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Abstract

In this paper we address the problem of semantic
analysis of structured/unstructured crowded video
scenes. Our proposed approach relies on tracklets
for motion representation. Each extracted track-
let is abstracted as a directed line segment, and
a novel tracklet similarity measure is formulated
based on line geometry. For analysis, we apply
non-parametric clustering on the extracted track-
lets. Particularly, we adapt the Distance Dependent
Chinese Restaurant Process (DD-CRP) to leverage
the computed similarities between pairs of track-
lets, which ensures the spatial coherence among
tracklets in the same cluster. By analyzing the clus-
tering results, we can identify semantic regions in
the scene, particularly, the common pathways and
their sources/sinks, without any prior information
about the scene layout. Qualitative and quantita-
tive experimental evaluation on multiple crowded
scenes datasets, principally, the challenging New
York Grand Central Station video, demonstrate the
state of the art performance of our method.

1 Introduction

Due to the increase of the population and diversity of human’s
activities and behaviors, crowded scenes have been more fre-
quent in the real world than ever. Adding to this the escalat-
ing world-wide concerns about security, automatic crowded
scene analysis has become one of the most attractive top-
ics in computer vision and pattern recognition. The major
goal of such research is extracting some kind of information
from the scene about the moving objects’ behaviors in order
to serve multiple applications, such as, visual surveillance,
crowd management, safety analysis of public places or sports
arenas, etc.

Two main analysis levels for crowded scenes are intro-
duced: macroscopic and microscopic [Li er al., 2015]. At
the macroscopic level , we deal with crowd motions as global
motion pattern(s) of a mass of objects, without being con-
cerned with the movements of the individual objects [Hu et
al., 2008]. On the other hand, the microscopic level is con-
cerned with the movements of individual moving objects as
well as the interactions among them [Zhou et al., 2012].

3389

To serve the aforementioned levels of analysis, two major
approaches for the computational modeling of crowd behav-
ior are introduced. The first is the continuum-based approach
(holistic), which works better at the macroscopic level for
medium and high density crowds [Ali and Shah, 2007]. Such
kind of techniques usually try to obtain global information
about the scene regardless of any local activities, such as the
identification of global active regions which have high traffic
as well as the main directions of flows. The second approach
is agent-based, which is more suitable for low-density crowds
at the microscopic level, where the movement of each individ-
ual moving object is taken into account [Zhou et al., 2012;
Zhao et al., 2011].

Both continuum-based and agent-based approaches rely on
some form of motion representation in order to conduct their
analyses. In this regard, three main levels of motion rep-
resentation have been introduced. The first is flow-based
representation, which extracts motion features at the pixel
level [Wang et al., 2014]. The second is local spatio-temporal
representation, which represents the scene in terms of local
information extracted from 2D patches [Kratz and Nishino,
2012]. The third level is the trajectory/tracklet representation,
which represents motion information at a higher level deal-
ing with individual tracks as a basic unit [Zhou et al., 2011;
Topkaya et al., 2015].

The trajectories/tracklets representation 1is more
semantically-rich than the other representations because
it incorporates information about a semantically meaningful
moving entity (e.g. a feature point or an object) for a period
of time. A tracklet is defined as a fragment of a trajectory
obtained by the tracker within a short period of time. It may
terminate when occlusions or scene clutters occur [Li et al.,
2015]. Thus, tracklets are more conservative and less likely
to drift compared to complete trajectories.

In this paper, we introduce a new macroscopic-level ap-
proach for crowded scenes analysis that relies on tracklets
as the basic motion representation. Particularly, we are in-
terested in grouping motion patterns in a way that enables the
discovery of the underlying scene structure, namely, the com-
mon pathways of moving objects and the sources/sinks of the
scene, which we collectively call as semantic regions. On do-
ing so, we do not assume prior information about the numbers
or the spatial extents of such scene structural elements.

