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Abstract

Torso joints can be considered as the landmarks of
human body. An action consists of a series of body
poses which are determined by the positions of the
joints. With the rapid development of RGB-D cam-
era technique and pose estimation research, the ac-
quisition of the body joints has become much eas-
ier than before. Thus, we propose to incorporate
joint positions with currently popular deep-learned
features for action recognition. In this paper, we
present a simple, yet effective method to aggre-
gate convolutional activations of a 3D deep con-
volutional neural network (3D CNN) into discrim-
inative descriptors based on joint positions. Two
pooling schemes for mapping body joints into con-
volutional feature maps are discussed. The joints-
pooled 3D deep convolutional descriptors (JDDs)
are more effective and robust than the original 3D
CNN features and other competing features. We
evaluate the proposed descriptors on recognizing
both short actions and complex activities. Exper-
imental results on real-world datasets show that our
method generates promising results, outperforming
state-of-the-art results significantly.

1 Introduction
Recognizing the action performed in video is one of the most
popular research field in computer vision. Different from im-
ages which only contain spatial information, videos are three
dimensional (3D) spatio-temporal flow. A lot of research fo-
cused on how to take both the appearance and motion infor-
mation into account for video-based action recognition.

Much of the initial work on action recognition used hand-
crafted features such as HOG [Dalal and Triggs, 2005], HOF
[Dalal et al., 2006], STIP [Laptev et al., 2008], Dense Tra-
jectories (DT) [Wang et al., 2011] and Improved Trajecto-
ries (iDT) [Wang and Schmid, 2013]. Dense trajectories
are shown to be an effective video representation for action
recognition. By taking camera motion into consideration,
iDT improves the performance further.
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Figure 1: Illustration of joints pooling in 3D CNNs. Different
colors of feature maps represent different channels. We use
the joint positions to pool activations in 3D convolution lay-
ers. By fusing all the pooled activations together, we obtain a
descriptor of the video.

Besides trajectories of dense points, human action can be
represented by the trajectories of body joints which is more
discriminative and compact. Currently, reliable joint coordi-
nates can be obtained by using the real-time skeleton estima-
tion algorithms [Tompson et al., 2014] [Shotton et al., 2013].
Most of the existing skeleton-based action recognition meth-
ods model the temporal dynamics of body joints with hand-
crafted features, such as the relative location between body
joints, angles between limbs and angles between limbs and
planes spanned by body parts [Chen et al., 2011]. However,
these methods can not deal with the situations with similar
spatial and temporal variations of body joints, such as “grab”
and “deposit” [Du et al., 2015], because the surrounding in-
formation around the joints is lost. Another limitation of ex-
isting skeleton-based method is that they can not handle the
self-occlusion and error body joints explicitly.

Encouraged by the success of CNNs in image classifi-
cation, recently much effort is spent on applying CNNs to
video-based action recognition. There are mainly two ways
of applying CNNs on video data. One is using the 2D CNN
architecture. Directly applying image-based models to indi-
vidual frames of videos can only characterize the visual ap-
pearance. The two-stream CNN architecture [Simonyan and
Zisserman, 2014] learns motion information by using an ad-
ditional 2D CNN which takes the optical flow as input. The
stacked optical flow frames are treated as different channels.
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After convolutional operation, the temporal dimension is col-
lapsed completely. Therefore the two-stream CNN is less ef-
fective for characterizing long-range motion patterns in mul-
tiple frames.

The other way of adapting CNNs to video is using 3D
CNNs with 3D convolution and 3D pooling layers [Karpa-
thy et al., 2014; Ji et al., 2013; Tran et al., 2014]. 3D con-
volution layer takes a volume as input and outputs a volume
which preserves the temporal information of the input. Both
spatial information and temporal information are abstracted
layer by layer. The features used in [Tran et al., 2014] are
from fully-connected layers of a 3D CNN named C3D. Com-
pared to fully-connected layers, 3D convolution layers re-
tain 3D spatio-temporal structure. Different convolution lay-
ers provide bottom-up hierarchical semantic abstraction. In
image-based computer vision tasks, there have been explo-
rations to utilize multiple convolution layers for classification
[Hariharan et al., 2015]. It is worth exploring how to utilize
spatio-temporal information in 3D convolution layers to ob-
tain features which combine different levels of abstraction.

