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Abstract

Semantic attributes have been proposed to bridge
the semantic gap between low-level feature rep-
resentation and high-level semantic understanding
of visual objects. Obtaining a good representa-
tion of semantic attributes usually requires learning
from high-dimensional low-level features, which
not only significantly increases the time and space
requirement but also degrades the performance
due to numerous irrelevant features. Since multi-
attribute prediction can be generalized as an multi-
task learning problem, sparse-based multi-task fea-
ture selection approaches have been introduced,
utilizing the relatedness among multiple attributes.
However, such approaches either do not investi-
gate the pattern of the relatedness among attributes,
or require prior knowledge about the pattern. In
this paper, we propose a novel feature selection ap-
proach which embeds attribute correlation model-
ing in multi-attribute joint feature selection. Exper-
iments on both synthetic dataset and multiple pub-
lic benchmark datasets demonstrate that the pro-
posed approach effectively captures the correlation
among multiple attributes and significantly outper-
forms the state-of-the-art approaches.

1 Introduction

Recent literature has witnessed fast development of repre-
sentations using semantic attributes, whose goal is to bridge
the semantic gap between low-level feature representation
and high-level semantic understanding of visual objects. At-
tributes refer to visual properties that help describe visual
objects or scenes such as “natural” scenes, “fluffy” dogs,
or “formal” shoes. Visual attributes exist across object cat-
egory boundaries and many methods have been employed
in applications including object recognition [Farhadi et al.,
20101, face verification [Song et al., 2012], image search [Ko-
vashka et al., 2012; Scheirer et al., 2012] and sentiment anal-
ysis [Wang et al., 2015].

*The work was supported in part by ONR grant N0O0O14-15-1-
2344 and ARO grant W911NF1410371. Any opinions expressed in
this material are those of the authors and do not necessarily reflect
the views of ONR or ARO.
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Figure 1: Illustration of Shoe images with three correspond-
ing attributes “High Heel”, “Formal” and “Red”.

Good representations of semantic attributes are often built
on top of high-dimensional, low-level features. Attribute
learning directly based on such raw, high-dimensional fea-
tures may suffer from the curse of dimensionality curse. Fur-
ther, often it is reasonable to assume that not all the low-level
features would have equal contribution to all the attributes.
Feature selection, selecting a subset of most relevant fea-
tures for a compact and accurate presentation, is proven to
be an effective and efficient way to handle high-dimensional
data [Tang et al., 2014].

Multi-task joint feature selection has been introduced by
[Chen et al., 2014] for attribute ranking by exploring the cor-
relation among attributes. However, this work assumes that
all attributes are correlated by sharing the same subset of fea-
tures, which is not always accurate. For example, as shown in
Figure 1, a “high-heel” shoe is usually considered as a “for-
mal” shoe as well. It is reasonable to assume these attributes
share the same subset of features, e.g., shape-related descrip-
tors. However, it is hard to identify whether “high heel” or
“formal” shoes are in red, which suggests the attribute “color”
may not share the same subset of features with the other at-
tributes but is determined by, e.g., color-related descriptors.
In other words, attributes are usually related in clustering
structures. [Jayaraman et al., 2014] first explores such clus-
tered relatedness on attribute prediction. However, their ap-
proach requires manually specified group structure as prior.
To our knowledge, there is still lack of a feature selection
approach being able to identify grouping/clusering structures
among attributes for improved attribute prediction.

In this paper, we propose a regularization-based multi-task
feature selection approach that aims at automatically parti-
tioning the attributes into groups while simultaneously uti-



lizing such group information for attribute-dependent feature
selection. We employ a clustering regularizer for attribute
partition, where strong attribute relatedness is assumed to ex-
ist within each cluster. Besides, a group-sparsity regularizer is
imposed on the objective function to encourage intra-cluster
feature sharing and inter-cluster feature competition. Under
this formulation, we propose an alternating structure opti-
mization algorithm, which efficiently solves the relaxed form
of the proposed formulation. We verify the effectiveness and
generalization capability of our approach on both synthetic
and real-world benchmark datasets. The results show that our
approach outperforms the state-of-the-art approaches on fea-
ture selection, attribute prediction and zero-shot learning.