Our proposed approach first extracts tracklets of detected



interest points in the foreground (motion) areas of the scene.
Then, tracklets are clustered hierarchically over two levels
such that the resulting clusters correspond to common path-
ways in the scene. To accomplish this goal, a novel and flexi-
ble tracklet similarity measure, which is based on line geome-
try, is introduced. The discovered pathways are then analyzed
to find the common sources and sinks of the scene. In order to
achieve these goals, we adopted a non-parametric clustering
algorithm that is based on the Distance Dependent Chinese
Restaurant Processes (DD-CRP) [Blei and Frazier, 2011].

The main contributions of this work can be summarized
as follows: (i) a novel tracklet similarity measure based on
line geometry, (ii) an adaptation of DD-CRP to the problem
of grouping tracklets into common pathways using a two-
level hierarchical clustering, (iii) a method for discovering
the scene structure and its sources and sinks from the result-
ing clustering, and (iv) a novel evaluation framework for the
resulting scene analysis that takes into account both the de-
tected scene structural elements and their geometric extents.

The rest of the paper is organized as follows. Section 2
outlines the most related work. In Section 3, a detailed ex-
planation of our proposed tracklet similarity measure is pro-
vided. The adaptation of DD-CRP model to serve our tracklet
clustering problem, and the discovery of the scene’s semantic
regions are provided in Section 4. Experiments are included
in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

Similar to our approach, many crowded scene analysis ap-
proaches in the literature are based on tracklets. In [Zhou et
al., 2011], a Random Field Topic (RFT) model is proposed to
learn semantic region analysis in crowded scenes from track-
lets. The RFT model is an advancement of the existing Latent
Dirichlet Allocation (LDA) topic model [Blei er al., 2003],
where a Markov Random Field (MRF) is integrated as a prior
to impose spatial and temporal coherence between tracklets
during the inference process. To improve the inference of se-
mantic regions and clustering of tracklets, sources and sinks
are included as a high-level semantic prior. Our approach
also identifies semantic regions; however, it does not require
sources and sinks to be a priori known. In [Wang et al.,
20131, an approach is proposed to analyze motion patterns
in dynamical crowded scenes based on hybrid generative-
discriminative feature maps, which are in turn based on the
collected tracklets. Automatic hierarchical clustering algo-
rithm is used to analyze motion patterns. These motion pat-
terns are analogous to the common pathways identified by our
work. However, our approach is simpler and also produces
sources and sinks.

Tracklets are frequently used as building blocks to en-
hance tracking in crowded scenes. For instance, in [Zhao and
Medioni, 2011], an unsupervised manifold learning frame-
work is proposed to infer motion patterns in videos. Track-
let points are embedded into a 3D space (x,y,d) that repre-
sents the image space and motion direction. In this space,
points automatically form intrinsic manifold structures, each
of which corresponds to a motion pattern. The extracted
motion patterns can be used as a prior to improve the per-
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formance of object tracking techniques. Also, in [Kuo et
al., 2010], an algorithm is proposed for Online Learning of
Discriminative Appearance (OLDA) models for different tar-
gets in crowded scenes based on collected tracklets. Spatial-
temporal relations between tracklets in a time window are ex-
amined to discriminate between targets. OLDA models are
integrated into a hierarchical association framework to im-
prove the tracking system’s accuracy.

DD-CRPs are adopted in language modeling, computer vi-
sion problems, and mixture modeling for clustering applica-
tions. For example, DD-CRP is examined in [Ghosh et al.,
2011] in the spatial domain for image segmentation, where a
novel hierarchical extension, better suited for efficient image
segmentation, is proposed. A tracklets-clustering approach
based on DD-CRP is proposed in [Topkaya et al., 2015] for
the purpose of tracking enhancement. In this work, two-
level robust object tracking is employed to generate track-
lets, which are then clustered based on their color, spatial,
and temporal similarities. In our work, we adopted a similar
model; however, the application is different. In their work,
a cluster is supposed to contain a single whole trajectory of
one object. In contrast, in our work, a cluster is supposed to
contain a group of tracklets in a common pathway. There-
fore, the similarity measure and cluster probability functions
are totally different.

