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Abstract
Online multi-object tracking (MOT) is challeng-
ing: frame-by-frame matching of detection hy-
potheses to the correct trackers can be difficult.
The Hungarian algorithm is the most commonly
used online MOT data association method due to
its rapid assignment; however, the Hungarian al-
gorithm simply considers associations based on an
affinity model. For crowded scenarios, frequently
occurring interactions between objects complicate
associations, and affinity-based methods usually
fail in these scenarios. Here we introduce quadratic
pseudo-Boolean optimization (QPBO) to an on-
line MOT model to analyze frequent interactions.
Specifically, we formulate two useful interaction
types as pairwise potentials in QPBO, a design that
benefits our model by exploiting informative in-
teractions and allowing our online tracker to han-
dle complex scenes. The auxiliary interactions re-
sult in a non-submodular QPBO, so we acceler-
ate our online tracker by solving the model with a
graph cut combined with a simple heuristic method.
This combination achieves a reasonable local opti-
mum and, importantly, implements the tracker ef-
ficiently. Extensive experiments on publicly avail-
able datasets from both static and moving cameras
demonstrate the superiority of our method.

1 Introduction
Multi-object tracking (MOT) is an important computer vision
topic, the goal being to locate objects in successive frames
to produce intact trajectories. However, MOT is particu-
larly challenging, since frequent interactions, anomalous mo-
tion, and similar appearances of tracked objects are common
in many real-world scenarios, and each of these challenges
must be overcome to improve performance. Many solutions
have been proposed in this field. Among them, tracking-by-
detection is a widely accepted MOT method. Tracking-by-
detection tracks objects based on given detection hypotheses;
however, in practice, even the best detector produces false or
missing detections. A key issue, therefore, is how to effec-

tively associate these imperfect hypotheses and build com-
plete trajectories.

There are two main types of detection-based tracking. The
first is the batch method [Huang et al., 2008; Milan et al.,
2014; Yang and Nevatia, 2014; Zamir et al., 2012], in which
whole frames are pre-processed in advance to produce frag-
mented trajectories (tracklets), with which data is associ-
ated. The other is the online method [Bae and Yoon, 2014;
Breitenstein et al., 2011; Poiesi et al., 2013; Shu et al., 2012],
which is designed for real-time applications with tracking
performed on only previous and current frames. The batch
method has recently attracted interest since cues from future
frames impart a significant effect in complex scenarios (i.e.,
those with many occlusions and collisions), and optimization
based on global information delivers better results. The on-
line method usually improves tracking when used with other
techniques such as particle filtering [Breitenstein et al., 2011]
and KLT [Benfold and Reid, 2011].

With respect to data association, the Hungarian algorithm,
which efficiently assigns hypotheses to the correct tracker,
is usually used in online methods [Bae and Yoon, 2014;
Breitenstein et al., 2011; Shu et al., 2012]. The performance
of the Hungarian algorithm is closely related to the affinity
model, and many related methods have sought to develop a
discriminative appearance model and robust motion model to
improve data association. However, Hungarian-derived meth-
ods ignore favorable information between objects. Objects
frequently interact in crowed scenes, which inevitably wors-
ens affinity models and the Hungarian algorithm’s optimal as-
signment is problematic in this scenario. Several recent stud-
ies have formulated their MOT model by introducing inter-
actions; for instance, [Yang and Nevatia, 2014] regards inter-
active tracklets as the pairwise terms of CRF and redefines
the data association cost. [Milan et al., 2013] proposes label
cost CRF to deal with detection- and trajectory-level inter-
actions. The convincing performance of these works prove
the significance of utilizing interactions. However, all these
works focus on global associating, thus are not the online
case. Many classical combinatorial optimization approaches
have recently been successfully applied to MOT. For exam-
ple, [Zamir et al., 2012] formulates MOT as a generalized
minimum clique problem, and in a related study [Dehghan et

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3396



al., 2015] updates MOT as a maximum multi-clique problem.
In both works, tracklets from the same object are assumed to
be from the same clique, and tracking are translated to find
the maximum cliques. [Tang et al., 2015] considers MOT as a
subgraph decomposition problem, with subgraphs represent-
ing feasible data associations and MOT finding the optimal
subgraph. Although these approaches show their efficacies in
handling one to one association, they fail to extend to include
interactions.