2 Methodology

Let F = {f1, f2,..., fa} be the set of d features and then
we can represent a set of n instances by the feature set F as
X = [x1,%2,...,2,) € R | LetC = {c1,¢2,..-,Cm}
be the set of m attribute labels and Y = [y, Yo, ..., Y,] €
{0,1}™>™ denotes the label matrix where y, € R™(i
1,2,...,n) is the label vector of the i-th instance. We aim
to select K (K <d) most relevant features from F by lever-

aging X, Y and the attribute correlation in C. Let s
K

P N . . .
7(0,...,0,1,...,1), where 7(-) is the permutation function
and K is the number of features to select where s; = 1 in-
dicates that the i-th feature is selected. The original data can
be represented as diag(s)X with K selected features where
diag(s) is a diagonal matrix. We assume that a linear pro-
jection matrix W = [wq,ws, ..., w,] € R¥>*™ maps the
data X to its label matrix Y where w; € R? is the projection
vector for the i-th class ¢;. If we do not consider attribute cor-
relation, we can select K features via solving the following
optimization problem:

min L(W "diag(s)X,Y)
W,s

s. sT1, =K

t., s€{0,1}",

where L(-) is the loss function and typical choices of loss
functions include least square and logistic regression.

2.1

Based on the assumption that correlated attributes would
share the same features, we propose to model attribute corre-
lation via learning the clustering structures through k-means.
Let E be a permutation partition matrix, then a partition of
the projection matrix W into k clusters can be formed as:

[ @ 0

wy, Wy ...,
where W; € R¥*"i(j = 1,2,...,k) is the i-th partitioned
group includes n; projection vectors (or attribute labels). The
associated sum-of-squares cost function for the partition can
be formulated as

ZZ”"U _mzH , My = Zwl)/nz

=1 j5=1

Modeling Label Correlation

WE = Wy, Wa,...,Wi],W; = w];

ey
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where m; denotes the mean vector of the i-th cluster. Let

e = [1 1,...,1]T € R™*1 then Eq. (1) can be derived as
) e;T
ZZHU’ —my| ZHWz ne = |
=1 j=1 i
i T e’ T €i
=2 Te(W,' W) — (=)W, Wi(—=) )
T

Let F' = diag(\/e—%l, \;—7%7 cee \/6—7’;7) € R™** be an or-
thonormal matrix, then Eq. (2) can be rewritten as
Te(W'W) - Te(FTWTWF)

To make the problem tractable, we ignore the special struc-
ture of F' and let it be an arbitrary orthonormal matrix. By
adding a global penalty Tr(WW T1W) measuring how large the
weight vectors are, capturing label correlation is to partition
W into k clusters, which can be achieved by solving the fol-
lowing optimization problem:

F%n Te(W'W)—Te(FT W WF)4+~Te(W '

W) 3)

2.2 Feature Selection

With the model component to capture attribute correlation in
Eq. (3), the proposed feature selection framework is to solve
the following optimization problem:

Inin L(W "diag(s)X,Y) +yTe(W W)

+ B(Te(W'W) — Te(FTWTWF))
st. FTF=1I,s€{0,1}",s"1, =K (4

where /3 controls the contribution from modeling label corre-
lation and ~y controls the generalization performance.

