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Abstract

In order to be proactive, robots should be capable of
generating and selecting their own goals, and pur-
suing activities towards their achievement. Goal
reasoning has focused on the former set of cogni-
tive abilities, and automated planning on the latter.
Despite the existence of robots that possess both
capabilities, we lack a general understanding of
how to combine goal generation and goal achieve-
ment. This paper introduces the notion of equilib-
rium maintenance as a contribution to this under-
standing. We provide formal evidence that equilib-
rium maintenance is conducive to proactive robots,
and demonstrate our approach in a closed loop with
a real robot in a smart home.

1

The aim of this paper is to investigate the general problem
of making robots proactive. By proactive we mean a robot
that is able to generate its own goals and pursue activities
towards their achievement. Consider the following example.
Anna, who owns a robot, has instructions from her physician
to take pills daily at meal times. Not taking the pills can result
in Anna being unwell. During the day, there are moments
in which it would be beneficial for the robot to proactively
prompt Anna to take her pills, and moments in which it would
not be. For instance, it would be pedantic to remind her of the
pills at breakfast, but it may be adequate at lunch and really
needed at dinner. If she goes to bed without taking taking her
pills, the robot may become more invasive and bring the pills
to her. It should also bring the pills at breakfast, if it knows
that Anna will be out for the rest of the day.

The decision on when to act and what to do must consider,
in general, a multitude of aspects related to the current and fu-
ture state of the whole system, including the robot, the user,
and the pills. An important capability of a proactive robot is
planning, i.e., the ability of finding a way to achieve a cer-
tain goal, given a starting situation. In the field of service
robotics, for example, a considerable amount of work has
been done in using planning to satisfy goals manually pro-
vided by a user [Hertzberg and Chatila, 2008]. However, we
strongly agree with the view expressed by [Pollack and Horty,
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19991, who state a need for deliberation functions in intelli-
gent agents that go beyond planning. This view is echoed
by [Ghallab et al., 2014], who call for robots that, in the first
place, are actors that “may use planning and other delibera-
tion tools, before and during acting”.

One of these additional deliberation tools is goal auton-
omy, that is, the ability to autonomously formulate and dis-
patch the goals that should be achieved, rather than receiving
these goals as input. Goal autonomy enables robots to proac-
tively support humans, a capability that has been shown to en-
hance the effectiveness of human-robot cooperation [Zhang
et al., 2015]. The field of goal reasoning is concerned
with bringing about this capability [Aha, 2015]. Surveys
on the topic have identified requirements and created designs
for goal autonomous agents [Hawes, 2011; Beaudoin, 1994;
Vattam et al., 2013]. Several cognitive architectures [Rao and
Georgeff, 1991; Anderson et al., 2004; Laird et al., 1987;
Cox and Oates, 2013] generate goals by encoding inter-
nal agent drives and maintaining belief states. Other ap-
proaches use “anomalies” in the environment as a condi-
tion that triggers the generation of new goals [Cox, 2007;
Molineaux et al., 2010; Galindo and Saffiotti, 2013].

In line with existing work [Hawes, 2011; Beaudoin, 1994],
in this paper we identify the need for a process that is indepen-
dent of planning to achieve goal autonomy, where goals are
not provided by a user, an external agent or a hard-coded con-
dition in the environment. Solutions for goal autonomy have
been developed to address specific application domains [Cox,
2007; Molineaux et al., 2010; Hanheide et al., 2010; Galindo
and Saffiotti, 2013], however we lack a general understand-
ing of how to combine goal generation and goal achievement.
This paper proposes a general formalization and computa-
tional framework that can be deployed in real robotic systems,
based on the notion of equilibrium maintenance.

We first define the notion of opportunity as a way to re-
late current and future states, courses of action and desirable
states: an action is an opportunity if it keeps the system in
desired states, and if the robot has the ability to enact it. Sec-
ond, we define equilibrium, i.e., the absence of opportuni-
ties, as the persistent meta-goal which our system should aim
to maintain. Third, we provide an equilibrium maintenance
algorithm, that closes the loop between desirable states and
plan execution by continuously evaluating potential opportu-
nities, deciding which ones to act upon. Finally, we show that



equilibrium maintenance is conducive to proactive robots via
formal and empirical evidence.