In this paper, we focus on online MOT modeling, and for-
mulate it as quadratic pseudo-Boolean optimization (QPBO)
problem. Online MOT is challenging, since neither future
frames nor global optimization is available. We study the on-
line case based on the following two facts. First, recently
proposed DPM detector [Felzenszwalb et al., 2010] provides
more accurate detection hypotheses, and appearance models
built on these part-based detections are discriminative. Sec-
ond, interactions are informative in online MOT, and care-
fully incorporated these interactions significantly improve on-
line tracking performances. We use the advanced detector to
obtain hypotheses and introduce QPBO to explore useful in-
teractions. We consider our online MOT as a QPBO problem
due to its flexibility in describing interactions. In our model,
we formulate two frequently occurring interactions, i.e. col-
lision interaction and overlapping interaction, as the pairwise
potentials of QPBO and extend our online model to handle
complex scenes. We note that our online tracker performs lo-
cal data association and any iterative or global associations
are not implemented. To speed up our method, a novel opti-
mization algorithm is proposed, which enables QPBO to find
the optimum efficiently. To our knowledge, both our model
and optimization have not previously been studied.

2 The proposed online MOT method
In this section, we discuss several useful interactions that oc-
cur in online MOT and devise our online MOT model to take
them into account. Since our method focuses on data asso-
ciation between trackers and detection hypotheses, we record
all hypotheses and trackers’ states. Dt

= [dt1, d
t

2, . . . , d
t

m

]

denotes m detection hypotheses at the tth frame. Each dt
i

is an individual hypothesis, i 2 {1, 2, . . . ,m}. During the
matching process of our online model, only the detection hy-
potheses of the current frame are used. We denote the track-
ers T = [T1, T2, . . . , Tn

], where n is the number of track-
ers, and each T

j

= {X
j

,V
j

,F
j

}, j 2 {1, 2, . . . , n}, where
X

j

= {dt
i

|�t(i, j) = 1, ts  t  te} represents the hypothe-
sis set that contains all the detections matched to tracker T

j

,
and �t(i, j) = 1 means dt

i

has been linked to T
j

, and equals
0 otherwise. ts, te are the start frame and ending frame, re-
spectively. V

j

signifies the tracker velocity, which can be es-
timated using the collected hypothesis sequences using the
Kalman filter. F

j

denotes the specific SVM classifier, which
is constructed similar to [Shu et al., 2012] using the appear-
ance features. These specific classifiers are fed online and
the classifier is updated when the matched detection is not
heavily occluded, i.e. 70% of the detection is visible. Based
on this framework, an affinity model between all trackers and
hypotheses can easily be obtained, as detailed in Section 4.

As mentioned before, data association in MOT is a clas-
sical combinatorial optimization problem. It can, there-
fore, be easily formulated as a graph, the most common
methods being to regard detection hypotheses or tracklets
as vertices and affinities as edges [Dehghan et al., 2015;
Tang et al., 2015]. However, we consider our online MOT
as a quadratic pseudo 0-1 optimization problem, and we con-
struct the graph differently. The graph vertices represent com-
binations of trackers with hypotheses. Given m detection hy-
potheses and n trackers, there exist m*n vertices in the graph
and we denote the vertex set with ⌦. The graph size is varied
according to the active trackers that are not terminated and
hypotheses of the incoming frame. Each vertex v

p

= �(i, j),
p 2 ⌦ taking either 1 or 0 to indicate whether or not the com-
bination of d

i

and T
j

is successful. For simplicity, we take
v
p

as tuple < d
i

, T
j

>. We minimize the following energy
function to achieve the data associations of our QPBO-based
online MOT model:

E (v) = vTu+ ↵vTF (1 � v) + �vTGv, v 2 {0, 1}|⌦|
.