3 The Tracklet Similarity Measure

The purpose of clustering tracklets in our approach is to iden-
tify semantic regions in the scene, which are, namely, the
common pathways, the sources, and the sinks. In this section,
we focus on the tracklet similarity measure, variants of which
are used in multiple levels of non-parametric clustering.

We would like tracklets to be clustered together when they
belong to the same common pathway. For two tracklets to
belong to a common pathway, they have to belong to a sin-
gle object, or two objects that are originating from the same
source and moving towards the same sink. In this case, the
two tracklets are expected to bear similarity to one another
in terms of their spatial layouts and their global orientations.
However, encoding this similarity in a single measure is not
trivial due to the many cases that can be encountered in prac-
tice.

Figure la shows a hypothetical scene having one source
(A) and two sinks (B and C), with four overlaid tracklets.
Consider the two tracklets 77 and T5. Although both of them
originate from the same source and are spatially close to each
other, perceptually, they do not seem to belong to a common
pathway. This can be interpreted by inspecting the geometric
relationship between the two tracklets: If they belonged to the
same common pathway, they would have been in the same
stage (the beginning here) of that pathway, which means they
should have been almost parallel. However, because of their
divergence in orientation, they are not perceived to be in the
same pathway. Now, consider the two tracklets 77 and T5.
The difference in orientation between them is higher than that
between 77 and 75. Nevertheless, perceptually, tracklet T3
seems to be a continuation of 717, i.e. the two tracklets can be
in the same pathway but in two different stages.
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Figure 1: (a) A hypothetical scene with one source (A), two
sinks (B and ('), and four tracklets (77..7;). The directed
line segment associated with each tracklet is shown in dashed
style. 034 is the estimated angle between 75 and 7. (b) The
computation of the overlap ratio between two tracklets, 7;
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From the discussion above, the way we interpret the geo-
metric relationship between two tracklets depends on the de-
gree to which they are perceived to be in the same stage of a
common pathway. In our approach, we estimate this by the
degree of overlap between the two tracklets. The intuition is
that the higher the overlap between two tracklets, the more
likely they belong to the same stage of a common pathway,
and vice versa. Our similarity measure incorporates both the
spatial and orientation similarities between tracklets while
taking into account the overlap between them. Now, we will
explain each of these components.

Spatial similarity between two tracklets is estimated us-
ing two different distance functions: the Hausdorff dis-
tance and the minimum point-to-point distance. Let T; =
(pi1s iz, - Pin)> and T = (pj1, D)2, -+, Pjn) be two differ-
ent tracklets such that each tracklet is identified by n points,
and each point is identified by its * — y coordinates in the
image’s frame. The Hausdorff distance dg (T}, T;) between
the two tracklets can be computed as

dH(Ti,Tj) = Imax {A(T;,T]), A(T],Tl)} y

A(T;,T;) = max min d(p;x,pi1),
( i J) pin€Ts puet; (pzk p;z)

ey
@)

where d(p;x,p;i) is the Euclidean distance between the k'"

point of T} and the [*" point of T;. On the other hand, the
minimum point-to-point distance can be expressed as

Ay (T5,T;) = min
M( v ]) pik€Ti,pj1 €T}

d(pir, pji) » 3)
In the following, we refer to the distance between two track-
lets T and T by d;;, regardless of the type. In the following
section, we will explain when we apply each type.

To estimate the orientation similarity between a pair of
tracklets, we approximate each tracklet as a directed line seg-
ment that extends from its starting to its ending points, as
shown in Figure la. Note that since tracklets are typically
constructed over short time periods, approximating them by
directed line segments should be acceptable for most cases.
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For two tracklets T; and 7}, the angle between them, 0;;, is
estimated as the angle between their two associated directed
line segments.

