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Abstract
Because of the complementarity of multiple vi-
sual cues (features) in appearance modeling, many
tracking algorithms attempt to fuse multiple fea-
tures to improve the tracking performance from
two aspects: increasing the representation accuracy
against appearance variations and enhancing the
discriminability between the tracked target and its
background. Since both these two aspects simulta-
neously contribute to the success of a visual tracker,
how to fully unleash the capabilities of multiple
features from these two aspects in appearance mod-
eling is a key issue for feature fusion-based visual
tracking. To address this problem, different from
other feature fusion-based trackers which consider
one of these two aspects only, this paper proposes
an unified feature learning framework which simul-
taneously exploits both the representation capabil-
ity and the discriminability of multiple features for
visual tracking. In particular, the proposed fea-
ture learning framework is capable of: 1) learn-
ing robust features by separating out corrupted fea-
tures for accurate feature representation, 2) seam-
lessly imposing the discriminabiltiy of multiple vi-
sual cues into feature learning, and 3) fusing fea-
tures by exploiting their shared and feature-specific
discriminative information. Extensive experiment
results on challenging videos show that the the pro-
posed tracker performs favourably against other ten
state-of-the-art trackers.

1 Introduction
As an important research topic in the field of computer vi-
sion, visual tracking has been extensively studied in last two
decades with the development of numerous tracking algo-
rithms. However, it still remains challenging due to large
appearance variations of the tracked object caused by illumi-
nation, occlusion, etc. To account for these variations as well
as their complicated interaction, different kinds of visual cues
(features) that describe different characteristics of the object,
e.g. color, texture are fused and jointly exploited for more
robust appearance modeling [Grabner and Bischof, 2006;
Hong et al., 2013; Lan et al., 2014]. Given multiple visual

cues (features) of the tracked object, a key problem is how to
fuse them properly to obtain both accurate target representa-
tion and effective target/background discrimination.

A variety of feature fusion-based tracking methods have
been proposed, which can be roughly divided into two cate-
gories: discriminative methods and generative methods ac-
cording to their feature fusion strategies. Discriminative
models combine the discriminabilities of different features
to facilitate the discrimination between the target and its
background. Typical approaches belonging to this category
such as [Grabner and Bischof, 2006; Grabner et al., 2008;
Babenko et al., 2011] are grounded on online boosting. For
example, [Grabner and Bischof, 2006] proposed an online
boosting-based tracker in which a large weak classifier pool
is learned and updated from various kinds of raw features,
and an online boosting algorithm is employed to select and
fuse weak classifiers for target/background discrimination.
Along this line, more variants of boosting-based approaches
such as [Grabner et al., 2008; Babenko et al., 2011] are de-
veloped to deal with the drifting problem. Discriminative
models can alleviate the background distraction problem to
some extent because different features are jointly exploited
for foreground/background separation. However, the clas-
sifiers which discriminative methods exploit for feature fu-
sion are directly learned and updated with the raw features
extracted from the target samples. If the target samples are
corrupted/contaminated by external variations such as occlu-
sion, illumination, etc, the extracted features may not well re-
flect the intrinsic properties of the object appearance. There-
fore, learning and updating classifiers using such corrupted
features may degrade the fusion performance, which urges
the need to remove the corrupted features or learn some un-
contaminated features for robust appearance modeling.

Unlike discriminative methods, generative methods di-
rectly fuse multiple features to represent the object to increase
the representation ability of a tracker. To enhance the track-
ing robustness to large appearance variations, some strategies
are adopted, e.g. using trivial templates [Mei et al., 2015;
Hu et al., 2015b] to model the outliers existing in the tar-
get’s appearance, removing unreliable features [Lan et al.,
2015] for robust feature-level fusion, or integrating responses
from various Gabor kernels to capture the local appearance
changes [Zhang et al., 2016]. Since generative methods di-
rectly fuse features for model learning without mapping them
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to classification scores, they preserve more information of
multiple features, and are more capable of accounting for
appearance changes than discriminative methods. However,
generative methods do not take advantage of background in-
formation for appearance modeling with multiple features,
which may make them easily to be distracted by cluttered
background and lead to tracking failure.