(1)
Where v = {v

p

|p 2 ⌦} is a binary vector defined on all
⌦ vertices. u = {u

p

|p 2 ⌦} represents the unary term
with each element denoting the cost of the corresponding
vertex. The unary term is derived independently from our
affinity model detailed later. 1 is an all one vector of the
same length as v; Symmetric matrices F = {f

pq

|p, q 2 ⌦}
and G = {g

pq

|p, q 2 ⌦} represent pairwise potentials con-
structed using the mentioned two interactions, where F is
constructed from collision interactions, and G is constructed
from overlapping interactions. Both potentials can be seen as
the cost of violating interactions. ↵,� balance the two pair-
wise terms.

2.1 Tracking assumption
Two tracking assumptions are addressed by almost all MOT
methods when tracking by detection. The first is that one
tracker links to at most one detection for each step. The sec-
ond assumption emphasizes that one detection cannot be oc-
cupied by two different trackers simultaneously. To obey the
first tracking assumption, each tracker in our model only take
its best matched hypothesis as matchable. But, different from
Hungarian algorithm, we reassure each exclusive match by
nearby trackers. That is to say, nearby trackers can deny the
match. We introduce collision interaction to achieve this goal.
Due to the stricter conditions of matching, one object is likely
to be tracked by two trackers. We thus relax the second as-
sumption to allow two active trackers to match to one hypoth-
esis and merge them into one tracker. We consider the second
assumption together with overlapping interaction.

2.2 Collision interaction
One MOT challenge is how to distinguish closely positioned
similar-appearing objects in crowded scenes, since motion
models and traditional appearance models tend to fail in this
scenario. We introduce collision interactions to describe this
challenging situation and devise a classifier for each pair of
closely aligned trackers. Specifically, when two trackers are
detected within a close and reasonable distance, we consider
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Figure 1: A system flow of the proposed online MOT. Affinity provides the best macthed pairs between trackers and incoming
detections. Then, two types of interactions are considered to improve matching. Lastly, trackers update to produce the tracking
output. The similar-appearing T2 and T3 come to close and have a collision. The collision interaction reassures links using
auxiliary classifier F23 and correctly matches d1 to T3 in spite of affinity matching d1 to T2 with a strong link. T6 and T7 share
heavy overlaps and both strong link to d4. The overlapping interaction approve d4 to match to T6 and T7 simultaneously, and
merge them into one single tracker.

there is a collision and a classifier is generated with training
samples collected only from these two trackers. This clas-
sifier is naturally more discriminative for separating the two
trackers than a global classifier. To prevent similar appearing
trackers linking to incorrect hypotheses, the following cost is
provided:

f
pq

=

⇢
c
max

, F
jj

0
(d

i

) = 0 ^ col(T
j

, T
j

0
))

0, otherwise.
(2)

Here p, q are the indices of v
p

=< d
i

, T
j

> and v
q

=<
d
i

, T
j

0 >, respectively. F
jj

0
(d

i

) denotes the binary output
of the auxiliary classifier F

jj

0 on hypothesis d
i

, col(·) checks
whether there is a collision between the two trackers of T

j

and
T 0
j

. In our model, col(·) returns true when the distance be-
tween two trackers is less than three times width of their last
matched detection. c

max

signifies an infinite cost to which we
set a sufficiently large value 10

5 in practice. In consideration
of matching d

i

to T
j

, Eq. (2) heavily penalizes the situation
where F

jj

0
(d

i

) classifies d
i

to T
j

0 .

2.3 Overlapping interaction
In collision interaction, our trackers are prudent to match to
hypotheses candidates, which is prone to initiate new track-
ers. In such cases, one object is likely to be tracked by two or
more trackers. As emphasized in [Milan et al., 2013], heavily
overlapped trackers always originate from the same objects
and should be suppressed. However, most studies have ne-
glected this situation to simplify optimization. We address
this case using pairwise term G in our QPBO model as fol-
lows:

g
rs

=

⇢
O(T

j

, T
j

0
), if d

i

= d
i

0

0, otherwise.
(3)

Here r, s are the indices of v
r

=< d
i

, T
j

> and v
s

=<
d
i

0 , T
j

0 >, respectively. O(T
j

, T
j

0
) is used to measure the

spatial-temporal overlap cost of two trackers T
j

and T
j

0 de-
fined:

O (T
j

, T
j

0
) = � log (O

S

(T
j

, T
j

0
)O

TN

(T
j

, T
j

0
)) . (4)

O
S

(T
j

, T
j

0
) and O

TN

(T
j

, T
j

0
) is the spatial overlap ratio and

temporal non-overlap ratio, respectively. O
S

(T
j

, T
j

0
) cal-

culates the ratio of overlapping areas of trackers T
j

, T
j

0 in
terms of all their shared time periods. Here, each tracker is
smoothed by interpolating. O

TN

(T
j

, T
j

0
) calculates the ra-

tio of temporal non-overlap number of T
j

, T
j

0 to their total
detections. � balances this item. To prevent two unrelated
trackers from merging together, we use a large � to guarantee
two merged trackers are sufficiently overlapped.

3 Optimization using QPBO
The quadratic Boolean optimization has been shown to be a
generalization of other combinatorial optimization problems.
Since our model emphasizes more MOT interactions, these
complicated constraints make it difficult to apply our problem
to a particular combinatorial optimization. In this paper, we
consider our model as a QPBO. Since v

i

u
i

= v
i

u
i

v
i

for every
v
i

2 {0, 1}, our model in Eq. (1) can be reshaped as:

E(v) = min

v2{0,1}⌦

X
vTMv + ↵vTF1

= min

vp,vq2{0,1}

X

p,q

m
pq

v
p

v
q

+ ↵
X

p,q

f
pq

v
p

(5)

Where M = diag(u) � ↵F + �G, diag(u) denotes a diag-
onal matrix with diagonal elements equal to vector u. Ac-
cording to [Boros and Hammer, 2002], Eq. (5) is submodular
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and can only be efficiently solved in low-order polynomial
time if m

pq

 0, 8(p, q) 2 ⌦

2. However, in our model,
most elements are positive. The general non-submodular
case of Eq. (5) is NP hard. We solve our model using
graph cuts [Boros and Hammer, 2002] combined with sim-
ple greedy heuristic searching [Merz and Freisleben, 2002;
Liu and Tao, 2014] for efficiency. Graph cuts are consid-
ered one of the most efficient QPBO algorithms; however,
as noted in many works, a graph cut may only provide part
of the optimum (global) if the model is not submodular and
leave the rest unsolved. For MOT applications, only lim-
ited objects appear simultaneously in a short period of time,
therefore, the application size is relatively small; in fact, there
are less than 50 simultaneous trackers in our experiment and
the constructed graph has around 2500 vertices in maximum.
Embracing this observation, We subsequently use a simple
greedy method [Merz and Freisleben, 2002; Tao et al., 2007;
2009] to obtain the remaining solutions, which initiates the
value of each vertex to 0.5 and approximates to local solution
by heuristically adjusting its value to 0 or 1. This method
is known to be very efficient for the small size of an uncon-
strained quadratic Boolean optimization problem.

4 Implementation details
As mentioned above, our online model is based on detec-
tion hypotheses; we use the deformable part-based detec-
tor [Felzenszwalb et al., 2010] to obtain hypotheses for each
frame, and all our hypotheses are treated equally. We initiate
a new tracker when a hypothesis is not assigned to any ac-
tive trackers and add it to the active trackers set. On the other
hand, we terminate an active tracker when it is not matched
to any hypotheses over 50 frames. ↵ and � of Eq. (1) are two
trade off parameters in our model, we set ↵ = 1 and � = 100

empirically. Eq. (1) also refers affinity model to obtain u, we
detail our affinity model here.

Our online model only focuses on data associations be-
tween trackers and hypotheses; thus, since the affinity model
only measures how well trackers match hypotheses, we take
tracker and hypothesis’ affinity as their link probability. The
link probability is estimated using four cues (including ap-
pearance, motion, size and reliability) as follows:

P link

ij

= P (� (i, j) = 1|d
i

, T
j

)

= ⇤

A

⇤ ⇤
M

⇤ ⇤
S

⇤ ⇤
T

, (6)
where

⇤

A

(d
i

, T
j

) =

1

Z
exp

⇢
F

j

(d
i

)

�
A

�
,

⇤

M

(d
i

, T
j

) = G(p
Tj + V

j

⇤�t
j

� p
di ; 0,�ij

),

⇤

S

(d
i

, T
j

) = G(w
Tj � w

di ; 0,�ij

),

⇤

T

= ⇡lj+�tj .