The constraint on s makes Eq. (4) a mixed integer pro-
gramming problem, which is difficult to solve. We observe
that diag(s) and W are in the form of W”diag(s). Since s
is a binary vector and d — K rows of the diag(s) are all ze-
ros, W1 diag(s) is a matrix where the elements of many rows
are all zeros. This motivates us to absorb diag(s) into W as
W = WTdiag(s), and add /5 ;-norm on each grouped W;
to encourage sparse-based group-wise joint feature selection.
With this relaxation, Eq. (4) can be rewritten as:

k
. - | .
W,F;rlgly}?=[k LW X.Y)+ 0‘; IWill21 +~Te(W ' W)
+B(Te(WTW) — Te(FTWTWF)) )

where o controls the sparsity of W. The key idea lying here
is that we use the clustering regularizer to partition the tasks
into groups where strong correlation exists among tasks in
the same group; and feature selection based on such group
structures would make sure appropriate feature subsets are
selected to represent the respective semantic attributes.

3 Algorithm

In this section, we first introduce an optimization algorithm
to seek an optimal solution (summarized in Algorithm 1) for
Eq. (5). Then we propose an approach to estimate the at-
tribute assignment (summarized in Algorithm 2).



3.1 Optimization
The optimization problem in Eq. (5) is non-convex non-
smooth, which makes the formulation difficult to solve in its
original form. Thus we adopt several relaxations to make it
solvable.

The attribute correlation regularization in Eq. (3) can be
rewritten as:

BTe(W((1+n)I - FFT)WT)
where n = v/ > 0. Let M = FFT, according to [Zhou

et al., 2011] the previous regularizer can be relaxed into the
following convex form:
Bn(1 +n)Te(W(nl + M)~'W")
sit. tr(M)="Fk, M=<I, M € ST (6)
where S'!* is the set of m xm positive semidefinite matrices.
Following a similar idea in [Bach, 2008], we reformulate
Eq. (5) by squaring the ¢ ; norm. Since the /5 ; norm is pos-
itive, the squaring represents a smooth monotonic mapping.
Without loss of the generality, we adopt the traditional least
square loss for demonstration in this paper. Then we get the
following jointly convex smooth objective function regarding
to W and M.
k
arg mm WX —Y|% 4« Z
i=1
= Bn(L+m)Te(W (I +M)~'WT)
st. tr(M)=Fk, M=I, M ST @)
Since it is difficult to optimize the linear projection ma-
trix W and attribute correlation matrix M simultaneously,
we employ Alternating Structure Optimization (ASO), which
has been shown to be effective in many practical applica-

tions [Blitzer et al., 2006; Quattoni et al., 2007] and is guar-
anteed to converge to a global optimal solution.

1)?

Optimizing M when fixing W
Given a fixed W, the optimization problem is decoupled into
the following optimization problem:

min Te(W (11 + M)~'wT)

sit. tr(M)=Fk, M=<I, M €87 )

We solve the problem based on the following Lemma due
to [Zhou et al., 20111]:

Lemma 1 For the optimization problem in Eq. (8), let W =
UXV be the singular value decomposition of W where ¥ =
diag([o1,02,...,0m]), M = QAQT be the Eigen decompo-
sition of M where A = diag([A, Xz, ..., \]) and q be the
rank of ¥. Then the optimal Q* is given by Q* = V and
the optimal N* is given by solving the following optimization
problem:

2

q
A" = arg minz
A<
1=

— N+ A
q
st Y Ni=k0<N<1
i=1
Eq. (9) can be solved using the similar technology in [Jacob
et al., 2009].

()]
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Algorithm 1 Feature Selection Optimization
Input:
1. Multiple attribute data {X,Y};
2. Parameters «, (3, k(optional) and the number of se-
lected features K;
3. The initial projection matrix Wp;

Procedure:
1: Set W =Wy,
2: repeat
3:  Update M according to Eq. (8);

Update r according to Alg. 2;
Update d according to Eq. (10);
Update W according to Eq. (11);
until Converges
Sort each feature according to ||w||2 in descending order
of each group;
return The group-wise top-K ranked features;

