an ablation study, we run
all configurations disabling the perimeter abstractions (¬P)
and substituting the bidirectional search in the abstract state
spaces for a standard backward search (¬B).

Table 1 compares SymBA⇤ with different abstraction
strategies against the current state-of-the-art planner in sym-
bolic search, bidirectional uniform-cost search (SB), and one
state-of-the-art explicit-state search planner, METIS [Alk-
hazraji et al., 2014]. Domains in which all planners got the
same coverage are excluded from the table. We report to-
tal coverage and a final score that gives the same weight to
every domain (versions of the same domain in different com-
petitions are considered the same domain), normalizing the
coverage of every planner by the number of problems in that
domain. The results show that the use of abstractions can im-

prove the results of our baseline, SB, in 25 problems from 14

different domains. However, generating abstractions implies
a non-negligible overhead that affects negatively the coverage
in 35 problems from 20 different domains. The conclusion
is that using abstraction heuristics is beneficial in domains
where the “right” abstraction is selected. Since the perfor-
mance of all the strategies is close to a random selection of
variables (rnd), all configurations are nearly tied in total cov-
erage. The best strategy is ipc2, which won the optimal-track
of IPC’14. With it, the standard configuration of SymBA⇤

gets a score of 21.24; more than the baseline and METIS.
In the 936 problems solved by ;, all the configurations be-

have in the same way. In the rest of the problems, abstractions
are used in around 500 cases. This reflects that, by limiting
the frontier size to 10 million BDD nodes, SymBA⇤ is able to
identify in which cases the blind search is going to fail and re-
sort to abstractions. If this parameter is set to 1 million nodes,
most configurations improve in domains where they are better
than the baseline (e.g., ipc1/2 solve 18 problems in NoMys-
tery except for ¬B and ipc2 with ¬B solves 11 instances in
Satellite.) but their total coverage slightly decreases: ; solves
898 instances, ipc2 961 and ipc2 with ¬B , 962.

The ablation study shows that using perimeter abstractions
is usually helpful. Regarding bidirectional search in abstract
state spaces, however, the results are less clear. When a single
PDB is used, both versions are closely tied though sometimes
working best in different domains. However, when combin-
ing several strategies, as in the ipc configurations, the version
disabling bidirectional search in abstract state spaces obtains
better results. Our best configuration is ipc2 with backward
search in the abstract state spaces, improving the previous
state-of-the-art techniques both in coverage and score.

9 Conclusions
This paper addresses the question of whether heuristics can
be used to further improve the results of symbolic bidirec-
tional uniform-cost search (SB). This is a hard task, given
that multiple BHS algorithms have been proposed in the
past failing to outperform A⇤ search and SB. We have in-
troduced a new algorithm, SymBA⇤, that uses bidirectional
A⇤ with abstraction heuristics. SymBA⇤ leverages the per-
formance of SB by deferring the use of heuristics until a
blind search seems unfeasible. In order to generate heuris-
tics for both search frontiers, a bidirectional search is car-
ried out in an abstract state space, initialized with the cur-
rent frontier as a perimeter abstraction. To this end, we ex-
tended the definition of partial and perimeter abstractions to
the bidirectional case. These extensions are not limited to
SymBA⇤ and they can be applied to other algorithms that use
A⇤ to explore abstract state spaces such as the hierarchical
heuristic search algorithm Switchback [Larsen et al., 2010;
Leighton et al., 2011].

Our experimental results show that abstractions can fur-
ther improve the current state-of-the-art in symbolic bidirec-
tional search, helping SymBA⇤ to win the optimal track of the
last IPC. However, finding the right abstractions in a domain-
independent way is not a trivial task and there is still room for
improvement in future work.

3277

Acknowledgments
We’d like to thank Rosa Moreno Morales for her advice and
support. This work was partially supported by MICINN
projects TIN2014-55637-C2-1-R and TIN2011-27652-C03-
02.

References
[Alcázar and Torralba, 2015] Vidal Alcázar and Álvaro Tor-

ralba. A reminder about the importance of computing and
exploiting invariants in planning. In Proceedings of ICAPS,
2015.

[Alcázar et al., 2014] Vidal Alcázar, Susana Fernández, and
Daniel Borrajo. Analyzing the impact of partial states on du-
plicate detection and collision of frontiers. In Proceedings of

ICAPS, pages 350–354, 2014.
[Alkhazraji et al., 2014] Yusra Alkhazraji, Michael Katz, Robert

Matmüller, Florian Pommerening, Alexander Shleyfman, and
Martin Wehrle. Metis: Arming fast downward with pruning
and incremental computation. In International Planning Com-

petition (IPC), pages 88–92, 2014.
[Anderson et al., 2007] Kenneth Anderson, Robert Holte, and

Jonathan Schaeffer. Partial pattern databases. In Proceedings

of SARA, pages 20–34, 2007.
[Barker and Korf, 2015] Joseph Kelly Barker and Richard E.