Generally speaking, discriminative and generative methods
have complementary advantages in feature fusion-based ap-
pearance modeling, and the success of a visual tracker de-
pends on both its representation ability against appearance
variations and its discriminability between the target and its
background. As such, the advantages of these two approaches
should be exploited jointly for more robust feature fusion,
so that multiple features can be employed simultaneously to
describe the object appearance accurately and separate the
object from background discriminatively. In addition, dif-
ferent features extracted from the same object share some
consistency while each feature should also have some spe-
cific knowledge in their discriminability. As is pointed out
in [Liu et al., 2014], consistency is closely related to agree-
ment while feature specific knowledge provides complemen-
tarity and is related to disagreement. While exploring feature-
specific discriminative information for feature fusion has
been shown to be effective in some methods such as online
boosting [Grabner and Bischof, 2006; Grabner et al., 2008;
Babenko et al., 2011], the benefits of exploiting shared
information among multiple features/modalities/views have
also been well demonstrated in some learning and classifi-
cation tasks recently [Yang et al., 2012; Hu et al., 2015a;
Wang et al., 2015]. This motivates us to explore an effec-
tive strategy to jointly consider the shared and feature-specific
discriminative information for feature fusion.

Based on aforementioned motivations, we propose a novel
robust joint discriminative feature learning framework for ob-
ject tracking using multiple visual cues. Different from other
feature fusion-based trackers which directly employ poten-
tially contaminated raw features and utilize the representa-
tion ability or discriminability of different visual cues alone,
the proposed method aims to learn uncontaminated and dis-
criminative features to jointly exploit the representation and
discriminative power of multiple visual cues for visual track-
ing. Within this unified framework, feature learning is per-
formed by simultaneously and optimally removing corrupted
features and learning reliable classifiers. As such, feature
learning from multiple visual cues with corrupted feature re-
moval offers uncontaminated features for reliable classifier
learning while discriminative classifier learning with multi-
ple visual cues imposes the discriminability to the learned
features. Therefore, the limitations of the generative and dis-
criminative approaches can be compensated and the benefits
of these approaches can be combined. In addition, we incor-
porate a novel feature fusion scheme into the feature learning
framework to further exploit the shared and feature-specific
discriminative information for feature fusion, and the impor-
tance of different features in target/background discrimina-
tion is also dynamically weighted in this optimal learning
framework. By jointly exploiting the learned features and
classifiers from multiple visual cues for target representation

and target/background classification, the learning framework
enhances the tracking performance in term of representation
accuracy and discrimination reliability.

It should be noted that some hybrid approaches which at-
tempt to combine the benefits of both the generative and
discriminative approaches have been developed, e.g. [Yu et
al., 2008]. Their models are developed in the context of
using a single feature, while the proposed model is devel-
oped for multi-feature appearance model and can be more
effectively used for features learning and fusion with mul-
tiple visual cues. Although existing single feature-based hy-
brid approaches may be applied to multiple features by fea-
ture concatenation, such an approach ignores different statis-
tical properties of different features and may result in a long
feature vector that may degrade the learning efficiency. The
proposed method is also different from the recent developed
fusion-based tracker [Zhang et al., 2015b] since the proposed
model focuses on feature fusion while [Zhang et al., 2015b]
focuses on tracker fusion.

The contributions of this paper are listed as follows:

• We propose a novel feature learning model which is
able to simultaneously and optimally learn discrimi-
native features and reliable classifiers from potentially
contaminated samples to exploit the representation and
discriminative power of multiple visual cues for visual
tracking.

• We propose a novel feature fusion scheme which si-
multaneously considers the shared and feature-specific
discriminative information from multiple visual cues.
Therefore, both the consistency and complementarity of
the discriminability of multiple features are jointly ex-
ploited for more robust feature fusion.

• We derive a four-step iterative optimization algorithm to
effectively solve the proposed robust joint discriminative
feature learning model.