Inspired by the trajectory-pooled deep convolutional de-
scriptors (TDDs) [Wang et al., 2015] which used dense tra-
jectory points to pool 2D CNN feature maps. We propose
an efficient way of pooling activations in 3D feature maps
based on joint positions to generate video descriptors as il-
lustrated in Figure 1. The features are called joints-pooled
3D deep convolutional descriptors (JDDs). When mapping
points from video into feature maps, TDD and JDD use two
different mapping methods. TDD used ratio scaling to map
points, in which only the sizes of input and output are consid-
ered. We compute the corresponding points with the concept
of receptive field, which is more appropriate.

The idea of JDD is different from another pose-based CNN
descriptor P-CNN [Chéron et al., 2015] which crops RGB
and optical flow images into multiple part patches (e.g. right
hand and left hand) as the inputs of a two-stream CNN. In-
stead of using multiple inputs, we take advantage of the abun-
dant information in 3D convolutional feature maps by joints
pooling. Our approach is more efficient in computation than
P-CNN which needs to compute not only body joints but
also optical flow and uses multiple inputs with two deep 2D
CNNs. Furthermore, we do not need to compute activations
of fully-connected layers.

The main procedures of our framework are as follows:
1) Split videos to fixed-length clips. 2) Compute 3D con-

volutional feature maps for each clip. 3) Use the annotated or
estimated joints of the video to localize points in the 3D fea-
ture maps of a convolution layer. 4) Pool out the activations
at each corresponding point. 5) Concatenate all the pooled
activations in the same clip together. 6) Use average pooling
and L2 normalizaiton to aggregate clip features into video
features. 7) Use linear SVM to do classification.

The main contributions of our work include:
• We are the first to combine 3D CNNs and body joints

to improve action recognition by using joint positions
to pool convolutional activations. Even with estimated
joint positions which are not as accurate as manually an-
notated data, the experimental results are still promising,
outperforming other features.

• We use a novel method to map the joint positions in
videos to points in feature maps for pooling by taking
kernel sizes, stride values and padding sizes of 3D CNN
layers into account which is more appropriate than di-
rectly using ratio scaling.

• The simple, yet effective convolutional feature map
pooling method has better generalization ability than the
original C3D feature. It can apply to novel datasets with-
out carefully-designed finetuning and get better perfor-
mance than C3D.

2 Joints-pooled 3D Deep Convolutional
Descriptors

In this section, firstly, we review the 3D architecture proposed
in [Tran et al., 2014]. Then we describe the concepts of recep-
tive field and corresponding points in 3D convolutional net-
works. Finally we introduce two methods of mapping joint
positions to the coordinates in convolutional feature maps.

2.1 3D Convolutional Networks Revisited
We use the C3D model trained on Sports-1M provided by
[Tran et al., 2014] to compute 3D convolutional feature maps.

Using shorthand notation, the full architecture of C3D is
conv1a(64)�pool1�conv2a(128)�pool2�conv3a(256)�
conv3b(256) � pool3 � conv4a(512) � conv4b(512) �
pool4�conv5a(512)�conv5b(512)�pool5�fc6(4096)�
fc7(4096)�softmax, where the number in parenthesis indi-
cates the number of convolutional filters. All 3D convolution
kernels are 3⇥ 3⇥ 3 (in the manner of k⇥ k⇥ d, where k is
spatial size and d is temporal depth) with stride 1 and padding
1 in both spatial and temporal dimensions. All pooling ker-
nels are 2⇥2⇥2, except for pool1 which is 2⇥2⇥1 with the
intention of not to merge the temporal signal too early. C3D
takes a clip of 16 frames as input. It resizes the input frames
to 171⇥128 (width ⇥ height), then crops to 112⇥112. More
details and explanations can be found in [Tran et al., 2014].