The overall similarity measure between a pair of tracklets

T; and T} is defined as
2 2

Sim(T;,T;) =e ( ) e ( > 4)
where the two variables 7g,; and o5;; represent the tolerance
values in the orientation and spatial dimensions. The higher
the tolerance value, the less sensitive the similarity function to
the changes in the associated variable. The similarity measure
takes values in the range [0, 1].

As the notation in Equation 4 indicates, the tolerance val-
ues are associated with the two particular tracklets for which
the similarity is computed. These tolerance values are com-
puted as follows.

5
U(Sij

0ij
7044

(&)
(6)

where O;; indicates the degree of overlap between the two
tracklets T; and T}, which is takes a value in the interval
[0, 1] (as explained below). Each tolerance value is chosen
from an interval, i.e. 0g;; € [09min, Tomas) and os;; €
(05 mins Osmaz]- We linearly choose a value in the interval
based on the overlap between the two tracklets such that the
higher the overlap between them, the more tolerance we give
to the spatial dissimilarity and less tolerance we give to ori-
entation dissimilarity.

To estimate the degree of overlap between two tracklets,
we resort again to the directed line segment approximation.
Particularly, we estimate the overlap between tracklets 7; and
T} as the overlap ratio between the two associated directed
line segments, L; and L;, when projected on an intermediate
line, called the virtual line, V' L;;. We adopted the idea of the
virtual line from [Etemadi er al., 1991]. The computation is
illustrated in Figure 1b.

= OOmazx + Oij . (Uemin - Oemaw) 5

O§min T Oij : (U5mam - O—Jmin) .

004
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4 Tracklet Clustering and Semantic Scene
Analysis

In this section, we first provide a brief background about DD-
CRP. Then, we introduce the adaptation of DD-CRP to our
tracklet clustering problem. Finally, we explain how the se-
mantic regions are discovered from the resulting clustering.

4.1 Distance Dependent CRP

The main issue in high dimensional data clustering problems
is finding a flexible clustering algorithm. One of the re-
cent valuable models is the Dirichlet Process Mixture Models
(DPMMs). DPMMs provide an efficient way to model a set
of data points O as a mixture of unknown number of distribu-
tions sampled from the same base distribution G [Antoniak,
1974]. The clustering problem in a DPMM is represented as
a distribution over an infinite number of mixture components
(i.e., clusters). One of DPMMs representations is the Chinese
Restaurant Process (CRP). In the CRP analogy, a sequence of
customers are going to be seated at an infinite number of ta-
bles in a restaurant. The first comer will gain a probability



one to sit at a given table. Any subsequent customer sits at a
previously occupied table with probability proportional to the
number of people already seated at the table, and sits at a new
table with probability proportional to a scaling parameter c.
Based on the Gibbs sampling method, CRP iteratively sample
every table assignment z; from the following probability:

. N, j<K
P(z; = jlz—s, ’ B
(2 =l O‘)“{a j=K+1

where z; is the table assignment of the izh customer, N; is
the number of customers sitting at table j, tables 1,..., K
are occupied, and z_; is all table assignment except for the
assignment of customer i.

In infinite clustering models, the data points to be clustered
may be ordered in time (such as time-stamped articles) or in
space (such as pixels in an image) which reflect dependen-
cies among them, and violate the exchangeability property of
the basic Dirichlet process. So, the DD-CRP model is de-
veloped in order to handle these dependencies [Blei and Fra-
zier, 2011]. DD-CRP model represents the data partitioning
through customer assignments rather than table assignments,
and the customer’s assignments depend only on the distance
among customers. Furthermore, customers are assigned to
tables by considering customers reachability to each other
through their assignments. According to this analogy, cus-
tomer assignments will be conditioned on the distances be-
tween customers and drawn independently according to the
following scheme.