2 Formalizing Equilibrium

Let £ be a finite set of predicates. We consider a system
¥ =(S,U, f), where S C P(L) is aset of states, U is a finite
set of external inputs (the robot’s actions), and f C Sx U xS
is a state transition relation. Each state s € S is completely
determined by the predicates that are true in s (closed world
assumption). If there are multiple robots, we let U be the
Cartesian product of the individual action sets, assuming for
simplicity synchronous operation. The f relation models the
system’s dynamics: f(s,u,s’) holds iff X can go from state
s to s’ when the input v is applied. We assume discrete time,
and that at each time ¢ the system is in one state s € S. In our
pills example, the states in S may encode the time of day or
the current activity of the user.

The free-run behavior F* of 3 determines the set of states
that can be reached from s in k steps when applying the null
input L, that is, the natural evolution of the system when no
robot actions are performed. F* is given by:

FO(s) = {s}
FF(s)={s' €8 |3s": f(s,L,s")Ns € FF71(s")}.

We consider a set Des C S and a set Undes C S meant
to represent the desirable and undesirable states in S. For
instance, a state where the user is having lunch and the pills
are taken is in Des, whereas a state where the day is over and
the pills have not been taken is in Undes. For the time being,
we assume that Des and Undes form a partition of .S.

2.1 Action schemes

We want to capture the notion that ¥ can be brought from
some states to other states by applying appropriate actions in
the appropriate context. We define an action scheme to be any
partial function

a:P(S)— PH(9),

where P*(5) is the powerset of .S minus the empty set. We
denote by A the set of all action schemes. An action scheme «
abstracts all details of action: a(X) =Y only says that there
is a way to go from any state in X to some state in Y. We de-
note by dom(«) the domain where « is defined. For example,
the scheme Qyemind, Which reminds the user to take the pill,
can be applied in any state s where the user is present and
the robot is on: these conditions characterize dom(ct,emind)-
Action schemes can be at any level of abstraction, be it simple
actions that can be executed directly, sequential action plans,
policies, high level tasks or goals for one or multiple planners.
Figure 1 illustrates the above elements. Each action
scheme can be applied in some set of states and brings the
system to other states. For instance, scheme «y can be ap-
plied to any state s’ € X7, and when applied it will bring 3
to some new state s” € Yj. The system is currently in the
desirable state s, and if no action is applied it will move in k
steps to some state in the set F'¥(s), which is undesirable.

G ! )
Undes i Des

Figure 1: How «’s and F' change the state of the system.

‘We now define what it means for an action scheme « to be
beneficial in a state s:

Bnf{a, s) iff 3X € dom(a) s.t. s € X A a(X) C Des.

Intuitively, « is beneficial in s if it is applicable in s, and
if applying it will necessarily result in a desirable state. In
Figure 1, o is applicable in s since its domain includes X
and s € X;. However, it is not beneficial in s since it does
not bring the system into states which are all desirable, i.e.,
a1(X1) =Y and Y7 € Des. Scheme s would be beneficial
in another state, but it is not applicable in s. Scheme a3 is not
beneficial in s, but it will become so in & steps.

We can extend the notion of being beneficial to take a time
horizon k into account:

Bnfla, s, k) iff 3X € dom(a) s.t.
s€ X AF¥(a(X)) C Des,
where F*(X) = Usex F*(s). Intuitively, such a scheme is a
way to bring the system from the current state to a state that
will be desirable after k time steps. Note that Bnf{«, s,0) =

Bnf{a, s). One may also define a durative version in which
all future states up to k are desirable.

2.2 Opportunities

We can use the above apparatus to characterize different types
of opportunities for action, which we define formally here and
exemplify in Section 5. Let s € S and let £ € N be a finite
time horizon. We define six properties that determine whether
o is an opportunity for acting in s:

Opp, (a, s, k) iff s € Undes A (35’ € F*(s
Opp, (a5, k) iff s € Undes A (Vs' € F*(s
Opp; (e, s, k) iff 3’ € F¥(s) : (s € Undes A Bnf(a, s))
Opp,(a, s, k) iff Vs' € F¥(s) : (s’ € Undes — Bnf(a, "))
( )
)

: Bnf(a, s’

) ))
) : Bf(a, s"))

Opps(a, s, k) iff (3s' € F¥(s): s’ € Undes) A Bnf(a, s, k)
Opps(a, s, k) iff (Vs' € F¥(s): s’ € Undes) A Bnf(a, s, k)