Compared with C3D which used fc6 as features, the pro-
posed approach does not need to compute activations of any
fully-connected layer since it pools on convolutional layers.

2.2 3D Receptive Field and Coordinate Mapping
In CNNs, receptive field is an important concept, which em-
bodies a particular region of sensory space between layers.
The receptive field of 3D CNNs is a spatio-temporal cube in-
stead of a spatial rectangle for 2D CNNs.

As illustrated in Figure 2, after the operation of convolution
or pooling, a point in Map3 corresponds to a cube in Map2
which is enclosed with red lines. And the cube in Map2 cor-
responds to an bigger cube in Map1 which is enclosed with
blue lines. Therefore, the point in Map3 actually corresponds
to the cube enclosed with the blue lines in Map1. The size of
receptive field can be computed layer by layer.

Besides receptive field, we can obtain the mapping rela-
tionship of points between layers. Let p

i

be a point in the ith
layer. (x

i

, y

i

, t

i

) is the coordinate of p
i

. Given p

i+1, the cor-
responding point p

i

can be computed by mapping p

i+1 back
to the ith layer. Actually, p

i

is the center point of the receptive
field corresponding to p

i+1.
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Map 1 Map 2 Map 3

Figure 2: The illustration of receptive field and coordinate
mapping in 3D Convolution/Pooling layers.

For the convolution layers and pooling layers:
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are the x-axis component of stride,
kernel size and padding of the ith layer respectively. The
equation also applies to y and t dimensions. Note that for 3D
CNNs, the operations of convolution layers and pooling lay-
ers not only act on spatial dimensions, but also act on tempo-
ral dimension. Therefore the kernel size, stride and padding
value are three dimensional.

For ReLU layers:
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) = (x
i+1, yi+1, ti+1) (2)

Reversely, given the coordinate of p
i

, we can compute the
coordinate of p

i+1. The point p
i+1 corresponds to a receptive

field in the ith layer, while the receptive field takes p
i

as the
center.

2.3 Joints Pooling Methods
For JDD, we compare two ways of pooling 3D convolutional
activations based on different schemes for mapping body
joints into convolutional feature maps. One is using the ra-
tio of output to input in spatial and temporal dimensions to
scale the joint coordinates into feature maps as below, which
is named as Ratio Scaling.
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) is the point coordinate in the ith 3D convo-
lutional feature maps corresponding to (x

v

, y

v

, t

v

) which is
the joint coordinate in video. (ri

x

, r

i

y

, r

i

t

) is the ratio of the ith
convolutional feature maps to the video in spatial and tempo-
ral dimensions.

The other way is using the equations of computing recep-
tive field and mapping points with 3D convolutional and pool-
ing operations described in Section 2.2. With this method we
need to compute the corresponding points of joints by taking
kernel sizes, strides and padddings of all the preceding layers
into account. We call this method Coordinate Mapping.

After bringing the values of C3D kernel sizes 3 ⇥ 3 ⇥ 3,
strides 1 (in spatial and temporal dimensions) and paddings
1 into Equation 1, we can see that the convolution layers in
C3D do not change the coordinates of mapping points be-
tween layers.

(x
i+1, yi+1, ti+1) = (x

i

, y

i

, t

i

) (4)
A pooling layer with kernel size 2 ⇥ 2 ⇥ 2 and stride

1 changes the coordinate between input and output feature
maps as follows.
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We need to take all the preceding layers into consideration
to compute the coordinate mapping relationship between fea-
ture maps and video. Specifically, the relationship between
points coordinate in the ith convolutional feature maps and
joint positions in video is as follows.
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Note that there is a little difference in temporal dimension
because the kernel size of pool1 is 2⇥2⇥1 with the intention
of not to merge the temporal signal too early.