S AR

Algorithm 2 Cluster Assignment Estimation
Input: M;
Procedure:
1: Approximate F' by top-ranked eigenvector of Q;
2: Calculate Ry1, R12 by applying QR decomposition with
column pivoting on F' by Eq. (12);
Calculate R by Eq. (13);
calculate r by Eq. (14) for each attribute;
: return Cluster assignment vector 7;

s w

Optimizing W When Fixing M

The squared group-wise £ 1 norm in Eq. (7) is still difficult
to derive directly. To alleviate that, we introduce some posi-
tive dummy variables ¢;; € R™ which satisfies 3, >, 0;; =
1. [Argyriou et al., 2008] proves an upper bound of the
squared /5 ; norm in terms of the positive dummy variables

ZZ”“’”” ;; kuH

1=1 j=1
where w; ; € R*™ is the row vector of ;. Thus di; can be
updated by holding the equality:

d
8ij = llwijll2/ > llwi il
=1

Given a fixed M, each projection vector w can then be
updated by optimize the following problem

k

Y (IWill2a)? =

=1

(10)

k d 2
. Tx _y|2 ([lwill2)

argr%nHW % +a;i§:1 oy

— Byl 4+ n)Te(W(nl + M)~'WwT)

which can be solved by gradient-type approach.

Y

3.2 Estimating Attribute Assignment

The group-wise feature selection is conducted by the clus-
tering structure of the attribute. However, given the M op-
timized by the previous algorithm, it is not readily possible



to observe the cluster assignment of the attributes because M
is spectrally relaxed. In this subsection, we propose an ap-
proach to acquire the cluster structure.

We first need to obtain a good approximation of the cluster
indicator matrix F'. Given M, we first apply Eigen decompo-
sition M = QAQ T where each column of Q is the eigenvec-
tor and each diagonal element of A is the eigenvalue. Then
we rank the columns of () in decreasing order according to
its corresponding eigenvalues, and the top-ranked & columns
give an approximation of the cluster assignment matrix F'.
The number of the cluster £ can be either manually specified
or automatically explored by setting a threshold (10e — 8 in
our experiment) regarding to the absolute value of the eigen-
value.

After obtaining F', without loss of generality, we assume
the optimized W = [Wy, Wy, -+, Wj]T where the subma-
trix W; includes all attributes belonging to the i-th cluster.
Lett; = [ti1,ti2, .- tin,]” denote the largest eigenvector of
W,TW;, [Zha et al., 2002] showed that F can be reformu-
lated as

T
F :[tllvla"' 7t181v11"' 7tk:lvk:a"' 7tk81vk]
clusterl clusterk
where VT = [vq, v, - ,vi] € RF*F is an orthogonal ma-

trix.

Since v; is orthogonal to each other, the cluster structure
can be acquired by picking up a column of F' which has the
largest norm as the first cluster, and orthogonalizing the other
columns against this column. Then the same process is exe-
cuted on the rest of columns until all clusters are identified.
This process is identical to a QR decomposition with column
pivoting on F'

F' = Q[Ru1, Ria] PT (12)

where Q € RF** is an orthogonal matrix, R;; € RF** is
an upper triangular matrix and P € R™*"™ is a permutation
matrix. Then we calculate the cluster assignment matrix R €
Rk xXm by

R = (I}, Ry Rio) PT (13)

where I, € R¥*¥ is an identity matrix. The cluster assign-
ment information can then be inferred from R. The cluster
membership of each attribute (column) is determined by the
row index of the largest element (in absolute value) of the
corresponding column in R. Denote r € R™ as the cluster
identification vector where r; records which cluster the ¢-th
class belongs to, then 7 can be calculated by

r; = arg max f; (14)
j
where 7 is the (i, j)-th entry of R.

4 Experiments

In this section, we first verify the effectiveness of our pro-
posed approach on one synthetic dataset. Since the proposed
approach can be generalized to general multi-label problem,
we evaluate the feature selection capability on various bench-
mark datasets. At last we evaluate the attribute prediction and
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zero-shot learning capabilities on image benchmark datasets.
All the datasets are standardized to zero-mean and normal-
ized by the standard deviation. For all approaches, the super
parameters are selected via cross-validation. We cannot get
the number of cluster k£ without any prior knowledge for real-
world, thus we also select k by the prediction accuracy on a
small subset of datasets.