The first two properties characterize schemes that can be ap-
plied in the future in response to a current undesired situa-
tion. In particular, Opp, (o, s, k) says that s is an undesirable
state for X, and that if no action is taken X may evolve in a
state s’ in which action scheme « is beneficial — that is, «
can be applied in s’ to bring the system into a desirable state.
Opp, (v, s, k) is the same except that ¥ will evolve in a state
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in which « is beneficial. In Figure 1 above, a3 is an oppor-
tunity of this type in s. The third and fourth properties char-
acterize schemes that can be applied in the future in response
to either a foreseen or possible undesired situation. The last
two properties characterize schemes that can be applied now
in order to prevent future undesired situations. Note that for
k = 0 all the above properties collapse to

Opp(a, s,0) iff s € Undes A Bnf(a, s),

that is, o can be used now to resolve a current threat. Hence-
forth, we indicate this opportunity type with Opp,.

2.3 Equilibrium

Using the above ingredients, we can now define equilibrium
as a property Fq of a system X in a state s. Given a time
horizon K € N, we say that X is in equilibrium in a given
state s, denoted by Eq(s, K), if there is no incentive to act in
the next K steps. That is, no action scheme « can be inferred
as being an opportunity given s and given any k < K:

Eq(s,K)iffforallk =0,...,K, foralli =0,...,6,
fo € A: Opp;(a, s, k)

3 Equilibrium Maintenance

Our next aim is to operationalize the notion of proactivity by
defining it in terms of a robot’s ability to maintain equilib-
rium. We start by introducing our assumptions.

The set A = {1, ..., q;} of action schemes is assumed
to be finite. Recall that an action scheme may denote anything
from a high-level goal to an individual action. We assume the
existence of a suitable execution layer that generates and dis-
patches appropriate robot actions for executing a given action
scheme. We assume to have time models of all entities that af-
fect the state of the system. This assumption is not restrictive,
since time models may have non-determinism to account for
lack of knowledge — in the extreme case, a “fully ignorant”
time model would allow all transitions to happen.

We define the process of Equilibrium Maintenance in terms
of three fundamental capabilities: (i) to determine if the sys-
tem is in equilibrium, that is, whether there exist opportuni-
ties for acting; (ii) to select one of the found opportunities;
and (iii) to dispatch the selected opportunity for execution.

Figure 2 summarizes how Equilibrium Maintenance is as-
sumed to work for a system X given an appropriate State Es-
timation function and an appropriate Plan-Based Executive
for action scheme execution. Note that Equilibrium Mainte-
nance realizes a feedback loop at a higher level of abstrac-
tion than the Plan-Based Executive: the former closes the
loop around action scheme selection, execution, and state es-
timation; the latter determines how given action schemes are
executed by the system. The level of abstraction at which
Equilibrium Maintenance operates is determined by the mod-
els used to characterize the system’s possible states, action
schemes, and free-run. This typically differs from that of the
Plan-Based Executive: The « action schemes, output of Equi-
librium Maintenance in Figure 2, can be individual actions,
plans, policies, or planning goals, as mentioned in Section 2.
Correspondingly, the Plan-Based Executive can range from a
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Figure 2: The Equilibrium Maintenance loop (realized by the
EqM (K) algorithm) for a system X = (S, U, f), where ac-
tion schemes A are defined in terms of the robot’s actions U.

simple dispatcher to a full plan-based robot controller. If « is
aplan, executing an opportunity means to dispatch the actions
in . If v is a goal, it means to generate and execute a plan
for ov. In the experimental system in Section 5, « are plans
from a plan library. No matter which level of abstraction is
chosen, the Plan-Based Executive makes available a proce-
dure that results in the physical execution of an action scheme
a. Also, since Equilibrium Maintenance may determine an «
that should be applied in a future state s’ (this is the case for
Opp,_4), this state is also passed to the Plan-Based Executive.

while true do
s < current state
if s has changed then

OppQueue <+

for k from 0 to K do

L OppQueue <+ OppQueue U £ind_opp (s, k)
if ~Fq(s, K) then
(o, 8') + select (OppQueue)

dispatch (o, s")

1
2
3
4
5
6

Algorithm 1: EqM (K)

Algorithm 1 describes the FqM (K) procedure which re-
alizes the Equilibrium Maintenance loop. It finds existing
opportunities in the current state s (lines 5-6) with incremen-
tal time horizons k to categorize each «; € A into opportu-
nity types {Opp,, ..., Oppg}. £ind_opp(s,k) returns each
action scheme that constitutes an opportunity in state s with
time horizon k, together with the state where it can be ap-
plied, its opportunity type and its time horizon, as a tuple
(o, 8', Opp;, k). OppQueue collects all such action schemes
for all £ < K. If OppQueue is not empty, then the system
is not at equilibrium (line 7) and an action scheme is selected
and dispatched (lines 8-9).

