
Co-Optimizating Multi-Agent Placement
with Task Assignment and Scheduling

Chongjie Zhang and Julie A. Shah
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

{chongjie,julie a shah}@csail.mit.edu

Abstract
To enable large-scale multi-agent coordination un-
der temporal and spatial constraints, we formulate
it as a multi-level optimization problem and de-
velop a multi-abstraction search approach for co-
optimizing agent placement with task assignment
and scheduling. This approach begins with a highly
abstract agent placement problem and the rapid
computation of an initial solution, which is then im-
proved upon using a hill climbing algorithm for a
less abstract problem; finally, the solution is fine-
tuned within the original problem space. Empiri-
cal results demonstrate that this multi-abstraction
approach significantly outperforms a conventional
hill climbing algorithm and an approximate mixed-
integer linear programming approach.

Introduction
Task assignment and scheduling are central problems for
multi-agent systems, as they determine which agent should
execute which task and at what time in order to optimize
system performance. This multi-agent coordination problem
with temporal and spatial constraints can be formulated as a
mixed integer linear programming (MILP) [Brucker, 2001]
and is NP-Hard [Bertsimas and Weismantel, 2005]. Various
approaches have been proposed to address this challenging
problem [Hooker, 2009; Korsah et al., 2012; Gombolay et al.,
2013]; however, these existing approaches do not scale well
for many practical problems, which usually incorporate more
than 20 agents and 200 tasks.

Fortunately, many large-scale problems commonly pos-
sess a nearly-decomposable structure, where agents can be
grouped according to their capabilities and tasks can be clus-
tered by their spatial or temporal constraints so that con-
straints between tasks in different clusters can be aggregated
and modeled as high-level constraints between clusters. For
example, in a production-line factory as shown in Figure 1,
agents (e.g., robots and human workers) are grouped by their
specialties and tasks are naturally clustered according to the
workplaces at which they are located. For the sake of simplic-
ity, we use workplaces to refer to task clusters. Constraints
between tasks in different workplaces are modeled as prece-
dence constraints between workplaces.

To exploit such nearly-decomposable structure and enable
large-scale multi-agent coordination, this paper abstracts a
high-level multi-agent placement problem, which determines
how many agents of each type are allocated to each workplace
in order to optimize overall system performance. The solu-
tion to this problem is used to decompose a large multi-agent
system into a group of smaller subsystems, for which the
task assignment and scheduling problem has exponentially
less complexity and can be solved using existing approaches.
However, this multi-agent placement problem is challenging
because how agents are placed to workplaces depends on how
tasks of each workplace are assigned and scheduled to them.

The contribution of this paper is twofold. First, we for-
mulate multi-agent coordination as an integrated, multi-level
optimization problem. This problem consists of agent place-
ment (i.e., how agents are allocated to workplaces), task as-
signment (i.e., how tasks are assigned to the agents at each
workplace), and task scheduling (i.e, how an agent performs
its tasks). Second, we develop a multi-abstraction search
approach (MASA) for co-optimizing multi-agent placement
with task assignment and scheduling. MASA consists of three
phases. It first begins with a highly abstract agent place-
ment problem and rapidly computes an initial solution. This
solution is then improved upon using a hill climbing algo-
rithm by considering how task assignment at each workplace
affects agent placement. Finally, MASA fine-tunes the im-
proved agent placement solution by considering the effects
from both task assignment and scheduling.

Search in abstract problems is much faster, as it consid-
ers much fewer variables and constraints. In addition, abstract
problems may have smoother search space surfaces with less
local optima. Therefore, the first two phases prepare a suitable
initial solution for the final phase and allow it to avoid infe-
rior local optima, converge to a better solution and improve
the search speed. Experimental results indicate that MASA
yields a more than 15% and 25% reduction in makespan com-
pared with an MILP-based approximate approach and a con-
ventional hill climbing algorithm, respectively. MASA also
improves the convergence speed by more than 10% on aver-
age over the conventional hill climbing.

Multi-Level Optimization Problem
This section illustrates multi-agent coordination with tempo-
ral and spatial constraints in the manufacturing domain and

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3308

Cell i-1 Cell i Cell i+1

Figure 1: An assembly line with robots and human workers

formulates it as a multi-level optimization problem.