4.1 Simulation Study

Since it is difficult to obtain the groundtruth cluster struc-
ture for real applications, we first verify the effectiveness
of the proposed approach in obtaining the cluster struc-
tures on simulated dataset. Following [Jacob et al., 2009;
Zhou et al., 20111, we construct the synthetic data containing
5 clusters with 10 learning tasks in each cluster, generating a
total number of 50 tasks. For the i-th task, a dataset X; cR**"
is randomly drawn from a normal distribution N (0, 1) for
learning, with the dimension d = 30 and the sample size
n = 60.

The projection model is constructed as follows. For the i-
th cluster, we generate a cluster weight vector w$€R? drawn
from the normal distribution N (0, 900). Then 15 dimensions
of w{ are randomly but carefully selected and assigned to ze-
ros, to ensure all w® are orthogonal to each other. Similarly,
for the j-th task belonging to cluster ¢, we generate a task-
specific weight vector wj €R? drawn from the normal dis-
tribution NV (0, 16) with the same dimensions of w¢ assigned
to zeros. Thus, the ultimate weight vector of the j-th task is
the linear combination of the cluster and task-specific weight
vector w; = wy + wyj.

The corresponding response y; of the i-th samples x; of
task j is then obtained by y, = w}":ci + €; where € is the
noise vector drawn from N(0,0.1). We choose 0.5 as the
threshold to assign binary label to each sample.

We verify the effectiveness of our proposed approach by
comparing the learned cluster structure and the selected fea-
tures with the groundtruth. Based on the prior knowledge
implied by the construction of the groundtruth, We set k = 5
and the number of selected features as K = 15. Figure 2
shows one example of the learned projection matrix 2(b) with
the comparison of the groundtruth 2(a) where the white part
represents zeros and the black part represents non-zeros. The
result shows that our approach is able to roughly capture the
correct group sparse structures.

n
O
o
=}

=1
©
9]

w

Features

Attributes
(a) Groundtruth model

Attributes
(b) Learned model

Figure 2: The learned projection matrix and the correspond-
ing groundtruth in the simulation experiments. The white
parts are zeros and the black parts are non-zeros.



4.2 Feature Selection

We verify the feature selection capability on general multi-
label datasets in this section. The experiment is conducted
on 6 public benchmark feature selection datasets including
one object image dataset COIL100 [COI, 1996], one hand-
written digit image dataset USPS [Hull, 1994], one spoken
letter speech dataset Isolet [Fanty and Cole, 1991], three
face image dataset YaleB [Georghiades et al., 2001], ORL
[Samaria and Harter, 1994] and PIX10P!. The statistics of
the datasets are summarized in Table 2. We compare the pro-
posed approach with the following representative feature se-
lection algorithms: Fisher Score [Duda et al., 2001], mRMR
[Peng, 2005], Relief-F [Liu and Motoda, 2008], Informa-
tion Gain [Cover and Thomas, 19911, MTFS [Argyriou et al.,
2008].

Following the common way to evaluate supervised fea-
ture selection, we assess the quality of selected features in
terms of the classification performance [Han et al., 2013;
Cai et al., 2013]. The larger classification accuracy is, the bet-
ter performance the corresponding feature selection approach
achieves. In our experiments, we employ linear Support Vec-
tor Machine (SVM) and k-nearest neighbors (KNN) classifier
with k& = 3 for evaluation. How to determine the optimal
number of selected features is still an open question for fea-
ture selection; hence we vary the number of selected features
as {10,30, 50 ...,90} in this work. In each setup 50% sam-
ples are randomly selected for training and the remaining is
for testing. Specific constrains are imposed to make sure the
class labels of the training set are balanced. The whole ex-
periment is conducted 10 rounds and average accuracies are
reported.