Korf. Limitations of front-to-end bidirectional heuristic
search. In Proceedings of AAAI, pages 1086–1092, 2015.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Transactions on Com-

puters, 35(8):677–691, 1986.
[Culberson and Schaeffer, 1998] Joseph C. Culberson and

Jonathan Schaeffer. Pattern databases. Computational

Intelligence, 14(3):318–334, 1998.
[de Champeaux, 1983] Dennis de Champeaux. Bidirectional

heuristic search again. Journal of the ACM, 30(1):22–32,
1983.

[Dillenburg and Nelson, 1994] John F. Dillenburg and Peter C.
Nelson. Perimeter search. Artificial Intelligence Journal,
65(1):165–178, 1994.

[Edelkamp and Kissmann, 2008a] Stefan Edelkamp and Peter
Kissmann. Limits and possibilities of BDDs in state space
search. In Proceedings of AAAI, pages 1452–1453, 2008.

[Edelkamp and Kissmann, 2008b] Stefan Edelkamp and Peter
Kissmann. Partial symbolic pattern databases for optimal se-
quential planning. In Proceedings of KI, pages 193–200, 2008.

[Edelkamp et al., 2012] Stefan Edelkamp, Peter Kissmann, and
Álvaro Torralba. Symbolic A⇤ search with pattern databases
and the merge-and-shrink abstraction. In Proceedings of

ECAI, pages 306–311, 2012.
[Edelkamp, 2001] Stefan Edelkamp. Planning with pattern

databases. In Proceedings of ECP, pages 13–34, 2001.
[Eyerich and Helmert, 2013] Patrick Eyerich and Malte

Helmert. Stronger abstraction heuristics through perimeter
search. In Proceedings of ICAPS, pages 303–307, 2013.

[Felner and Ofek, 2007] Ariel Felner and Nir Ofek. Combining
perimeter search and pattern database abstractions. In Pro-

ceedings of SARA, pages 155–168, 2007.

[Felner et al., 2011] Ariel Felner, Uzi Zahavi, Robert Holte,
Jonathan Schaeffer, Nathan R. Sturtevant, and Zhifu Zhang.
Inconsistent heuristics in theory and practice. Artificial Intel-

ligence Journal, 175(9-10):1570–1603, 2011.
[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram

Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics, 4(2):100–107, 1968.
[Helmert et al., 2007] Malte Helmert, Patrik Haslum, and Jörg

Hoffmann. Flexible abstraction heuristics for optimal sequen-
tial planning. In Proceedings of ICAPS, pages 176–183, 2007.

[Helmert et al., 2014] Malte Helmert, Patrik Haslum, Jörg Hoff-
mann, and Raz Nissim. Merge-and-shrink abstraction: A
method for generating lower bounds in factored state spaces.
Journal of the ACM, 61(3):16:1–16:63, 2014.

[Helmert et al., 2015] Malte Helmert, Gabriele Röger, and Sil-
van Sievers. On the expressive power of non-linear merge-
and-shrink representations. In Proceedings of ICAPS, 2015.

[Helmert, 2006] Malte Helmert. The Fast Downward planning
system. Journal of Artificial Intelligence Research (JAIR),
26:191–246, 2006.

[Holte et al., 2016] Robert C. Holte, Ariel Felner, Guni Sharon,
and Nathan R. Sturtevant. Bidirectional search that is guaran-
teed to meet in the middle. In Proceedings of AAAI, 2016.

[Kaindl and Kainz, 1997] Hermann Kaindl and Gerhard Kainz.
Bidirectional heuristic search reconsidered. Journal of Artifi-

cial Intelligence Research, 7:283–317, 1997.
[Kissmann, 2012] Peter Kissmann. Symbolic Search in Planning

and General Game Playing. PhD thesis, Universität Bremen,
2012.

[Kwa, 1989] James B. H. Kwa. BS*: An admissible bidirec-
tional staged heuristic search algorithm. Artificial Intelligence

Journal, 38(1):95–109, 1989.
[Larsen et al., 2010] Bradford John Larsen, Ethan Burns,

Wheeler Ruml, and Robert Holte. Searching without a
heuristic: Efficient use of abstraction. In Proceedings of

AAAI, pages 114–120, 2010.
[Leighton et al., 2011] Michael J. Leighton, Wheeler Ruml, and

Robert C. Holte. Faster optimal and suboptimal hierarchical
search. In Proceedings of SoCS, pages 92–99, 2011.

[McMillan, 1993] Kenneth L. McMillan. Symbolic model check-

ing. Kluwer Academic publishers, 1993.
[Nilsson, 1982] Nils J. Nilsson. Principles of Artificial Intelli-

gence. Springer, 1982.
[Pohl, 1969] Ira Pohl. Bi-directional and heuristic search in path

problems. PhD thesis, Department of Computer Science, Stan-
ford University., 1969.

[Torralba and Alcázar, 2013] Álvaro Torralba and Vidal Alcázar.
Constrained symbolic search: On mutexes, BDD minimiza-
tion and more. In Proceedings of SoCS, pages 175–183, 2013.

[Torralba et al., 2013] Álvaro Torralba, Carlos Linares López,
and Daniel Borrajo. Symbolic merge-and-shrink for cost-
optimal planning. In Proceedings of IJCAI, pages 2394–2400,
2013.

3278