Illustrative Domain
Robotic systems are now commonplace on many manufac-
turing assembly lines. Figure 1 depicts a segment example
of a cellular assembly line with a group of robots and hu-
man agents performing tasks. This assembly line consists of
a sequence of workplaces, each of which consists of a set of
tasks. There are precedence constraints between neighboring
workplaces. A product will move to a next workplace when
all tasks associated with the current workplace are completed
and the product is not fully assembled. There are upper and
lower bounds on task completion and temporal constraints re-
lating tasks (e.g. “the first coat of paint requires 30 minutes
to dry before the second coat may be applied”). The different
agent types have different capabilities for performing tasks
(e.g., how fast to complete a task). In addition, there are spa-
tial restrictions on agent proximity (e.g. robots must always
operate at least 5 feet from other agents) to support safe and
efficient multi-robot or human-robot collaboration. The goal
is to maximize the assembly line’s throughput.

Problem Formulation
We formulate such multi-agent coordination problem as a
three-level optimization problem: agent placement (i.e., allo-
cating agents to workplaces), task assignment (i.e., assigning
tasks to the agents in each workplace), and task scheduling
(i.e, scheduling tasks for each agent to perform). The inputs
of this multi-level optimization problem include:

• ⌧ : A set of agent types
• hn1, . . . , n|⌧ |i: The number of agents of each type
• W : A set of workplaces that agents are allocated to
• C: The set of agent capabilities specifying tasks each

agent a may perform and its minimum lb

a,k

, maximum
ub

a,k

, and expected time to complete each task k, and
• P

w

= hT
w

,�
w

, S

w

i: A task problem for each workplace
w 2 W , where:

– T

w

: The set of all tasks to be performed.
– �

w

: a Simple Temporal Problem (TSP) [Dechter et
al., 1991], describing the temporal constraints re-
lating tasks to one another at workplace w, and

– S

w

: A set of task pairs separated by less than the
allowable spatial proximity, specifying spatial con-
straints.

The objective of this multi-level optimization problem is to
find a solution (specifying agent placement, task assignment
and task schedules for agents at each workplace) wherein all
constraints are satisfied and the maximum makespan among
workspaces is minimized. For an assembly line, this objective
is equivalent to maximizing its throughput.

We formulate the multi-agent placement problem as below:

min
R

max(f⇤
1 (R1, P1), . . . , f

⇤
|W |(R|W |, P|W |)) (1)

subject to X

w2W

R
w,x

 n
x

, 8x 2 ⌧ (2)

where R
w,x

is a decision variable representing the number of
agents with type x assigned to workplace w, and f

⇤
w

(R
w

, P

w

)
represents the optimal makespan of workplace w given a set
of agents R

w

. Equation 2 ensures that agent placement satis-
fies resource constraints.

To compute f

⇤
w

(R
w

, P

w

), we need to solve the task as-
signment and scheduling problem at workplace w with given
agents R

w

. In this paper, we mainly focus on the multi-agent
placement problem and its interactions with lower-level task
assignment and scheduling problems. For the sake of brevity,
we formulate the task assignment and scheduling problem for
each workplace w as a single MILP [Gombolay et al., 2013]:

min f
w

(A, J, tS(·), t
E

(·), Rw

, P
w

) (3)
subject to X

a2R

w

A
a,k

= 1, 8k 2 T
w

(4)

lb
i

 t
m

� t
n

 ub
i

, 8i 2 T
w

, n,m 2 �

w

(5)

tE
k

� tS
k

� lb
a,k

�M(1�A
a,k

), 8k 2 T
w

, a 2 R
w

(6)

tE
k

� tS
k

 ub
a,k

+M(1�A
a,k

), 8k 2 T
w

, a 2 R
w

(7)

tS
j

� tE
i

�M(J
i,j

� 1), 8i, j 2 S
w

(8)

tS
i

� tE
j

� �MJ
i,j

, 8i, j 2 S
w

(9)

tS
j

� tE
i

�M(J
i,j

� 1) +M(A
a,i

+A
a,j

� 2), 8i, j 2 T
w

(10)

tS
i

� tE
j

� �MJ
i,j

+M(A
a,i

+A
a,j

� 2), 8i, j 2 T
w

(11)

A

a,k

2 {0, 1} is a binary decision variable for the assignment
of agent a to task k. J

i,j

is a binary decision variable speci-
fying the relative sequencing of two tasks, i and j (J

i,j

= 1
implies task i occurs before j). Decision variables tS

k

and t

E

k

specify the start and end times, respectively, of task k. R
w

is
the set of all agents assigned to workplace w. M is a large
positive number used to encode conditional constraints.