2 Related Work

2.1 Feature Learning in Visual Tracking

Recent works on feature learning-based tracking include dic-
tionary learning-based approaches and deep learning-based
approaches. Various dictionary learning based-trackers are
proposed to update tracking model effectively [Zhang et
al., 2015a], enhance the reconstructive and discriminative
power [Fan et al., 2014] of the appearance model, etc. Most
dictionary learning-based trackers use a single feature, i.e.
intensity only, which may not be sufficient to account for
large appearance variations. Deep learning-based trackers
such as [Li et al., 2014] tune an off-line pre-trained deep neu-
ral network online to adapt the appearance variations, which
may not be efficient. Different from the aforementioned ap-
proaches, this paper aims to exploit multiple visual cues for
feature learning without off-line large-scale training samples.
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2.2 Shared and Feature-Specific Information
among Multiple Features/Modalities/Views for
Pattern Classification

Exploiting the shared and feature-specific information among
multiple features/modalities/views jointly has been shown to
be beneficial for pattern classification. [Yang et al., 2012] pro-
posed a multi-feature collaborative model which simultane-
ously models the similar and distinctive information among
multiple features for image classification. [Hu et al., 2015a]
proposed to learn the shared and feature-specific structure of
heterogeneous channels for RGB-D activity recognition. A
multi-modal sharable and specific feature learning approach
is proposed for learning the shared and model-specific prop-
erties for RGB-D object recognition [Wang et al., 2015].
These research findings motivate us to exploit the shared and
feature-specific discriminative information for feature fusion-
based visual tracking.

3 Proposed Model
3.1 Robust Joint Discriminative Feature Learning
In the t-th frame, let Y k

F = [yk1 , . . . , y
k
n1
] be the recently ob-

tained target samples of the k-th visual cues, and n1 denote
the number of target samples in the sample set. Since large
appearance variations, e.g. occlusion, illumination may oc-
cur during tracking, the captured samples may be contami-
nated/corrupted. To ensure the robustness of the learned fea-
tures, explicitly seperating out the corrupted samples is es-
sential. Therefore, one objective of the learning model is to
learn the uncontaminated features while separating out the
corrupted features as follows:

Y

k
F = X

k
F + E

k
F , k = 1, . . . ,K (1)

where Xk
F and Ek

F are the learned uncontaminated features
and the separated corrupted features, respectively, and K is
the number of visual cues. The background samples near
the target position, also known as local context information
in the current frame may share some similarity with the re-
cently obtained target samples, such as illumination condi-
tions. Exploiting such context information has been shown
to be beneficial for tracking [Grabner et al., 2010]. Besides,
the target samples in recent frames are temporally correlated,
and mining the latent structure embedded in the target sam-
ples can facilitate revealing the intrinsic characteristic of the
target’s features [Ross et al., 2008]. To further exploit the
spatial and temporal correlation of the background and the
target samples for feature learning while separating out the
corrupted features from multiple visual cues, we cast the ob-
jective discussed above into the following rank and sparsity
minimization problem with the sample set of multiple visual
cues:

min

{Xk,Ek}Kk=1

KX

k=1

{rank(Xk
) + �1kEkk1}

s.t. Y

k
= X

k
+ E

k
, k = 1, . . . ,K (2)

where Y k
B = [ykn1+1, . . . , y

k
N ] is the nearby background sam-

ples in current frame, N is the total number of samples.
Y k

= [Y k
F , Y k

B ], Xk
= [Xk

F , X
k
B ] and Ek

= [Ek
F , E

k
B ] is

the original feature set, the learned feature set and the sep-
arated feature set of the target samples and the background

samples in the k-th visual cue, respectively. With the same
merit of RPCA [Candès et al., 2011], the rank minimization
term is able to uncover the shared latent space embedded in
the samples of different visual cues which characterizes in-
trinsic properties of uncontaminated features of the target and
the background, while the sparsity regularization is employed
to model the outliers that exist in the corrupted features.

Although the feature learning scheme in (2) is able to
learn uncontaminated informative features from multiple vi-
sual cues for target representation via joint low-rank and
sparse matrix decomposition, it cannot guarantee that the tar-
get and background samples can be well discriminated with
the learned features. As such, appearance modeling with
the learned features may suffer the loss of discriminability,
which may lead to the background distraction problem. To
strengthen the discriminability of the learned features while
modeling such different discriminabilities of different visual
cues for robust feature fusion, we impose the discriminability
regularization which measures the prediction loss using the
learned classifiers to the feature learning process as follows:

min

{wk,bk,�k}Kk=1

KX

k=1

((�

k
)

2k(Xk
)

T
w

k
+ 1bk � L

kk22 + �2kwkk22)

s.t.