EqM (K) is driven by state change (line 3), hence oppor-
tunities for acting are assessed only if the state changes as
a result of free-run or the execution of an action scheme «.
Whether all opportunities for action can be seized depends
on the synchronization between the Equilibrium Maintenance
loop and the control loop of the Plan-Based Executive. If no



assumption is made on the synchronization between the two
loops, it is important to dispatch action schemes that are ben-
eficial in a future state s’ (opportunities of type Opp,_4), as
opportunity evaluation may not occur when s’ becomes the
current state. There might be additional reasons to re-evaluate
opportunities beyond the fact that the state has changed. This
is the case, for example, if the execution of o deviates from
expectations, or if the set Des changes. While these are im-
portant issues to investigate, in our current experiments we
make the common assumptions that Des is fixed and that ac-
tion scheme execution and free-run of the system do not co-
occur, and henceforth we simply use EqM (K') shown above.

Among the found opportunities, one is selected for dis-
patching to the Plan-Based Executive via procedure select
(line 8). Selecting an opportunity may depend on the specific
action scheme, on the type of opportunity, and on the time
horizon by which the opportunity’s action scheme will have
an effect. How to perform this selection is a key question for
equilibrium maintenance. In this paper, select selects the
opportunity whose type is highest according to a given par-
tial order >gpcedy ON OppoOrtunity types. >greedy prioritizes
opportunities for acting now over opportunities for acting in
a future state, that is, Oppy >greedy {OPP5, OPPg} >greedy
{Opp;, Oppy} >grecdy {OPP;, Opp,}. Ties are broken using
the value of k: if there are two opportunities (¢, s’, Opp;, k')
and (", s"”, Opp;, k"), such that Opp; and Opp; are not
comparable according to >grcedy, then we select the one with
the lower k. If k' = k" we select one randomly.

In the next section we show that >,,c.qy guarantees that
EqM (K) always leads to states in Des, subject to reasonable
assumptions on the starting state(s) and the time horizon K.

4 Properties of Equilibrium Maintenance

In this section, we analyze the behavior of EqM (K). We
shall show that this algorithm allows us to keep the given sys-
tem X within Des, provided that suitable action schemes are
available.

We proceed in three steps. First, we characterize the sub-
set of S from where one can reach Des through an adequate
choice of action schemes. We denote the states that can pos-
sibly result from applying avin s by a(s) = {s' € S| IX €
dom(a)st.s € X Ns’ € a(X)}. Forany C C S, we define
the controllable neighborhood N (C) of C as

N({C)={seS|Jae€ Ast. a(s) CC}.

Intuitively, N (C) is the set of states from where some « is
available that guarantees to reach C'. For any C C S, we
define the basin of attraction of radius r of C', with > 0, as

Bas"(C)={s€ 8|3 <rst F" (s)CC}.

Bas"(C) is the set of states from which the system will go
into C by free-run within r steps. Finally, we define the set
Rec(X, 1) of recoverable states with radius r as follows:

Rec(X,1) = N(Bas"(Des)) U Bas" (N (Des)).

Intuitively, the set Rec(X, ) are those states from which one
can reach Des given the available «’s. More specifically, s €
Rec(X, r) means that: (1) one can apply an « in s, which will

bring ¥ into Des within r steps; or (2) within 7 steps one can
apply an «, which will bring 3 into Des. Note that N (Des) C
Rec(X, r) for any r, that is, s is always in Rec(X, r) if there
is an « that can bring X from s into Des.

Second, we characterize the ways in which ¥ can evolve
under the effect of a given strategy. We call action selection
function any function o : S — P(A) that, for each state s €
S, gives a set o(s) of action schemes that can be applied in s.
(If there are none, we let o(s) = 1.) FqM (K) implements
such a o, where a € o(s) iff Algorithm 1 dispatches («, s).
The set of states that can be reached from s in k steps under
a given o is given by Reach” (s, o) defined as follows.