Equation 4 ensures that each task is assigned to a single
agent. Equation 5 ensures that the temporal constraints are
met, where bounds lb

i

and ub

i

are described in TSP �
w

.
Equations 6 & 7 ensure that agents are not required to com-
plete tasks more quickly or slowly than they are capable.
Equations 8 & 9 sequence actions to ensure that agents main-
tain safe buffer distances from one another while performing
tasks. Equations 10 & 11 ensure that each agent only per-
forms one task at a time. Note that Equations 8 and 9 cou-
ple the variables relating task sequencing, spatial locations
and task start and end times, resulting in tight dependencies
among agents’ schedules.

3309

The objective function f

w

(A, J, tS(·), t
E

(·), Rw

, P

w

) rep-
resents the makespan of workplace w. For all work-
places w 2 W , the optimal makespan f

⇤
w

(R
w

, P

w

) ⌘
min f

w

(A, J, t

S

(·), t
E

(·), Rw

, P

w

) with all constraints satisfied.
From the formulation described above, we can observe the

interdependency between multi-agent placement and task as-
signment and scheduling. The solution of the agent place-
ment problem instantiates the task assignment and scheduling
problems at workplaces, while computing the optimal agent
placement solution depends on optimal solutions of the task
assignment and scheduling problems at workplaces. In the
next section, we will present a multi-abstraction approach to
solve this nested problem.

Multi-Abstraction Search Approach (MASA)
The key challenge of the multi-level optimization problem
is that optimizing multi-agent placement depends on solu-
tions of a combinatorially explosive number of task assign-
ment and scheduling problems, each of which is NP-hard and
computationally expensive, even when being solved approxi-
mately [Lipovetzky et al., 2014]. One conventional approach
is to create an easily-computed objective function to approx-
imate the objective function (1), detaching the agent place-
ment problem from lower-level task assignment and schedul-
ing problems. This top-down decomposition approach is
computationally feasible, but can produce a very suboptimal
or even an infeasible solution (i.e., agent placement resulting
in no feasible solution for the task assignment and schedul-
ing problem in one or more workplaces), because it does not
consider how agents are used in each workplace.

To address this challenge, we propose a multi-abstraction
search approach (MASA). MASA optimizes multi-agent
placement by incrementally considering effects of lower-level
optimization problems. MASA consists of three phases: 1) it
begins with a highly abstract agent placement problem that
does not consider the effects of task assignment and schedul-
ing, and uses MILP to compute an initial solution to this prob-
lem; 2) it then improves upon this solution using a hill climb-
ing algorithm, which considers the effects of task assignment,
in a less abstract problem; and 3) MASA fine-tunes the agent
placement solution by considering the effects of both task as-
signment and scheduling at workplaces.

All three phases of MASA are critical. The first phase gen-
erates a suitable initial solution for the hill climbing algo-
rithm. Because solving a task assignment problem is much
faster than solving a combined task assignment and schedul-
ing problem, the introduction of the second phase signifi-
cantly improves the search speed. Moreover, by considering
much fewer variables and constraints, search in an abstracted
solution space at the second phase helps avoid inferior lo-
cal optima. The final phase is indispensable because, by co-
optimizing agent placement with both task assignment and
scheduling, it not only improves the agent placement solu-
tion but also helps avoid an infeasible solution generated from
previous two phases. In addition, this phase generates a com-
plete solution for agent placement, task assignment, and task
scheduling.

The following subsections will discuss in greater detail

these three phases of MASA.

Phase 1: finding initial agent placement
This phase aims to quickly find a suitable initial solution of
agent placement, building a good start for the hill climbing
algorithm. To achieve this goal, we construct an approximate
agent placement problem, which does not consider how tasks
will be assigned and scheduled to agents. This approximate
problem aims to balance agent allocation based on task loads
at workplaces and the capabilities of the agent. Specifically,
its objective is to minimize the maximum average task load
of agents at all workplaces:

min
R

max
w2W,x2⌧

X

t2T

w,x

D
wxt

/R
w,x

(12)

where R

w,x

is a decision variable representing the number
of agents of type x assigned to workplace w, T

w,x

is a set
of tasks that can be best performed by an agent of type x at
workplace w and D

wxt

is the expected time to complete task
t by an agent of type x. Note that this objective function does
not take task assignment or scheduling into consideration.