Since we can use body joints in video to localize points in
3D feature maps, we can pool out the activations at each cor-
responding point. All the pooled activations belonging to the
same clip are concatenated together. Average pooling and L2
normalization are used to aggregate clip features into video
features. The dimension of JDD is C ⇥ L ⇥ N , where C is
the number of feature map channels, L is the length of the
video clip which is 16 in our experiments, N is the number
of body joints in each frame.

The JDDs from different convolutional layers can be fused
together to improve performance due to complementarity.
JDD can also be combined with other features or models.

3 Experiments
In this section, Firstly, we make a brief introduction to the
datasets we use. Then, we describe the exploratory experi-
ments we make to compare the two pooling schemes. We also
test the robustness of JDD with inaccurate estimated joints.
Finally, we evaluate JDDs on public datasets and give the
comparison to the state-of-the-art results.

3.1 Datasets
We evaluate our method on three public action datasets: sub-
JHMDB [Jhuang et al., 2013], Penn Action [Zhang et al.,
2013] and Composable Activities [Lillo et al., 2014]. These
datasets cover indoor and outdoor actions.

sub-JHMDB dataset is a subset of JHMDB with full body
inside the frame, containing 316 videos with 12 action cate-
gories. sub-JHMDB provides action labels and 15 body joints
for each frame. We use the 3-fold cross validation setting pro-
vided by the dataset for experiments. The dataset is collected
from movies or Internet. The lengths of frames in videos
ranges from 16 to 40.

Penn Action dataset contains 2326 video sequences of 15
different actions and annotations of 13 body joints for each
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Concatenate
all the activations

JDD
Ratio Scaling
(1⇥ 1⇥ 1)

JDD
Coordinate Mapping

(1⇥ 1⇥ 1)

JDD
Ratio Scaling
(3⇥ 3⇥ 3)

JDD
Coordinate Mapping

(3⇥ 3⇥ 3)
joint coordinates 0.4565 - - - -

fc7 0.6771 - - - -
fc6 0.6884 - - - -

conv5b 0.6702 0.7570 0.8186 0.7843 0.7919
conv5a 0.5952 0.7246 0.7343 - -
conv4b 0.5057 0.7272 0.7251 0.7427 0.7767
conv4a 0.4667 0.7439 0.7063 - -
conv3b 0.3943 0.6532 0.6385 0.6730 0.6733

Table 1: Recognition accuracy of different features on subJHMDB.

sequence. There are videos in which not all the body joints
are visible. We use the 50/50 trainning/testing split provided
by the dataset to do experiments. The videos are obtained
from various online video repositories. The lengths of frames
in videos is from 18 to 663.

Composable Activities dataset consists of 693 videos
containing activities in 16 classes performed by 14 actors.
Each activity is composed by spatio-temporal combinations
of atomic actions. Note that there is no ground-truth joints in
this dataset. We use the estimated body joints extracted from
RGB-D videos provided by [Lillo et al., 2014]. The videos
are relatively long compared to the other two datasets. The
lengths of frames in videos is from 83 to 1351.

3.2 Implementation details
For Penn Action and Composable Activities datasets, the
videos are split into 16-frame long clips with 8-frame over-
lap between two consecutive clips as inputs of C3D. For sub-
JHMDB, due to its short length in time, we split each video to
three clips which are the first 16 frames, the middle 16 frames
and the last 16 frames.

Each clip is input to C3D. We pool the activations in a par-
ticular 3D convolution layer out based on joint positions. The
activations pooled out are concatenated to be the descriptor
of the input clip. For sub-JHMDB and Penn Action datasets,
the descriptors of clips are averaged to form a video descrip-
tor which is normalized by L2-norm. Linear SVM [Fan et al.,
2008] is used to classify the videos. For long-time videos in
Composable Activities dataset, we use HMMs to do classifi-
cation which will be described in Section 3.7.