Figure 1 shows the comparison results for SVM and kNN
on the 6 benchmark datasets when 50 features are selected.
The result shows that MTFS and the proposed framework
outperform Fisher Score, nRMR and Information Gain. The
performance gain comes from that Fisher Score, mRMR and
Information Gain select features one by one while MTFS and
FSMC select features in a batch model. It is consistent with
what was suggested in [Tang and Liu, 2012] that it is better
to analyze features jointly for feature selection. Besides, in
most cases, the proposed framework outperforms MTFS. Bet-
ter performance gain is usually achieved when fewer number
of features are selected. This performance gain suggests that
modeling label correlation can significantly improve feature
selection performance for multi-class data.

4.3 Attribute Prediction

We then compare our approach with state-of-the-art attribute
learning work [Chen et al., 2014] (referred as MTAL) and
[Jayaraman et al., 2014] (referred as DSVA). Since MTAL is
initially proposed for attribute ranking, we replace the orig-
inal loss function with the one adopted in this paper for fair
comparison. DSVA requires attribute groups as prior, thus we
run k-means offline to obtain the clusters for datasets do not
have such information.

from

'PIX10P is publicly available

https://featureselection.asu.edu/datasets.php
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The experiments are conducted on three benchmark
datasets: aYahoo [Farhadi et al., 2009], Animals with At-
tributes (AwA) [Lampert et al., 2009] and SUN attribute [Pat-
terson and Hays, 2012] and the statistics of the datasets are
summarized in Table 4. To obtain a good representation of
the high-level attributes, we require that the features can cap-
ture both the spatial and context information. Thus, we con-
structed the features by pooling a variety types of feature his-
tograms including GIST, HoG, SSIM. For aPascal/aYahoo
and AwA datasets we use predefined seen/unseen split pub-
lished with the datasets. For SUN dataset, 60% of categories
are randomly split out as “seen” categories in each round with
the rest as “unseen” categories. During training 50% of sam-
ples are randomly and carefully drawn from each seen cate-
gories to ensure the balance of the positive and negative at-
tribute labels. The rest samples from “seen” classes and all
samples from “unseen” classes are used for testing.

Table 3 shows the average prediction accuracy of each
approach over all attributes by running the experiment 10
rounds. The result shows that for both “seen” and “unseen”
categories, DSVA outperforms MTAL in prediction accu-
racy and our proposed approach further outperforms DSVA
by 2%~4%. DSVA decorrelates low-correlated attributes
compared with MTAL thus achieves better prediction perfor-
mance. However, the manually specified or off-line learned
group structures are not able to achieve the optimal result.
Our approach iteratively optimizes the clustering structure
and the projection model, which achieves the best perfor-
mance.

4.4 Zero-shot Learning

We also experiment on the zero-shot learning problem on all
three datasets. Zero-shot learning aims to learn a classifier
based on training samples from some seen categories, and
classify some new samples to a new unseen category. We
adopt the Direct Attribute Prediction (DAP) framework pro-
posed in [Lampert er al., 2009] with attribute prediction prob-
ability from each approaches as input. Since only continuous
image level attribute labels are provided on the SUN dataset,
we construct the class level attribute labels by thresholding
the average attribute label values of all samples from the
class. Same “Seen”\“Unseen” categories splits are adopted
as previous experiments.

The Average classification accuracies of 10 rounds exper-
iment are reported in Table 5. The result shows that on aYa-
hoo and AwA, our approach achieves significant performance
gains than the baseline approaches. The large number of cat-
egories in SUN dataset make the classification problem very
hard which leads to all low performance of all approaches.
Our approach still works better than the baseline approaches.