Note that the objective function (12) is not linear, because
the decision variables are denominators. To formulate this
problem as a MILP, we reverse the objective and convert it to
a maximization problem, maximizing the minimum of the in-
verse of the average task load of agents at all workplaces. We
then introduce a proxy variable, v, to represent this minimum
inverse value and to linearize the new objective function. The
mathematical MILP formulation of this converted problem is
presented below:

max
R

v (13)
subject to

v  R
w,x

/
X

t2T

w,x

D
wxt

, 8w 2W,x 2 ⌧ (14)

X

w2W

R
w,x

 n
x

, 8x 2 ⌧ (15)

where Equation 15 ensures that agent placement satisfies re-
source constraints. This MILP can be solved using existing
optimizers [Gurobi Optimization, 2015], which return the
agent placement matrix.

Phase 2: improving agent placement with task
assignment
At the second phase, MASA aims to improve the initial agent
placement solution, computed in Phase 1, by taking into con-
sideration how task assignment at workplaces affects agent
placement. We develop a hill climbing algorithm for improv-
ing the agent placement solution by minimizing the max-
imum makespan among workplaces. Note that the optimal
makespan of a workplace with given agents depends on both
task assignment and scheduling. As MASA does not consider
task scheduling at this phase, we construct an approximate
task assignment problem, detached from task scheduling, to
estimate the optimal makespan of a workplace with assigned
agents. This approximate problem does not consider tempo-
ral and spatial constraints, so it can be solved much faster and
enables the rapid hill climbing search.

3310

Algorithm 1 Hill Climbing Algorithm
1: procedure HILLCLIMBING(P1,...,|W |, R1,...,|W |)
2: loop
3: for all w 2W do
4: V [w] = eval(P

w

, R
w

)

5: end for
6: b argmax

w2W

V [w]

7: makespan V [b]
8: OW increasingly sort W\{b} by values V
9: for i 1, |OW | do

10: w OW [i]
11: L neighbors(hR

w

, R
b

i)
12: for all hR0

w

, R0
b

i 2 L do
13: v

max

 max(eval(P
w

, R0
w

), eval(P
b

, R0
b

))

14: if makespan > v
max

then
15: makespan v

max

16: hR
w

, R
b

i hR0
w

, R0
b

i
17: end if
18: end for
19: if makespan < V [b] then
20: break
21: end if
22: end for
23: if makespan == V [b] then return R1,...,|W |
24: end if
25: end loop
26: end procedure

The hill climbing algorithm minimizes the maximum
makespan of workplaces by iteratively transferring agents
from other workplaces to the workplace with the maximum
makespan. Algorithm 1 depicts the hill climbing pseudocode.
Its input is a set of workplaces, P1,...,|W |, and the initial
agent placement solution, R1,...,|W |. Lines 3-5 computes the
optimal makespan of each workplace with assigned agents.
In our implementation, as the computation of function eval

is not trivial, we cache the computed value for each pair
(P

w

, R

w

) to be retrieved in the future. Line 6 identifies the
bottleneck workplace b with the maximum value, which is the
makespan. Line 8 sorts workplaces in increasing order of their
makespans, such that a workplace with a lower makespan has
a higher priority to transfer its agents to the bottleneck work-
place. The for loop at Line 9 is to iterate through the order
list and find a workplace that can transfer its agents in order
to improve the makespan. Line 11 generates a set of possible
agent placement solutions by transferring agents from w to b.
To limit the neighboring solution size, we restrict the number
of agents to be transferred at each iteration to two or fewer.
Lines 12-18 determine the best agent placement. Line 19 en-
sures that we only need to find one workplace at each iter-
ation for transferring its agents. Line 23 determines whether
any other solution improves the makespan; if not, it returns
the current solution.

At this phase, the evaluation function eval(P
w

, R

w

) in
the hill climbing algorithm requires solving the task assign-
ment problem at workplace w with agents R

w

. We construct
approximate versions of the MILP for task assignment and
scheduling presented in the Problem Formulation section.
The objective of these approximate task assignment prob-
lems is to minimize the maximum total expected time that all

agents would require to complete their tasks, assuming those
tasks had no temporal and spatial constraints. We introduce a
proxy variable, v

w

, as this approximate objective and formu-
late the problem at each workplace w as a MILP:

min
A

v
w

(16)
subject to

v
w

�
X

j2T

w

D
a,j

A
a,j

, 8a 2 R
w

(17)

X

a2R

w

A
a,j

= 1, 8j 2 T
w

(18)

where A

a,j

2 {0, 1} is a binary decision variable for the as-
signment of agent a to task j, D

a,j

is the expected time of task
j performed by agent a, and T

w

and R

w

are a set of tasks and
agents available at workplace w, respectively. Equation 17 de-
fines the objective v

w

and Equation 18 ensures each task is as-
signed to only one agent. The optimal value v

⇤
w

can be com-
puted using an existing MILP solver [Gurobi Optimization,
2015]. The hill climbing algorithm uses these optimal values
to evaluate its target function, that is, eval(P

w

, R

w

) = v

⇤
w

.