On sub-JHMDB and Penn Action datasets, we do not fine-
tune C3D. For Composable Activities dataset, which is much
different from Sports-1M, we finetune the network with a few
iterations (see Section 3.7 for specific experimental settings).

3.3 Analysis of JDD and baselines
In this section, we compare JDD with joint coordinates and
C3D features [Tran et al., 2014]. We also show the exper-
iments on pooling different 3D convolution layers with dif-
ferent joints mapping algorithms. We experiment on sub-
JHMDB without finetuning. Firstly, we test the C3D features.
The recognition accuracy of fc6, fc7 and flattened convolu-
tional activations are listed in the first column of Table 1. The

results verify that deep architectures learn multiple levels of
abstraction layer by layer.

We test JDD with pooling one activation on the corre-
sponding point in feature maps and pooling a 3⇥ 3⇥ 3 cube
around the corresponding point with Ratio Scaling and Co-
ordinate Mapping introduced in Section 2.3. The recognition
results are shown in Table 1. We can see that, compared with
C3D features, our JDDs have superior performance which
demonstrates the effectiveness of joints pooling. Generally,
the higher layers encapsulate more discriminative informa-
tion for recognition. Pooling a cube around the mapping
points is usually better than pooling one activation because
the former takes more surrounding information into account,
except for conv5b. It is probably because that the spatial and
temporal size of feature maps in conv5b is small, thus a cube
around the mapping points encloses too much global informa-
tion which impairs the performance. At shallow layers, JDD
Ratio Scaling and JDD Coordinate Mapping are very close
in performance. As the layer goes deeper, the performance
of Coordinate Mapping is much better than Ratio Scaling.
It is probably because that the difference between the coor-
dinates of mapping points obtained by the two methods is
bigger and bigger with the increase of layers, while the influ-
ence of kernel sizes, strides and paddings of layers is more
and more significant. The best result is obtained by JDD of
conv5b with Coordinate Mapping. For other layers, pooling
a cube around the corresponding point computed with Co-
ordinate Mapping is better than with Ratio Scaling. Coor-
dinate Mapping is more appropriate than Scaling Ratio. We
use 1⇥ 1⇥ 1 Coordinate Mapping for conv5b and 3⇥ 3⇥ 3
Coordinate Mapping for conv4b in the rest experiments.

If we use max-pooling to down sample the feature maps
into responses of windows, then accumulate the responses
into a descriptor, the accuracy is 0.7047 for conv5, which
is higher than fc6 and flattened conv5 features, while much
lower than JDDs. This demonstrates that convolution layers
contain spatio-temporal information and body joints are im-
portant for human action recognition. Our JDD does make
full use of spatial and temporal information learned by C3D
and utilize body joints to omit irrelevant information in the
background.
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Method GT Esti Diff
JDD (conv5b) 0.819 0.777 0.042

P-CNN [Chéron et al., 2015] 0.725 0.668 0.057
Pose [Jhuang et al., 2013] 0.751 0.529 0.222

HLPF [Yang and Ramanan, 2011] 0.782 0.511 0.271

Table 2: Impact of estimated joints versus ground-truth joints
for JDD, P-CNN and two high-level pose features on sub-
JHMDB.

3.4 Evaluation on sub-JHMDB Datasets

In this section, we compare our method with other published
methods. To evaluate the influence of joints precision to JDD,
we generate JDD based on the estimated joints provided by
[Yang and Ramanan, 2011]. The accuracies of JDD based on
ground-truth joints and estimated joints are listed in Table 2.
The drop of accuracy is also reported. We compare JDD with
P-CNN [Chéron et al., 2015], Pose [Jhuang et al., 2013] and
HLPF [Yang and Ramanan, 2011]. P-CNN is a pose-based
CNN descriptor which uses positions of body joints to crop
RGB and optical flow images into patches; The activations of
CNN fully-connected layer produced by multiple patches are
aggregated to describe the input video. Pose and HLPF are
two kinds of hand-crafted high-level pose features.