⇤

A

(d
i

, T
j

) measures appearance similarity; F
j

(d
i

) is the
classifier score of F

j

on d
i

, we adopt the well-proven LBP
and color features [Shu et al., 2012] in our appearance model
and build the classifier similar to [Shu et al., 2012]. Since
we build a specific classifier for each tracker only after a suf-
ficient number of samples have been collected, in our experi-

ments |X
j

| � 5. In cases with insufficient samples, we re-
place with correlation. We set �

A

= 0.1 empirically. Z
is the normalization factor, similar to [Huang et al., 2008].
⇤

M

(d
i

, T
j

) is used to measure motion; p
Tj represents the po-

sition of T
j

(the last linked detection replaced), the same as
p
di . �t

j

is the time gap between the current frame and T
j

.
G(· ) represents Gaussian distribution function. ⇤

S

(d
i

, T
j

)

measures the size change of tracker and hypothesis; w
di de-

notes the width of hypothesis d
i

and w
Tj denotes the width

of tracker T
j

. Motion variance �
ij

has the same formulation
throughout and we introduce parameter � to tune the vari-
ance.

�
ij

= � ⇤min(w
Tj , wdi). (7)

� is an important parameter to our model and its selection will
be detailed in experiment section. ⇤

T

measures the reliability
of T

j

, it includes two considerations: long trackers are more
reliable and trackers unmatched for a long time however are
less reliable. We take ⇡ as the missed detection rate of the
DPM detector and set ⇡ = 0.1. To make long trackers more
confident, we denote |T

j

| as the length of T
j

and set l
j

=

max(0, 10 � |T
j

|). Trackers longer than 10 are considered
confident enough. �t

j

measures the time gap between T
j

and
current frame. Large gap means the corresponding trackers
are likely to leave the scene and less confident. We eventually
obtain the link cost:

c
ij

= � log(P link

ij

). (8)

To avoid our model violating the first tracking assumption,
for each tracker T

j

, we find the best matched hypothesis
d
k

where k = argmin

i

c
ij

. Then our unary terms in Eq.

(1) can be readily achieved by setting u
p

= c
kj

� h when
v
p

=< d
k

, T
j

>, and u
p

= c
max

otherwise. Here h is a
constant, which can be treated as a threshold to enforces the
best matched pair to associate. We set h = 100 and it has no
obvious influence to the tracking performances.

5 Experiments
In this section, we firstly validate the effectiveness of two in-
teractions mentioned in Section 3. Then we compare the per-
formance of the proposed online MOT model with several
state-of-the-art methods on five publicly available datasets.
Subsequently, we further prove the proposed method is more
robust than the Hungarian algorithm in complex scenarios.
Computational cost is analyzed at last.

5.1 Evaluation metrics
For quantitative evaluation, we use the widely adopted
CLEAR MOT metrics [Bernardin and Stiefelhagen, 2008]
(including MOTA(") and MOTP(")) and trajectory-based
metrics (TBM) [Yang and Nevatia, 2014] (including Mostly
Tracked MT("), Fragments FM(#) and Identity Switch
IDS(#))1. CLEAR MOT metrics measure the results based
on entire video and calculate MOTA and MOTP frame-by-
frame. MOT accuracy (MOTA") evaluates accuracy in the
presence of false positives, false negatives, and IDS. MOT

1Here “"” means the larger, the better on the corresponding met-
ric, while “#” denotes the smaller, the better.
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Figure 2: The effectiveness of two interactions (overlapping
and collision) to tracking results. w/o: model outputs with-
out any of the two interactions; w/collision: model outputs
with collision interaction; w/both: model outputs with both
overlapping and collision interactions.

precision (MOTP") evaluates the intersecting area of the
tracking output and the ground truth. TBM is an impor-
tant supplemental metric for better evaluation of MOT, which
measures tracking results based on trajectories and is used
to estimate the completeness of each trajectory. Specifically,
MT" evaluates the most tracked trajectories that are success-
fully tracked at least 80%. IDS# counts the number of times
that a tracked trajectory changes its matched identity. FM#
counts the number of times that a trajectory in ground truth
is interrupted by the tracking output. For fair comparison, we
report the TBM of our method based on the existing MOT
evaluation tool provided by [Yang and Nevatia, 2014].