Reach®(s,0) = {s}
Reach®(s,0) = {s' € S|3s” € Reach*~(s,0).
Ja € o(s”) st s' € a(s")}

Finally, we show that, if starting from a recoverable state,
EqM (K) produces trajectories that end up in Des, provided
a sufficient lookahead K.

Theorem 1. Let o be the action selection function defined by
EqM (K). For any state s € Rec(X, 1), withr < K, there is
at < K such that Reach(s,c) C Des.

Proof. The proof is by contradiction. Assume that, for the given
state s, we have Reach®(s, o) € Des for all t < K. In particular,
we must have Reach®(s,o) € Des, and since Reach’(s,o) =
{s}, then s € Undes. Consider then the possible cases of s €
Rec(Z, ).

(Case 1) s € N(Bas"(Des)). This means that there is at least
one @ € A such that a(s) C Bas"(Des). For each such «,

F (a(s)) C Des for some index ' < r. Let’s choose the o
for which this r’ is the smallest one — if there is more than one,
we pick one arbitrarily. We will show that Reach™ (s,0) C Des,
thus contradicting our assumption. To do so, we distinguish two
cases. (a) Suppose that r’ = 0. Then we have Bnf(a,s), and
since s € Undes, then Opp,(a, s) is the case. Since >greedy has
Opp, at the top, EqM (K) will select this . For this choice,
Reach'(s,0) = a(s) C Des. (b) Suppose instead that ' > 0.
Then, we have Bnf(a, s,r’), which means that we might have
Opps(a, s,7'), depending on whether states s € F" (s) are in Des.
If all such s’ are in Des, then there is no « that is an Opp, in s and
o(s) = L, thus Reach” (s,0) = F" (s) C Des. If some s’ is in
Undes, then Opp; (v, s, 7"). Given the order >g;ccay and since there
is no Opp,, and no smaller 7', EgM (K') will select and dispatch this

o Then, Reachrl(s, o) = Frl(a(s)) C Des. In both cases (a) and
(b), Reach” (s,0) C Des, and ' < r < K, thus contradicting our
assumption that Reach!(s, o) € Desforall t < K.

(Case 2) s € Bas"(N(Des)). This means that there is an v’ < r

such that, for any s’ € Fr/(s), there is at least one @ € A such
that a(s”) C Des. Let’s fix one such s’ and o. We have Bnf{«, s’),
and since s € Undes, we also have Opp,(c, s,7"). Given the order
>greedy and since there is no Opp,, and no Opp; (else, we would be
in case 1 above), and therefore no Opp,, then EgM (K) will select

and dispatch this « at state s". From any s' € Reach’’ (s,0), then,
we have o(s’) = {a} and a(s") C Des because Bnf{a, s"). Hence,
Reach™ (s, o) C Des,and 7' +1 < r + 1 < K, contradicting
our assumption that Reach’(s,o) € Desforallt < K.

This completes the two cases. In each one we have reached a con-
tradiction, so it must be the case that Reach’(s, o) C Des for some
t < K. Since the above arguments do not depend on the initial
choice of s, we have proved the theorem. O
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5 A Real Robot Example

In this section we present an example scenario implemented
in a domestic service robotic system. The system as well
as the services it provides have been developed in the con-
text of a project on robotics for elderly people [Cavallo er al.,
2014]. In that project, the user requests services like remind-
ing, bringing pills, helping with the laundry and many more,
via a speech or tablet interface. Here we show a simple exam-
ple of how these services can be provided proactively. Sim-
plicity was chosen to exemplify EgM (K) in detail, while
showing that the approach can be used in closed loop to con-
trol a real robotic system.

The system architecture is an instance of the general
schema illustrated in Figure 2. The robot, a Scitos G5 with
a Kinova Jaco arm, moves freely in a smart home with Xbee
pressure sensors mounted under chairs (see Figure 3). The
current state s is inferred by a simple rule-based state esti-
mation module which uses both real and simulated sensors.
The model used by EqM (K') contains hand-coded specifica-
tions of Des/Undes states, and of state transitions (a’s and F).
We used HTN operators to model both action schemes and
F, seen as actions executed by the “environment”. This en-
codes the environment’s behavior in a compact way, includ-
ing non-determinism. We used the open-source planning sys-
tem JSHOP [Nau er al., 2003] to perform the temporal projec-
tions needed to compute opportunities. FqM (K) dispatches
selected action schemes (entire sequential JSHOP plans) to
a simple timeline-based executive module, which dispatches
actions to the robot, and monitors their execution.