KX

k=1

�

k
= 1, �

k � 0, k = 1, . . . ,K (3)

where Lk
= [Lk

1 , ..., L
k
N ]

T is the label vector, Lk
i = +1(�1)

means that the i-th sample of the k-the visual cue xk
i belongs

to the target (background) class, �k is the importance weight
of the prediction loss corresponding to the k-th visual cue,
wk 2 Rdk , 1 2 RN whose elements are all 1s, bk 2 R and
dk is the dimension of the k-th visual cue. From (3), we can
see that imposed discriminability regularization aims to min-
imize the weighted sum of the prediction loss of the learned
features in different visual cues based on multiple linear clas-
sifiers {wk, bk}Kk=1 which are learned jointly. Therefore, it
ensures the learned features in multiple visual cues for the
target and the background samples can be linearly separated
as well as possible, which is able to enhance the discrim-
inability of the tracking model and hence alleviates the back-
ground distraction problem. Moreover, dynamically learning
and updating the importance weights during tracking allows
the discriminative powers of different visual cues to be adap-
tively evaluated, which guarantees that more discriminative
features play more important roles in target/background dis-
crimination. Here we use (�k

)

2 instead of �k for feature fu-
sion because we want to ensure all the weights are positive
which avoids the trivial solution that the weight correspond-
ing to the lowest prediction loss is 1, and 0 otherwise.

To further exploit the shared and feature-specific discrim-
inative information of multiple visual cues, we introduce the
following objective function into the proposed feature learn-
ing framework:

min

{wk,bk}Kk=1,L
⇤

KX

k=1

✓

kk(Xk
)

T
w

k
+ 1bk � L

⇤k22 (4)

where the L⇤
= [L⇤

1, . . . , L
⇤
N ]

T , and L⇤
i is the learned con-

sensus classification score of different visual cues in the i-
th training sample, which reflects the consistent discrimina-
tive information from different visual cues. Different from
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other discriminative feature fusion models which enforce dif-
ferent visual cues to share the same classification score [Yu
et al., 2013] or to be with diverse discriminative informa-
tion [Liu and Yao, 1999], the objective function softly reg-
ularizes the classification scores towards the consensus while
enabling them to have some disagreement with the consen-
sus. Therefore, both the consistent and feature-specific infor-
mation among multiple visual cues are explicitly and jointly
employed for learning informative features and reliable clas-
sifiers. Moreover, the disagreement with the consensus can
be controlled by ✓k, and larger (less) ✓k will promote less
(larger) disagreement.
Unifying them all together. Based on the aforemen-
tioned analysis, we formulate the objectives as mentioned
above into an unified joint discriminative feature learning
framework in which uncontaminated and corrupted features,
classier parameters of multiple visual cues, denoted as ⌦ =

{L⇤, Xk, Ek, wk, bk,�k|k = 1, . . . ,K} are jointly estimated
as follows:

min

⌦

KX

k=1

{kXkk⇤ + �1kEkk1 +
�2

2

kwkk22

+

↵1(�
k
)

2

2N

k(Xk
)

T
w

k
+ 1bk � L

kk22

+

↵2✓
k

2N

k(Xk
)

T
w

k
+ 1bk � L

⇤k22} (5)

s.t. Y

k
= X

k
+ E

k
,

KX

k=1

�

k
= 1

�

k � 0, k = 1, . . . ,K

where ↵1 and ↵2 are the nonnegative parameters associat-
ing with different objective functions, and the constant 1

2 is
used for simplifying deductions. Since the rank minimiza-
tion in (2) is a NP-hard problem, we employ the standard ap-
proach [Candès et al., 2011] and relax this problem by us-
ing nuclear norm k · k⇤ instead. The optimization procedure
for (5) is derived in Section 3.2.