Phase 3: fine-tuning agent placement with task
assignment and scheduling
The final phase of MASA operates similarly to the sec-
ond phase, by applying the hill climbing algorithm to im-
prove the agent placement solution. The difference is that,
at this phase, the hill climbing algorithm is applied to opti-
mize the original multi-agent placement objective function
(1), instead of an approximate one. In other words, this
phase fine-tunes the multi-agent placement solution by tak-
ing both task assignment and scheduling at workplaces into
account. As the numbers of tasks and agents at each work-
place in practice are often relatively small, we can use ex-
isting approaches [Hooker, 2009; Castro and Petrovic, 2012;
Korsah et al., 2012; Gombolay et al., 2013] for solving multi-
agent task assignment and scheduling for each workplace.
At this phase, the hill climbing algorithm uses the com-
puted objective value f⇤

w

(R
w

, P

w

) of the task assignment and
scheduling problem for workplace w with agents R

w

to eval-
uate the candidate agent placement solution (R

w

, P

w

), i.e.,
eval(R

w

, P

w

) = f

⇤
w

(R
w

, P

w

). When MASA converges, it
returns an agent placement solution as well as task assign-
ments to agents at each workplace and their task schedules.

In our implementation, we use the Tercio algorithm [Gom-
bolay et al., 2013] to solve task assignment and scheduling
problems and compute nearly optimal makespans for work-
places, as the MILP for task assignment and scheduling is of-
ten computationally intractable for relatively large problems
(e.g., problems involving more than five agents and 50 tasks).
Tercio receives a task assignment and scheduling problem as
input and returns a flexible temporal plan that contains task
assignment and schedules of agents, if one can be found. The
input problem is decomposed into a task allocation and a task
sequencing problem. Tercio combines MILP (for solving the
task allocation problem) with a fast, satisficing, incomplete
multi-agent task sequencer (inspired by real-time processor
scheduling techniques). It works by iterating through agent
allocations until a schedule can be found that satisfies the
maximum allowable makespan for the problem.

3311

Comparison #Better Makespan #Same #Failures
makespan reduced makespan

MASA vs. A-MILP 99 15.3 ± 8.2% 1 0 : 4
MASA vs. HC-R 97 25.6 ± 17.3% 3 0 : 12
MASA vs. HC-S 52 6.9 ± 5.1% 41 0 : 0
HC-S vs. HC-R 91 23.1 ± 17.7% 2 0 : 12

HC-S vs. A-MILP 94 13.1 ± 7% 6 0: 4

Table 1: Performance comparison across 100 problems

Experiments
In this section, we empirically evaluate the multi-abstraction
search approach using the illustrative manufacturing domain,
where the multi-agent task assignment and scheduling prob-
lem has temporal and spatial-proximity constraints.

Experimental Setup
We generated multi-agent task assignment and scheduling
problems that simulate multi-agent construction of a cellular
assembly line in a manufacturing domain, such as airplane
production. There were two possible types of agents, and the
number of workplaces on the production line and the num-
ber of agents of either type varied across the problems. We
used a task generator similar to that used in [Gombolay et
al., 2013] for each workplace, but varied the number of tasks
and the proportion of tasks with temporal constraints at differ-
ent workplaces. At each workplace, task times were generated
from a uniform distribution in the interval [1, 10]. The propor-
tion of tasks, which were related via a nonzero wait duration
(lowerbound constraint) drawn from the interval [1, 10], var-
ied at different workplaces, uniformly drawn from {0, 1

4 ,
1
2}.

Approximately 1
8 of the tasks were related via an upperbound

temporal deadline generated randomly to another task. The
upperbound of each intra-task and task deadline constraint
was drawn from a normal distribution with a mean set to the
tightest possible bound. For values lower than the mean, we
simply drew a new deadline value. The physical locations of
a task were drawn along a single dimension from a uniform
distribution [1,m], where m is the total number of tasks at a
workplace. While an agent performed a task at resource loca-
tion (x), we required that no other agent could work on a task
at location (u) if x� 1  u  x+ 1.