4.5 On Choosing the Parameters

The proposed framework has three important parameters - «
controlling the sparsity of W, /3 controlling the contribution
of modeling label correlation and gamma controls the global
penalty. We study the effect of each parameter by fixing the
other to see how the performance of the proposed approach
varies with the number of selected features. Due to the page



Table 1: Classification results (ACC%-=+tstd) of different feature slection algorithm on different datasets. (the higher the better).

| Algorithm [ DataSet || Fisher | mRMR | Relief-F [ Information Gain [  MTES [ Proposed |
COIL100 || 60.66+3.54 | 55.72+3.34 | 62.80%2.56 62.001+2.84 78.77+2.35 | 79.08+2.12
USPS 86.30+2.81 | 58.44+4.02 | 86.83+2.83 70.25+3.16 86.254+2.52 | 93.15+2.18
SVM Isolet 75.64+£3.01 | 70.92+3.72 | 82.30+2.81 76.51£2.56 84.05+2.24 | 87.06+1.98
YaleB 66.851+3.65 | 56.91+4.21 | 71.91+2.24 71.74+2.11 76.08+2.14 | 78.17+2.18
ORL 46.50+4.21 | 84.51£2.32 | 67.18+ 3.01 53.24+2.96 85.62+1.94 | 90.51+1.78
PIX10P 93.56+£2.01 | 90.45+3.32 | 96.00+1.77 92.01£1.97 96.81£1.54 | 99.54+1.68
COIL100 || 63.33+3.21 | 54.86+£4.32 | 65.114+2.01 63.441+2.76 81.864+1.94 | 82.48+1.68
USPS 89.394+2.11 | 59.174+3.72 | 89.61£2.01 74.70+2.76 90.44+1.54 | 95.53+1.18
ENN Isolet 75.38+£2.45 | 57.56+3.42 | 79.87+2.21 73.71£2.42 77.01£2.14 | 83.21+2.18
YaleB 69.17+3.24 | 58.41+£3.72 | 65.534+2.81 65.37+2.42 77.08+2.45 | 78.96+2.28
ORL 53.01+3.44 | 72.56+2.42 | 60.384+2.71 52.4442.76 85.86+2.24 | 88.10+2.10
PIX10P 94.56£1.91 | 86.45+2.22 | 96.00+1.81 86.04+2.04 97.81£1.54 | 99.34+1.22

Table 2: Statistics of the Feature Selection datasets

Dataset | # of Samples | # of Features | # of Classes
COIL100 7200 1024 100
YaleB 2414 1024 38
ORL 400 4096 40
PIX10P 100 10000 10
USPS 9298 256 10
Isolet 7797 617 150

classification accuracy (%)

0 20

o 1]

# of features # of features

Figure 3: Parameter Analysis on SVM.

limitation, we only report the result on the Isolet dataset with
SVM but we have similar observations in other datasets.

Figure 3 demonstrates the performance variance w.r.t. dif-
ferent parameters and the number of selected features. With
the increase of 3, the performance first increases, demonstrat-
ing the importance of modeling label correlation, and then
decreases. This property is practically useful because we can
use this pattern to set 5. When « increases, the performance
also increases dramatically, which suggests the capability of
¢ 1-norm for feature selection. The performance also in-
creases with « and then decrease, but relatively stable. The
best performance is achieved around 0.1.

5 Conclusions

In this paper, we proposed a clustering-base multi-task joint
feature selection framework for semantic attribute prediction.
Our approach employs both clustering and group-sparsity
regularizers for feature selection. The clustering regularizer
partitions the attributes into different groups where strong
correlation lies among attributes in the same group while
weak correlation exists between groups. The group-sparsity
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regularizer encourages intra-group feature-sharing and inter-
group feature competition. With an efficient alternating op-
timization algorithm, the proposed approach is able to ob-
tain a good group structure and select appropriate features
to represent semantic attributes. The proposed approach was
verified on both synthetic and real-world benchmark datasets
with comparison with state-of-the-art approaches. The re-
sult shows effective group structure identification capability
of our method, as well as its significant performance gains on
feature selection, attribute prediction and zero-shot learning.
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