(N

Ple=ipa) < {10 17T
@ 1=
where d;; is the distance between customers ¢ and j, D de-
notes the distance matrix between all customers, « is the scal-
ing parameter, and f is the decay function (for decay function
details see [Blei and Frazier, 2011]). Additionally, the poste-
rior inference for DD-CRP, based on Gibbs sampling, is im-
plemented by iteratively sampling the customer assignments
from the conditional distribution for each new customer (la-
tent one) given the previous already seated customers c_; and
all customers O. So, the posterior probability looks like the

following:
P(C?ew|c—i705 Da fa Q, GO) X
P(ci| Dy ) x PO|W (c_s Ucie®), Go)

Note that P(c;|D, «) represents the DD-CRP prior term from
Equation (8) and P(O|W (c_; U c*"), Gy) is the likelihood
of the data points under the partitioning given by W (c_; U

cpew),

4.2 Tracklet Clustering Based on DD-CRP

We adapted DD-CRP by using our similarity measure be-
tween tracklets rather than the distance between them. Within
the DD-CRP clustering framework, tracklets correspond to
observations, whereas pathways are the output clusters. Let
S denote the similarity matrix among all tracklets, so Equa-
tion (8) is modified as follows.

C))

{Sij if 1F#]
P(c; = j|S, a) x (10)
a if i=j
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where s;; is the pairwise similarity between tracklets ¢ and j.
We represent the likelihood term as the factorization of maxi-
mal pairwise similarities among a group of directly/indirectly
connected tracklets (i.e. cluster).

N
P(t1.n|Go) = P(1Go) [ | jmax | P(ti[tj, Go) (1D
ne2 =

Note that P(¢,|t;, Go) is chosen to be proportional to the
pairwise similarity between tracklet ¢,, and tracklet ¢;.

4.3 Identifying Semantic Regions

Semantic regions (i.e. pathways) correspond to spatial re-
gions of the scene that have high degrees of local similarities.
We define the pathway as a series of spatially coherent linked
groups of tracklets. Each pathway has its preferred source
and sink, and the motion flow is from the source to the sink.
The collected tracklets are clustered hierarchically over two
levels. In both levels, the adapted DD-CRP is deployed.

At the first level of clustering, the collected tracklets are
clustered using DD-CRP based on a parallelism criteria,
which tries to group only parallel tracklets together. This cri-
teria is incorporated into our clustering framework by adjust-
ing the limits on the tolerance values in the similarity mea-
SUI€ 00min/maz> AN O5min/mars and using the Hausdorff
distance function (Equation 1). As an output of this level,
each resulting cluster is represented by a single directed rep-
resentative line segment which is obtained from the associ-
ated cluster’s tracklets. The representative line segment of a
cluster of tracklets has the average orientation of tracklets in
the clusters and passes through the center of mass of the union
of all tracklets points. Its terminal points are identified by
projecting all tracklets on it and taking the extreme projected
points. Figure 2a shows the clusters of parallel tracklets and
Figure 2b shows the associated representative line segments
for the clusters correspondances.

At the second level of clustering, all of the resulting rep-
resentative lines are clustered based on DD-CRP again using
the same similarity function. However, in this case, the sim-
ilarity function is adjusted to group line segments continu-
ing after one another, by adjusting the limits of the tolerance
again and by deploying the minimum point-to-point distance
function (Equation 3). The output clusters from this level cor-
respond to the common pathways in the scene as shown in
Figure 2c.

We choose the Hausdorff distance for the spatial similarity
in the first level of clustering because it captures the sepa-
ration between parallel tracklets whether they are parallel or
intersecting, while the minimum point-to-point distance be-
comes zero if the two tracklets intersect. On the other hand,
for the second level clustering, the Hausdorff distance can be-
come too large for tracklets continuing one another.

Once a pathway is identified, it is represented again as a
single directed representative line segment, estimated from
all corresponding pathway’s tracklets (Figure 2c). The two
terminals points of each such line segment represent the de-
tected pathway’s source and sink regions, respectively. To
determine the spatial extents of a pathway’s source and sink
regions, we consider the convex hulls of the tracklet terminal



points lying within a small distance! from the representative
line segment’s terminal points. The x-y coordinates of all the
points within the convex hulls are then clustered using DD-
CRP to identify the scene’s sources and sinks (gates).