We ran experiments on 10 scenarios, each with 10 different
problems, for a total of 100 problems. Here are four example
scenarios:
S1: Three workplaces, 140 tasks and 24 agents
S2: Four workplaces, 200 tasks and 32 agents
S3: Five workplaces, 250 tasks and 40 agents
S4: Six workplaces, 360 tasks and 48 agents

Results and Discussion
To our best knowledge, MASA is the first work to co-
optimize multi-agent placement with task assignment and
scheduling. We compared MASA with an approximate MILP
approach (A-MILP) and a hill climbing algorithm with a ran-
dom initial solution (HC-R). All approaches used the Tercio
algorithm [Gombolay et al., 2013] to solve lower-level task
assignment and scheduling problems. The A-MILP method
is essentially a traditional top-down, decomposable approach

Scenarios
S1 S2 S3 S4

M
ak
es
pa
n

0

50

100

150

200
MASA
HC-S
A-MILP
HC-R

Figure 2: Solution quality for different scenarios

that incorporates as its basis the same MILP for approximate
agent placement as that used in the first phase of MASA. It
computes the five best solutions through the application of
solution exclusion constraints [Tsai et al., 2008] and selects
the optimal one. The HC-R approach is a standard single-
phase hill climbing algorithm, which begins with a random
initial agent placement solution and improves upon it using
the same hill climbing algorithm as that used in the third
phase of MASA. In order to evaluate the second phase of
MASA, we also designed a hill climbing algorithm with a
smart initial solution (HC-S), which is similar to MASA but
without the second phase.

Table depicts the results of comparisons between two dif-
ferent approaches across 100 problems. Four measures were
used to compare the methods: the number of problems for
which the first approach generated better solutions than the
second one, the average makespan decrease for these prob-
lems, the number of problems with the same makespan and
the number of failures.

As expected, MASA significantly outperformed the other
three approaches with regard to solution quality, identifying
feasible solutions for all 100 problems. MASA yielded lower
makespan than A-MILP in 99% of the problems, with a mean
makespan reduction of 15.3%, and an identical makespan in
the remaining 1% of problems. In addition, A-MILP failed
to identify feasible agent placement solutions for four prob-
lems. The A-MILP approach separates the agent placement
problem from task assignment and scheduling by optimizing
an approximate objective, the optimal solutions for which do
not necessarily yield good or even feasible agent placement.
This comparison implies that it is important to consider the
effects of task assignment and scheduling when solving the
agent placement problem.

MASA performed better than HC-R for 97% of the prob-
lems, yielding 25.6% lower makespan on average. HC-R
failed to find feasible solutions for 12 % of the problems.
As HC-R directly searches in the original problem space
beginning with a random solution, this comparison implies
that agent placement problems often have inferior local op-
tima and conducting searches in abstract spaces using MASA
avoids these inferior solutions, improves the likelihood of
finding a feasible solution and converges to a better solution.

The comparison between MASA and HC-S is intended to
evaluate the contribution of MASA’s second search phase.
From Table , we can observe that MASA outperformed HC-
S in 52% of the problems, yielding 6.9% lower makespan

3312

Scenarios
MASA HC-S A-MILP HC-R

C
om

pu
ta

tio
n

Ti
m

e

0

20

40

60

80

100

120

140
S1
S2
S3
S4

Figure 3: Computation speed for different scenarios

on average (which is significant for such tightly-constrained
optimization problems). Although the two methods gener-
ated solutions with the same makespan in 41% of problems,
MASA converged faster than HC-S, with an 11.7% shorter
computation time on average. This improvement in solution
quality is due to the abstract search method used at the second
phase, while the speed improvement is attributable to cheaper
computation of evaluating the objective function.

We compared HC-S with A-MILP and HC-R in order to
evaluate the other two phases of MASA. While HC-R begins
with a random solution, HC-S uses MASA’s first phase to ini-
tialize its solution. The superior performance of HC-S over
HC-R implies the importance of MASA’s first search phase,
while the superior performance of HC-S over A-MILP indi-
cates the significance of the third phase.

Next, we discuss how the different approaches perform as
the number of workplaces increases. Figure 2 depicts the av-
erage makespan yielded by four approaches over 10 problems
in scenarios S1, S2, S3, and S4, which incorporated three,
four, five and six workplaces, respectively. One key observa-
tion is that the improvement of MASA over other approaches
widens as the number of workplaces increases and the prob-
lems become more complex. For example, MASA yielded
14%, 18%, 20% and 22% lower makespan than A-MILP and
3.8%, 4.9%, 7.2% and 9.2% lower makespan than HC-S for
scenario S1, S2, S3 and S4, respectively.