From Table 2, we can see that JDD outperforms the-state-
of-the-art results significantly on sub-JHMDB. Note that we
only use the JDD pooled from conv5b layer and use simple
averaging pooling between clips. JDD achieves the best per-
formance not only on ground-truth joints, but also on esti-
mated joints, exceeding other methods in the order of 10%.
And the drop of accuracy for JDD is the smallest among all
the descriptors which demonstrates that JDD is robust to er-
rors in pose estimation. If we use max+min pooling in tem-
poral dimension as [Chéron et al., 2015], the JDD accuracy
of conv5b could be further improved to 82.6%.

The superior performance of JDD compared to P-CNN
demonstrates that we do not need to crop the images into mul-
tiple patches to advance accuracy as usual. The information
in feature maps produced by taking one image or video clip
as input is abundant. We can take good advantage of it by
joints pooling.

3.5 Analysis of Feature Fusion

As mentioned above, the receptive field of a particular point
in convolutional feature maps is a cube which corresponds to
a spatio-temporal region in video. With the increase of con-
volution layers, spatial and temporal information is abstracted
from the parts to the whole. Different layers pick up discrim-
inative information at different abstract level. We try to fuse
JDDs from different layers together to see if they can com-
pensate each other. We also test the fusion of JDD and other
features. Table 3 represents the results of different combi-
nations of features using late fusion by the scores of SVM.
The combination of JDDs of conv5b and conv4b improves
the performance mostly. Higher accuracy should be obtained
by fusing more complementary information together.

Fusion Layers Accuracy
JDD (conv5b+fc6) 0.825

JDD (conv5b+conv4b) 0.833
JDD (conv5b+conv3b) 0.830

JDD (conv5b+joint coordinates) 0.819

Table 3: Recognition accuracy on subJHMDB of fusion JDD
with other features and fusion JDDs from multiple layers to-
gether.

3.6 Evaluation on Penn Action Dataset
On Penn Action dataset in which there are videos with in-
visible body joints, compared to other methods, JDD also
achieves the best accuracy as shown in Table 4.

We use the algorithm in [Yang and Ramanan, 2011] to gen-
erate estimated joints in Penn Action dataset without fine-
tuning. The per joint L1 distance error (pixels) between the
ground-truth joints and estimated joints is (68.52, 40.67) in
width and height. Note that the authors of [Nie et al., 2015]
removed the action “playing guitar” and several other videos
because less than one third of a person is visible in those data.
While we do not remove any videos. This illustrates that JDD
is robust for occlusion. The authors [Nie et al., 2015] also
corrected errors of un-annotated joints by training a regres-
sion model to predict their positions. While we do nothing
to rectify the positions of joints. We even do not finetune the
skeleton estimation algorithm on Penn Action dataset. This
indicates that JDD is not sensitive to error joints.

We visualize the confusion matrixes obtained by C3D fc6
feature and JDD from conv5b in Figure 3 and Figure 4 re-
spectively. We can see that the most confusing categories are
“clean and jerk” with “squat”, “tennis forehand” with “ten-
nis serve” due to their similarity in appearance and motion.
By the ability to extract more discriminative spatio-temporal
information, JDD performs better than C3D fc6 features.

If we use max+min pooling in time as [Chéron et al., 2015]
instead of average pooling, the JDD accuracy of conv5b could
be further improved to 97.1% and the accuracy of fusing
conv5b and conv4b could be 98.1%.

The promising results indicate that JDD is not limited to
the situations with full human joints visible. We also do ex-
periments on the full JHMDB dataset in which two thirds of
the videos contain joints annotated outside the frames. The
best result of JDDs is 72.63%. We believe that if we add
more proper operations to handle the case of outside joints
instead of simply mapping those points to their nearest points
on the image edge as we do now, the performance could be
further improved.