Figure 2: (a) Coherent parallel tracklets are clustered to-
gether. (b) Representative directed line segments for obtained
clusters. (c) Detected pathway with associated source/sink re-
gions overlaid in blue/green color, respectively.

5 Experimental Evaluation

In our implementation, to obtain tracklets in a given crowded
scene, we first detect interest points using the minimum
eigen features method [Shi and Tomasi, 1994] in foreground
regions, which are identified using background subtraction
via Gaussian Mixture Models [Stauffer and Grimson, 1999],
learned from the first five frames. Then, the detected points
are tracked using the standard Kanade-Locus-Tomasi (KLT)
tracker [Tomasi and Kanade, 1991].

Experiments are conducted on multiple datasets. However,
most of our analysis is performed on the challenging New
York’s Grand Central station video [Zhou et al., 2011], which
is a 33-minute video with 540x960 resolution and a frame
rate of 25 FPS. More than 20,000 tracklets are extracted from
this scene (Figure 3a). All tracklets are stopped, collected,
and tracking is restarted every 25 frames, which makes all our
tracklets having the same fixed length. In the following, we
first present our experiments on the Grand Central Station’s
scene, then, on other datasets. More detailed results and re-
sources associated with this work can be found online?.

Figure 3: (a) Collected tracklets in the Grand Central station’s
scene. (b) Scene gate layout according to the floor plan of the
station.

5.1 The Grand Central Station Scene

We compare our approach against the Meta-Tracking (MT)
approach [Jodoin et al., 2013] in terms of pathway detection,
pathway spatial layout coverage, and source/sink detection.

160 pixels in our implementation.
“http://www.cps.ejust.edu.eg/index_files/ijcai_2016.htm
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Method TD-P FD-P TD-G FD-G
MT [Jodoin et al., 2013] 10 30 6 7
Proposed 14 26 9 15

Table 1: Pathway and Gate detection in our approach vs. the
MT approach on the Grand Central scene. (TD-P/FD-P) are
True Detections/False Detections for Pathways. (TD-G/FD-
G) are the same for Gates.

Common Pathway Detection

To quantitatively evaluate the detection of common pathways,
we used a recently released large scale annotation for the
Grand Central video dataset [Yi et al., 2015]. In this anno-
tation, all pedestrians are manually tracked and the complete
path for each pedestrian is labeled from the time of entering
to the time of leaving the scene. We manually labeled eleven
gates (pathway sources/sinks) in the scene, which are shown
in Figure 3b. For each pair of gates, we extracted from the
ground truth (GT) all pedestrian trajectories originating from
the first and terminating in the second. If such trajectories
exist, the pathway is considered existing in the ground truth.
In this way, 108 GT pathways were found. The richness of
these pathways (i.e. count of trajectories) ranges from 1 to
1338, with up to 57% of them having less than 40 trajecto-
ries.

To evaluate the detection of pathways, we sort the resulting
pathways from the proposed approach and the MT approach
based on their richness, which is measured by the number of
tracklets in our approach and by the number of trajectories in
the MT approach. Then, we take the richest 40 pathways of
each approach and match them to the GT pathways>. The re-
sults of this experiment are presented in Table 1, which show
that out of the richest 40 pathways, 14 are matched to true
pathways in our proposed approach compared to only 10 in
MT. It is worth noting that the MT approach can produce mul-
tiple pathways corresponding to the same GT pathway. We
only count one match to a GT pathway as a true detection
and the rest as false detections.

Common Pathway Spatial Layout Coverage

To our knowledge, all prior work evaluated only the count
of identified pathways compared to GT. We introduce a new
evaluation criteria based on measuring the similarity between
the spatial layouts of a retrieved pathway and the correspond-
ing GT pathway.