Figure 3 indicates how computation time changed for each
of the four approaches as the number of workplaces in-
creased. The computation time for all approaches seemed to
increase polynomially with the number of workplaces, with
the exception of HC-R. HC-R had unexpectedly large aver-
age computation time in scenario S2, because there are sev-
eral cases where HC-R started with “bad” random solutions
and took an unusual number of iterations to converge. MASA
converged faster than HC-S for all scenarios, and faster than
HC-R for the first three scenarios. In scenario S4, HC-R of-
ten converged quickly to very poor solutions, with more than
40% higher makespan on average compared with MASA. Al-
though A-MILP ran faster than MASA, due to its top-down
decomposition and much less frequent calling for the Tercio
algorithm, it is clear to choose MASA over A-MILP in real-
world applications, because solution quality is often the most
important factor and the computation times of these two ap-
proaches are of the same order of magnitude.

Related Work
There is a wealth of prior work in multi-agent task assign-
ment and scheduling with temporal and spatial constraints.
Korsah et al. provide a comprehensive taxonomy [Korsah et
al., 2013] for the multi-agent task allocation and schedul-
ing problem. One line of research is the development of hy-
brid approaches that combine MILP with other techniques,
such as constraint programming [Hooker, 2004; 2009; Jain
and Grossmann, 2001; Korsah et al., 2012] or integrating
heuristic schedulers [Tan, 2000; Castro and Petrovic, 2012;
Gombolay et al., 2013; Lipovetzky et al., 2014]. Although
these approaches do not scale well for large problems, they
often yield nearly optimal solutions to relatively small prob-
lems and can work with our multi-abstraction method for
solving subproblems of multi-agent task assignment and
scheduling.

Another line of research focuses on distributed approaches.
For example, Cicirello and Smith propose wasp-like multi-
agent systems for distributed factory coordination [Cicirello
and Smith, 2004]. Auction algorithms have also been pro-
posed for allocating tasks with time constraints [Ponda et
al., 2010; Nunes and Gini, 2015]. Amador et al. apply a
market clearing approach to task allocation [Amador et al.,
2014]. Ramchurn et al. develop a coalition formation tech-
nique for task allocation to maximize the number of tasks
completed before hard deadlines [Ramchurn et al., 2010].
These works improve computational performance by decom-
posing plan constraints among agents. However, these meth-
ods often break down when agents’ schedules become tightly
inter-coupled, as they do when multiple robots operate in
close physical proximity to one another.

Auction algorithms have been used for resource alloca-
tion [Huang et al., 2008]. In fact, our hill climbing algorithm
is a centralized implementation of an auction algorithm if
Lines 19-20 (used to reduce the number of times to evalu-
ate the objective function) are removed. Metaheuristic algo-
rithms, such as simulated annealing [Aerts and Heuvelink,
2002], hill climbing with random restarts [Poole and Mack-
worth, 2010], have also been used for resource allocation. We
did not use these algorithms in our method, however, because
they require solving a much larger number of task assignment
and scheduling problems.

Conclusion
This paper formulates large-scale multi-agent coordination
as a multi-level optimization problem requiring multi-agent
placement and task assignment and scheduling. We develop a
multi-abstraction search technique for solving this optimiza-
tion problem. This approach initiates the search with an ab-
stract problem, which often prevents the convergence to infe-
rior local optima and improves convergence speed. Empirical
evaluation of the contribution of each abstraction verifies the
performance advantages of this multi-abstraction approach
with regard to the quality, speed, and likelihood of conver-
gence. Significant outperformance of this approach compared
with a top-down decomposition method also implies the im-
portance of incorporating feedback from lower-level opti-
mization for high-level optimization.

3313

References
[Aerts and Heuvelink, 2002] Jeroen CJH Aerts and Ger-

ard BM Heuvelink. Using simulated annealing for re-
source allocation. International Journal of Geographical
Information Science, 16(6):571–587, 2002.

[Amador et al., 2014] Sofia Amador, Steven Okamoto, and
Roie Zivan. Dynamic multi-agent task allocation with spa-
tial and temporal constraints. In Proceedings of the 2014
international conference on Autonomous agents and multi-
agent systems, pages 1495–1496. International Foundation
for Autonomous Agents and Multiagent Systems, 2014.