The scenario addresses the “take pills” example introduced
in Section 1. The relevant predicates used to represent the
state of the system are the following: the time of day is rep-
resented qualitatively by predicates morning, noon, evening
and night; the user locations include kitchen, and his activ-
ities include lunch and sleeping; his state of health is cap-
tured by predicate well, and whether he has taken the pills is
denoted by predicate pillstaken.

The free-run model is captured by the transi-
tions f(morning, | ,noon), f(noon, L,evening) and
f(evening, L, night), together with the user model encoded
by the following rules:

morning = —pillstaken
kitchen A noon = lunch
night = sleeping
night A —pillstaken = —well

All states in which well does not hold are in Undes. It is
desirable that pills are taken during lunch, hence states that
include (lunch A —pillstaken) are also in Undes.

There are two relevant action schemes for the robot: re-
mind the user to take the pills; and bring the pills to the user.
The remind action scheme has a non-deterministic result: the
predicate pillstaken will be true either in the resulting state,
or in the state following it by free-run; bring, on the other
hand, makes pillstaken true in the state resulting from appli-
cation of the action scheme. Both action schemes are appli-
cable in all states where the user is —sleeping. In addition,
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Table 1: Equilibrium maintenance results (“pills™)

[ State s [ k [ Eq. | Found opportunities | Exec. |

morning, well 0 true — -

& 1 | false | Opps(remind,s,1)
noon, lunch, 0 | false | Oppy(remind,s,0)
well, kitchen Opp, (remind, s, 1) | remind

1 false .
Opp, (bring, s, 1)

evening, well 0 true — brin,

& 1 | false | Opps(bring,s,1) 8
night, sleeping, 0 true - B
well, pillstaken 1 true -

bring is not applicable during lunch. The time horizon used
to compute Eq(s, K) in EqM(K) is K = 1.

Salient moments during one run of this example are shown
in Figure 3. The user was asked to sit in the living room,
then transfer to the kitchen at noon, and subsequently move
back to the living room in the evening. In all locations, the
user was told to sit on chairs equipped with pressure sensors,
whose readings were used by the state estimation module to
derive the presence of the user in the location. Qualitative
time was advanced artificially via terminal input.

The results (opportunities, action scheme selection and ex-
ecution) are summarized in Table 1, where the state is charac-
terized by its positive predicates. As shown, several opportu-
nities are inferred. In the morning, an Opp,(remind, s, 1) is
found, because one of the possible following states will be in
Undes (lunch A —pillstaken), and remind is both applicable
and beneficial in that state. The opportunity is not executed
now, since it should be enacted in a future state.

At noon, the same action becomes an Opp,,. The state also
supports an opportunity of type Opp; for both remind and
bring, when lookahead is increased to 1 in EqM (K). Be-
cause of >grcedy, the Oppy is selected, dispatched and ex-
ecuted. The resulting action scheme is executed as follows
(see Figure 3(a,b)): the robot derives the user’s location from
the pressure sensor, moves to the user, utters a spoken re-
minder to take the pills, and moves back to its home position.
Despite the reminder, the user does not take his pills.

In the evening, the pills are still not taken, and an
Opps(bring, s, 1) is inferred. This is because the user will be
—well in the next state, unless he takes the pills now. Imag-
ine having the additional rule evening = away in the user
model. Then, bring would have been inferred to be an Oppy
already at noon, but only in case of K = 2. The action
scheme bring is Bnf(bring, s, 1), that is, if applied, all next
states will be in Des. Therefore, bring is selected, dispatched
and executed. The robot moves to the table to pick-up and de-
liver the pills after having obtained the updated user position
(see Figure 3(c,d,e)). Note that remind is applicable but is not
beneficial in this state because of its non-determinism, which
may lead to the state being in Undes (night A —pillstaken).

Note that the action scheme bring is the last opportunity
to reach a state in Des, as the user will be sleeping at night,
therefore no action scheme will be applicable. This shows
the importance of temporal projection for proactive robots: a

'A video of another run is available at http://www.youtube.com/
user/MRLabSweden.



(b)

Figure 3: Salient moments of one run: the robot reminds the user to take the pills (a, b); since the user does not heed the
reminder, the robot proactively fetches (c, d) and brings him the pills while he is reading in the living room (e).

purely reactive system would have missed this opportunity.