For each GT pathway, its trajectories are overlaid and ac-
cumulated on top of one another to construct a spatial prob-
ability map to represent the pathway’s spatial extent in the
scene and the level of activity at each point within it. Simi-
larly, another probability map is constructed for each result-
ing pathway from the evaluated algorithm. From both prob-
ability maps, pixel-wise Precision and Recall are calculated,
considering only the pixels with positive probability values,
which we call active pixels.

3The matching is done semi-automatically using bipartite graph
matching followed by human inspection. Details are removed for
space limitation.



GT Pathways (source gate-sink gate) 96 | 1-6 | 81 | 86| 3-6 | 7-6 | 5-1
MT [Jodoin et al., 2013] | Erecision | 093 1\, N | Na [082 | Np [ 094
Recall 0.48 0.67 0.61
Method —
Proposed Precision | 0.98 | 0.95 | 0.99 NA | NA | NA 0.94
Recall 048 | 0.33 | 0.35 0.46

Table 2: Pathway layout pixel-wise Precision/Recall scores for our approach and the MT approach [Jodoin et al., 2013]. Results
are shown for the 7 richest GT pathways (sorted descendingly by richness). NA indicates undetected pathways.

Table 2 shows the results of this experiment for our ap-
proach compared to MT. The scores are computed for the
correctly detected pathways from the richest 7 GT pathways.
Note that our approach detects more from these pathways
than the MT approach. It also yields slightly better precision
than the MT approach. However, for both of them the recall is
lower than the precision. This can be explained by inspecting
a sample of the scores as illustrated in Figure 4. As evident
in the figure, GT pathways are sometimes very wide, either
in the middle due to midway pedestrian diversion to avoid an
obstacle, or at terminals due to the perspective effect which
makes distances close to the camera appear much larger. This
makes it hard for a detection algorithm to cover most of the
spatial layout of the GT pathway. This is particularly true
for our approach, which tends to produce coherent clusters.
Sometimes, this results in distributing tracklets belonging to
one GT pathway over multiple clusters, only one of them is
matched with the corresponding GT pathway. We believe that
the ignored clusters account for the recall loss.

F, = 0.73

F, = 0.62

(a)
Figure 4: (a) GT pathway trajectories. (b), (c) Illustrate F-
score values for the pathway spatial layout coverage for the
MT approach, and our approach, respectively. Yellow de-

notes True Positives, green False Negatives, and blue False
Positives. Best viewed in color.

(c)

Source/Sink Region Detection

The detected source/sink regions (as explained in Section 4.3)
are semi-automatically matched with the manually annotated
Ground Truth source/sink regions (Figure 3b). Quantitative
results are presented in Table 1. The results show that our
approach detects 9 of the 11 GT gates, vs. only 6 detected
by MT. On the other hand, the two approaches produce high
count of false gates. This happens when a detected pathway
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starts from or terminates at an intermediate point that is not
close to any GT gate.

5.2 Other Datasets

Qualitative results for other datasets are shown in Figure 5.
These results are comparable to the results obtained by other
approaches in the literature on the same scenes [Ali and Shah,
2007; Jodoin et al., 2013].

Figure 5: (a) Detected pathways using our approach for dif-
ferent datasets. (b) GT pathway motion directions. (c) De-
tected sources/sinks. (Best viewed in color).

6 Conclusion

In this paper, we propose a new approach for semantic re-
gion analysis of crowded scenes based on tracklet cluster-
ing. DD-CRP is adopted as a non-parametric clustering ap-
proach. Inspired by line geometry, a novel similarity mea-
sure is formulated, which effectively captures the spatial and
directional similarity between tracklets during the clustering
process. The proposed approach is evaluated against ground
truth pathways from a recently released annotation for a chal-
lenging dataset. Pathways’ spatial probability maps are con-
structed and active pixels of both identified pathway and
ground truth are matched. Pixel-wise Precision/Recall mea-
sures are utilized to evaluate the spatial coverage of pathways.
Our proposed work demonstrates state of the art performance
both in pathways detection, their associated gates and spa-
tial layout coverage. The proposed approach is also tested on
different crowd scene datasets and demonstrates good quali-
tative performance.
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