[Bertsimas and Weismantel, 2005] Dimitris Bertsimas and
Robert Weismantel. Optimization over integers, vol-
ume 13. Dynamic Ideas Belmont, 2005.

[Brucker, 2001] Peter Brucker. Scheduling Algorithms.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd
edition, 2001.

[Castro and Petrovic, 2012] Elkin Castro and Sanja Petrovic.
Combined mathematical programming and heuristics for a
radiotherapy pre-treatment scheduling problem. Journal
of Scheduling, 15(3):333–346, 2012.

[Cicirello and Smith, 2004] Vincent A Cicirello and
Stephen F Smith. Wasp-like agents for distributed factory
coordination. Autonomous Agents and Multi-agent
systems, 8(3):237–266, 2004.

[Dechter et al., 1991] Rina Dechter, Italy Meiri, and Judea
Pearl. Temporal constraint networks. AI, 49(1):61–91,
1991.

[Gombolay et al., 2013] Matthew C. Gombolay, Ronald
Wilcox, and Julie A. Shah. Fast scheduling of multi-robot
teams with temporospatial constraints. In Robotics: Sci-
ence and Systems, 2013.

[Gurobi Optimization, 2015] Inc. Gurobi Optimization.
Gurobi optimizer reference manual, 2015.

[Hooker, 2004] John N. Hooker. A hybrid method for plan-
ning and scheduling. In Proc. Carnegie Mellon University
Research Showcase, 2004.

[Hooker, 2009] John N. Hooker. An improved hybrid
MILP/CP algorithm framework for the job-shop schedul-
ing. In Proc. IEEE International Conference on Automa-
tion and Logistics, 2009.

[Huang et al., 2008] Jianwei Huang, Zhu Han, Mung Chi-
ang, and H Vincent Poor. Auction-based resource allo-
cation for cooperative communications. Selected Areas
in Communications, IEEE Journal on, 26(7):1226–1237,
2008.

[Jain and Grossmann, 2001] Vipul Jain and Ignacio E.
Grossmann. Algorithms for hybrid MILP/CP models for
a class of optimization problems. Journal on Computing,
13(4):258–276, 2001.

[Korsah et al., 2012] G Ayorkor Korsah, Balajee Kannan,
Brett Browning, Anthony Stentz, and M Bernardine Dias.
xbots: An approach to generating and executing optimal
multi-robot plans with cross-schedule dependencies. In

Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, pages 115–122. IEEE, 2012.

[Korsah et al., 2013] G Ayorkor Korsah, Anthony Stentz,
and M Bernardine Dias. A comprehensive taxonomy for
multi-robot task allocation. The International Journal of
Robotics Research, 32(12):1495–1512, 2013.

[Lipovetzky et al., 2014] Nir Lipovetzky, Christina N Burt,
Adrian R Pearce, and Peter J Stuckey. Planning for mining
operations with time and resource constraints. In Proceed-
ings of 24th Int. Conf. on Aut. Planning and Scheduling,
ICAPS, 2014.

[Nunes and Gini, 2015] Ernesto Nunes and Maria Gini.
Multi-robot auctions for allocation of tasks with temporal
constraints. In Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, 2015.

[Ponda et al., 2010] Sameera Ponda, Josh Redding, Han-
Lim Choi, Jonathan P How, Matt Vavrina, and John Vian.
Decentralized planning for complex missions with dy-
namic communication constraints. In American Control
Conference (ACC), 2010, pages 3998–4003. IEEE, 2010.

[Poole and Mackworth, 2010] David L Poole and Alan K
Mackworth. Artificial Intelligence: foundations of com-
putational agents. Cambridge University Press, 2010.

[Ramchurn et al., 2010] Sarvapali D Ramchurn, Maria
Polukarov, Alessandro Farinelli, Cuong Truong, and
Nicholas R Jennings. Coalition formation with spatial
and temporal constraints. In Proceedings of the 9th
International Conference on Autonomous Agents and
Multiagent Systems: volume 3-Volume 3, pages 1181–
1188. International Foundation for Autonomous Agents
and Multiagent Systems, 2010.

[Tan, 2000] Wei Tan. Integration of process planning and
scheduling - a review. Journal of Intelligent Manufactur-
ing, 11:51–63, 2000.

[Tsai et al., 2008] Jung-Fa Tsai, Ming-Hua Lin, and Yi-
Chung Hu. Finding multiple solutions to general integer
linear programs. European Journal of Operational Re-
search, 184(2):802–809, 2008.

3314