3.7 Evaluation on Composable Activities Dataset
For Composable Activities dataset, there are 14 actors. Fol-
lowing the same experimental settings as [Lillo et al., 2014],
performance is evaluated with leave-one-subject-out. Be-
cause the number of clips of this dataset is relatively large,
and this dataset is indoor human activities composed of tem-
poral and spatial arrangement of actions which is much differ-
ent from the pre-trained Sports-1M dataset, we finetune C3D.
For different splits, we use the same finetuning settings. We
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Figure 3: The confusion matrix obtained by C3D fc6 feature.
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Figure 4: The confusion matrix obtained by conv5b JDD.

do finetuning using mini-batches of 30 clips, with learning
rate of 0.0003. The finetuning is stopped after 5000 itera-
tions. Linear SVM is used for action classification. As for
activity recognition, we use HMMs with 6 hidden states to
model the dynamic of the whole video sequence. C3D fc6
and JDD features are firstly reduced to 64 dimensions with
PCA to reduce the model complexity.

The ground-truth action labels are annotated to each part
of human body (e.g. left arm and right leg). Thus, the la-
bels could be overlapped at a frame such as “waving hand”
and “walking”. For these situations, we simply use a label
of one body part as the label of 16-frame clip to train SVM.
The recognition accuracy of action is 56.3% and 55.2% for
C3D fc6 and JDD from conv5b respectively. The competing
methods used complex graph models with multiple chains to
model different body parts. With 4 chains corresponding to
4 body parts, the action accuracies for Hierarchical Model
[Lillo et al., 2014] and ST TriCRF [Cao et al., 2015] are
70.2% and 56.6% respectively. However, the action accu-
racy is much lower for ST TriCRF [Cao et al., 2015] which

Method Accuracy
STIP [Zhang et al., 2013] 0.829
Dense [Wang et al., 2013] 0.734
MST [Wang et al., 2014] 0.740

Action Bank [Zhang et al., 2013] 0.839
Actemes [Zhang et al., 2013] 0.794

Graph Model [Nie et al., 2015] 0.855
C3D (fc6) 0.860

JDD (estimated joints)(conv5b) 0.874
JDD(conv5b) 0.943

JDD(conv5b+conv4b) 0.957

Table 4: Recognition accuracy on Penn Action dataset.

Method Accuracy
BoW [Lillo et al., 2014] 0.672

H-BoW [Lillo et al., 2014] 0.742
HMM [Lillo et al., 2014] 0.765

Hierarchical Model [Lillo et al., 2014] 0.857
ST TriCRF [Cao et al., 2015] 0.790

C3D (fc6) 0.860
JDD (estimated joints) (conv5b) 0.879

Table 5: Recognition accuracy of activity on Composable Ac-
tivities dataset.

is 33.8% when dealing with overlapping frames as us. We
can also aggregate activations pooled out by body joints be-
long to the same body part to generate part descriptors. By
using complex graph models to model different body parts,
the accuracy of JDD could be improved further.

The recognition accuracy of activity is shown in Table 5.
Except C3D, the other competing methods used hand-crafted
skeleton features. Note that with HMMs, the accuracy of the
skeleton features in [Lillo et al., 2014] is 76.5% which is
much lower than 87.9% of JDD. Even with complex graph
models, the accuracy of skeleton features can not exceed
JDD. As we can see, C3D is a powerful feature extractor for
recognition. With the estimated pose information, our pro-
posed JDD gets the highest accuracy even with a low dimen-
sion after PCA which demonstrates that JDD is an effective,
robust and scalable descriptor for videos.

4 Conclusions

We propose a novel joints-pooled 3D deep convolutional de-
scriptor (JDD) in this paper which can take advantages of
body joints and C3D. Body joints are expressive features
of human pose. C3D is a generic model to extract spatio-
temporal information in videos. We utilize body joints to
sample discriminative points from feature maps generated
by C3D. Promising experimental results in indoor / outdoor,
short-time / long-time datasets with annotated / estimated
joints demonstrate the effectiveness and robustness of JDD
in video-based human action recognition.
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