6 Discussion and Conclusion

We have presented a framework that aims at making robots
proactive by providing them with the ability to generate their
own goals and act upon them. By decoupling the factors that
determine conditions for acting — states, desirability and robot
capabilities — our framework is able to infer whether to act
(condition), how (what action) and when (in which current or
future state), while this is explicitly encoded in many other
approaches [Vattam et al., 2013]. Our framework is not re-
active, but anticipatory: we do temporal projection to predict
future undesired states and identify actions that avoid them.
For this purpose, we introduce the notion of opportunities as
basis for deciding which goals to pursue and when.

Opportunities for acting were mentioned before in [Pol-
lack and Horty, 19991, where a function called Alternative
Assessment is used to assess them; in [Beetz, 2002], who
defines them in a purely reactive way; and in [Mufioz-Avila
et al., 2015], who uses them as motives to direct an agent
towards states where more actions are available. These us-
ages of the term “opportunity” are substantially different from
the one proposed here. Our opportunities are closer to Brat-
man’s intentions [Bratman, 1987], which are derived from
an agent’s goals and beliefs. Like intentions, an opportunity
to act holds as long as the agent believes that that action is
achievable (as encoded by s € dom(«)) and that it leads to its
goals (as encoded by Bnf{«, s)) [Cohen and Levesque, 1990;
Parsons et al., 2000]. As such, opportunities are potentially
subject to the same problems as Bratman’s intentions: an
agent could reach equilibrium by going outside the domain
of all actions, thus making them not achievable. Theorem 1
above guarantees that EqM (K) will recover equilibrium by
moving into desirable states rather than moving outside the
domain of actions.

Intentions have been extensively used in robotics in the
context of BDI architectures and of the PRS system [In-
grand et al., 1992], as well as in frameworks for action se-
lection based on forward models [Anderson et al., 2004;
Laird er al., 1987]. Most instantiations, however, only con-
sider their immediate applicability or benefit, as we do with
Opp,, opportunities. Our framework introduces anticipation
based on a predictive model of the system, where the applica-
bility and/or the benefit of intentions may be in the future, as
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per opportunity types Opp, _4. Knowing about opportunities
for future action may be important: for instance, to allow the
robot to plan and schedule other tasks, or to reduce the search
space by exploiting the fact that some decisions have already
been taken [Pollack and Horty, 1999].

Using a predictive model to determine how to act to sat-
isfy goals is reminiscent of planning. However, we not only
enable the robot to autonomously select actions to achieve
given goals, as done in planning, but also to infer the goals
themselves. In line with [Hawes, 2011; Beaudoin, 1994]
we identify the need for a deliberative process independent
from planning to realize this. This process, illustrated in Fig-
ure 2 above, can be seen as an instance of continuous plan-
ning [Dean and Wellman, 1991; Cox and Veloso, 1998] with
the meta-goal of maintaining equilibrium.

Our approach is related to computational models of intrin-
sic motivation in agents [Oudeyer and Kaplan, 20071, and it
can be seen as a way to combine predictive and competence-
based models. In this view, the intrinsic motivation of our
agents is to maintain equilibrium. There are other approaches
that provide concrete implementations of goal autonomy in
specific autonomous agent systems [Molineaux et al., 2010;
Galindo and Saffiotti, 2013; Hanheide et al., 2010]. While
these are valuable contributions, our aim is to provide a gen-
eral formulation of this problem.

Uncertainty is always a major concern when dealing with
robotic systems. In our framework, uncertainty is cap-
tured by non-determinism: multiple alternative states may
be undesirable, the free-run dynamics of the system may
be non-deterministic, and action schemes may have non-
deterministic effects. It might be useful to quantify this uncer-
tainty, e.g., by associating degrees of desirability to states and
probabilities to state transitions. This would enable to define
different flavors of beneficial, e.g., partial, weak, or compar-
ative ones, and eventually to account for graded preferences
and competitive requirements. We plan to explore decision-
theoretic planning [Karlsson, 2001] or POMDPs [Kaelbling
et al., 1998] as a basis for this extension.

Finally, this paper helps to pinpoint general key open ques-
tions for proactive robots (see Section 3): the problem of se-
lecting among different opportunities; and the problem of in-
terleaving equilibrium maintenance, planning and execution.
We believe that the equilibrium maintenance approach pre-
sented in this paper provides a precise way to frame these
questions, as well as some valuable initial answers.
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