5.2 Validation of our method
The reason that our method achieves the encouraging perfor-
mance is due to the incorporation of two types of interaction:
overlapping and collision. To demonstrate that the introduced
interactions are indeed helpful to our online MOT model, we
investigate the performance gain brought by each of the two
interactions on ETH-bahnhof and ETH-sunny datasets [Ess
et al., 2008]. Firstly, we remove the two interactions from
our tracking scheme and observe the performance on MOTA
and MOTP. After that, collision interaction is incorporated to
test its effectiveness to improve the performance. Finally, we
introduce the overlapping interaction to form the completed
proposed method, and see whether overlapping interaction is
able to further enhance the tracking performance. The contri-
butions of the two interactions are illustrated by Fig. 2.

5.3 Comparison with the state-of-the-arts
The datasets adopted here include PETS-S2L12, TUD-
Crossing, TUD-Campus [Andriluka et al., 2008], ETH-
bahnhof, and ETH-sunny [Ess et al., 2008]. These datasets
provided a wide range of challenges including occlusion,
crowded scenarios, and moving backgrounds. The ground
truth of all datasets are easy to obtain, and many related works
have reported their results on these datasets, allowing the
straightforward comparison of our tracker with other state-
of-the-art methods.

The qualitative and quantitative results of our method on
the above datasets are presented by Fig. 3 and Tables 1⇠4, re-

2http://www.cvg.reading.ac.uk/PETS2009/a.html

Table 1. Tracking performance on PETS-S2L1.
Method MOTA MOTP MT FM IDS
Milan [2014] 90.6 80.2 91.0 6 11
Dehghan [2015] 90.4 63.1 95.0 3 0
Yang [2014] – – 90.0 13 0
Bae [2014] 83.0 69.6 100.0 4 4
Breitenstein* [2011] 79.7 56.3 – – –
Bae* [2014] 77.4 69.0 100.0 12 10
Proposed* 95.1 71.7 95.0 5 3

Table 2. Tracking performance on TUD-Crossing.
Method MOTA MOTP MT FM IDS
Zamir [2012] 91.6 75.6 – – 0
Dehghan [2015] 91.9 70.0 76.9 – 2
Tang [2015] 80.9 78.0 61.5 1 1
Breitenstein* [2011] 84.3 71.0 – – 2
Proposed* 87.4 75.2 84.6 1 3

Table 3. Tracking performance on TUD-Campus.
Method MOTA MOTP MT FM IDS
Segal [2013] 82.0 74.0 62.5 3 0
Tang [2015] 83.3 76.9 62.5 1 0
Breitenstein* [2011] 73.3 67.0 – – 2
Proposed* 86.6 71.4 87.5 2 1

Table 4. Tracking performance on ETH-bahnhof & ETH-sunny.
Method MOTA MOTP MT FM IDS
Kuo [2010] – – 58.4 23 11
Yang [2014] – – 68.0 19 11
Bae [2014] 72.0 64.0 73.8 38 18
Poiesi* [2013] – – 62.4 69 45
Bae* [2014] 67.9 60.0 68.3 57 23
Proposed* 70.5 67.4 70.0 34 25

Methods marked with * are online models.

spectively. Table 1 reveals that we obtain the best MOTA on
PETS-S2L1, which indicates our online fed classifiers effec-
tively captures the changing appearance of each pedestrian.
As showed in the first row of Fig. 3, our tracker 2 success-
fully tracks the pedestrian for more than 500 frames. Tables
2 and 3 present the tracking performances on TUD-Crossing
and TUD-Campus datasets. It can be observed that the pro-
posed method achieves the best MT and very encouraging
MOTA, demonstrating our trackers’ robustness to the heavy
collisions. Tracker 2 showed in the third row of Fig. 3 re-
identifies the pedestrian even after the pedestrian being oc-
cluded up to 45 frames. The tracking results on moving back-
ground datasets ETH-Bahnhof and ETH-Sunny are showed
in Table 4. Compared with batch methods [Kuo et al., 2010;
Yang and Nevatia, 2014], our model is prone to produce more
FM and IDS. This is predictable, since online methods are
known to perform poorly when handling long-term occlu-
sions, and the trajectories are tend to split without further
global association. However, the proposed model achieves
the best results when compared with other online methods.
Tracker 4 showed in the last row of Fig. 3 perfectly deals
with the camera moving and detection missing, and renders a
complete trajectory of the pedestrian who exists in all frames
of the sequence.
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Figure 3: Examples of our tracking results on the test se-
quences PETS-S2L1 (1st row), TUD-Crossing (2nd row),
TUD-Campus (3rd row), ETH-bahnhof (4th row), and ETH-
sunny (5th row).

5.4 Robust to motion variances
Due to the unavoidable missing detections, in crowded scenes
hypothesis is usually re-detected in a distance far from its pre-
vious position. Besides, in moving background datasets, the
linear motion prediction is imprecise [Bae and Yoon, 2014;
Liu et al., 2014]. To overcome these unexpected motions,
a natural way is to build a more discriminative appearance
model. The Hungarian algorithm simply uses the information
of individual tracker to build the appearance model. As a re-
sult, they cannot successfully deal with the issues mentioned
above. However, we build our appearance model by further
exploring the interaction cues, which effectively distinguish
different objects and enable our trackers to link to distant hy-
potheses accurately. Fig. 4 shows the comparison results of
the proposed method with the Hungarian algorithm under dif-
ferent motion variances � 2 {2�4, 2�3, 2�2, 2�1, 20, 21, 22}
using the same affinity model. Large � means that trackers
are allowed to link the hypotheses that are far apart. Here, we
use four key metrics introduced above, i.e. MOTA, MOTP,
MT and IDS, to show the improvement brought by our strat-
egy. The reported MOTA, MOTP and MT are averaged over
the outputs on the five datasets, and IDS is summed over the
outputs on all five datasets. It is obvious that the Hungarian

Figure 4: Tracking results under different motion variances.

algorithm prefers smaller motion variance � = 2

�3 in term of
MOTA (see Fig. 4(a)) and MT ( Fig. 4(c)). It fails under large
� where many IDS is produced (see in Fig. 4(d)). However,
the proposed method is robust to the large motion variance
in terms of MOTA, MT and IDS. The large � enables our
method successfully track more completed trajectories than
the Hungarian algorithm (see in Fig. 4(c)). Embracing this
observation, we set � = 1 for all our previous experiments.

5.5 Runtime analysis
Since the incorporation of interactions, our online method
spends about 23% more time than the Hungarian algorithm
on the five test sequences. Such overhead includes the cost
of data association and interaction computation. In fact, due
to the efficient solver to QPBO, the data association cost ac-
counts for less than 5% of the overhead. In a nutshell, our
online method remarkably improves MOT tracking perfor-
mance without significantly increasing the run time. We per-
form our experiments on a 3.45GHz PC with 6.0 GB memory
with codes implemented in C++. Our non-optimized codes
run at around 3-12 fps on the different sequences, and the run
time mainly depends on the number of simultaneous trackers.
The processing time does not include the cost of detection
procedure.

6 Conclusion
In this paper, we formulate online MOT as a QPBO prob-
lem. As a general combinatorial optimization method, QPBO
proves to be more flexible for solving MOT. We introduce
two frequently occurring interactions into QPBO to compre-
hensively analyze the link probability of data association.
Compared to a unary affinity model, the interactions help
our trackers associate hypotheses more accurately in com-
plicated scenarios. Extensive experiments demonstrate the
effectiveness of our model, and the quantitative analysis of
each interaction reveals their respective value. Furthermore,
we propose an efficient optimization for our QPBO-based
online tracking model, with the proposed combination of a
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graph cut and a simple heuristic search, thus solving our non-
submodular problem efficiently in polynomial time.
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