3.2 Optimization
The objective function in (5) is convex with respect to one
of these four blocks {Xk, Ek}Kk=1, {wk, bk}Kk=1, L⇤ and
{�k}Kk=1 when the other three blocks are fixed, and it’s diffi-
cult to derive the analytical solution to (5). Therefore, we de-
rive an iterative optimization algorithm to solve the problem.
To make the problem separable, we introduce the auxiliary
variables {Zk}Kk=1 to replace {Xk}Kk=1 in the nuclear norm
k · k⇤ of (5). Accordingly, {8k,Xk

= Zk} act as additional
constraints. Let C be the constraint set of (5) on {�k}Kk=1,
and ai =

↵i
N for i = 1 or 2 . Then the augmented Lagrange

function of (5) L⌦2C is

KX

k=1

{kZkk⇤ + �1kEkk1 + �(⇤

k
, Y

k �X

k � E

k
)

a1(�
k
)

2

2

k(Xk
)

T
w

k
+ 1bk � L

kk22 + �(�

k
, X

k � Z

k
)

+

↵2✓
k

2

k(Xk
)

T
w

k
+ 1bk � L

⇤k22 +
�2

2

kwkk22} (6)

Algorithm 1: Optimization Algorithm for (5)
Input: Sample matrix {Y k}Kk=1, label vector {Lk}Kk=1,

sample number N and feature number K
Output: {Xk,i

, E

k,i
, w

k,i
, b

k,i
,�

k,i}Kk=1, L
⇤

Initialization: i 1, X

k,i  Y

k
, E

k,i  0,�k,i  
1
K , w

k,i  0, bk,i  0, k = 1, ...K, at  ↵t
N , t = 1 or 2

while stopping conditions are not satisfied do
Update {Xk,i+1

, E

k,i+1}Kk=1 via Algorithm (2)
Update {wk,i+1

, b

k,i+1}Kk=1 via solving (10)
Update L

⇤,i+1 via solving (11)
Update {�k,i+1}Kk=1 via solving (12)
i i+ 1

Check stopping conditions
end

with the definition �(A,B) =< A,B > +

µ
2 kBk2F , where

µ is a positive penalty scalar, < A,B >= trace(ATB) and,
{⇤k,�k}Kk=1 are the Lagrangian multipliers. Based on (6),
the solutions to (5) can be obtained by iteratively solving the
subproblems of (5) in which an inner loop procedure is em-
ployed to solve {Xk, Ek}.
{Xk,Ek}-subproblem: Keeping other variables fixed, we
obtain Xk, Ek, k = 1, . . . ,K using Alternating Direction
Method of Multipliers (ADMM) [Boyd et al., 2011]. In the
(j + 1)-th step of ADMM, by some algebraic manipulations,
Ek,j+1 and Zk,j+1 are obtained as

Z

k,j+1
= argmin

Zk

1

2

kZk �Q

k,jk2F +

1

µ

kZkk⇤ = J 1
µ
(Q

k,j
)

E

k,j+1
= argmin

Ek

1

2

kEk � P

k,jk2F +

�1

µ

kEkk1 = S�1
µ
(P

k,j
)

(7)

where Qk,j
= Xk,j

+

�k,j

µ , and P k,j
= Y k,j �Xk,j

+

⇤k,j

µ .
S(·)(·) is a soft-thresholding operator such that Sp(A)m,n =

sign(Am,n) · max(|Am,n| � p, 0), and J(·)(·) is the sin-
gular value soft-thresholding operator such that Jp(A) =

UASp(⌃A)V
T
A where UA⌃AV

T
A is the singular value decom-

position of A. Then by taking partial derivatives of (6) with
respect to Xk, we obtain

Xk,j+1
= [Gk,j

1 ]

�1Gk,j
2 (8)

where Gk,j
1 = (a1(�

k
)

2
+ a2)w

k
(wk

)

T
+ 2µI , and Gk,j

2 =

a1(�
k
)

2wk
((Lk

)

T � bk1T
) + a2✓

kwk
((L⇤

)

T � bk1T
) +

µ(Y k,j+1 � Ek,j+1
+ Zk,j+1

) + ⇤

k,j � �

k,j .
After {Xk,j+1, Zk,j+1, Ek,j+1}Kk=1 are obtained, the La-

grangian multipliers are updated as follows:

⇤

k,j+1
= ⇤

k,j
+ µ(Y

k,j+1 �X

k,j+1 � E

k,j+1
)

�

k,j+1
= �

k,j
+ µ(X

k,j+1 � Z

k,j+1
) (9)

The ADMM algorithm iteratively updates the optimal vari-
ables and the Lagrangian multipliers in the inner loop of the
whole optimization algorithm until kY k � Xk � Ekk2F <
✏kY kk2F or the maximum iteration number is reached. Then
with {Xk,i, Ek,i}Kk=1 in the i-th step of the outer loop, we
can solve the subproblem with respect to other variables.
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Algorithm 2: Solver for {Xk, Ek}-subproblem
Input: Sample matrix of k-th visual cue Y

k, label vector Lk,
sample number N , other optimal variable with fixed
values wk

, b

k
,�

k
, L

⇤, initial values Xk,i�1
, E

k,i�1

from (i� 1)-th iteration in Algorithm 1
Output: Xk,i

, E

k,i

Initialization: j  1, X

k,j  X

k,i�1
, E

k,j  
E

k,i�1
, Z

k,j  X

k,i�1
,�

k,j  0,⇤k,j  0

while stopping conditions are not satisfied do
Update Z

k,j+1 and E

k,j+1 via (7)
Update X

k,j+1 via (8)
Update ⇤

k,j+1 and �

k,j+1 via (9)
j  j + 1

Check stopping conditions
end
X

k,i  X

k,j
, E

k,i  E

k,j

{wk,bk}-subproblem: With other variables fixed, it is
equivalent to solve the following problem:

min

wk,bk

a1(�
k
)

2

2

k(Xk
)

T
w

k
+ 1bk � L

kk22 (10)

+

↵2✓
k

2

k(Xk
)

T
w

k
+ 1bk � L

⇤k22 +
�2

2

kwkk22

which is an unconstrained quadratic programming problem
and can be solved by some standard optimization techniques,
e.g. conjugate gradient descent method.
L

⇤-subproblem: Similar to the {wk, bk}-subproblem,
some standard optimization techniques can be used to solve
the following unconstrained quadratic programming prob-
lem:

min

L⇤

KX

k=1

↵2✓
k

2

k(Xk
)

T
w

k
+ 1bk � L

⇤k22 (11)

�k-subproblem: Let Rk
=

ak

2 k(Xk
)

Twk
+ 1bk � Lkk22.

Then this subproblem can be rewritten as

min

�k

KX

k=1

(�

k
)

2
R

k

s.t.

KX

k=1

�

k
= 1, �

k � 0, k = 1, . . . ,K (12)

which is a quadratic programming problem with linear con-
straints. Based on its Lagrange function, the solution can be
derived as �k0

=

(Rk0
)�1

PK
k=1(R

k)�1 . We iteratively solve these four
subproblems until the relative change of the valuables in the
adjacent iterations are less than a predefined threshold or the
maximum iteration number is reached. The optimization al-
gorithm for (5) and the solver for {Xk, Ek}-subproblem are
summarized in Algorithm 1 and 2, respectively.

4 Implementation Details
4.1 Target Representation
For the sake of robustness and effectiveness [Zhang et al.,
2013a], we adopt the sparse representation scheme [Mei and

Ling, 2011] for target representation. To further enhance
the adaptivity of the proposed tracker, we augmented the
learned features for each visual cue Ak with the recent ob-
tained important target samples Rk

F to construct a template
set Dk

= [Xk
F , R

k
F ] where Rk

F is updated adaptively simi-
lar to [Mei and Ling, 2011]. Then we can obtain the sparse
representations of the target candidates of each visual cue
uk
i , i = 1, . . . ,m, k = 1, . . . ,K as follows:

u

k
i = argmin

u
ktki �D

k
uk22 + �kuk1 (13)

where � is the tradeoff between the reconstruction error and
the sparseness, tki is the k-th visual cue of the i-th target can-
didate sampled by particle filter in every frame.

4.2 Observation Likelihood for Particle Filtering
The proposed tracking algorithm is developed in the parti-
cle filtering framework. After obtaining the optimal solution
in (13), we derive the observation likelihood based on the
learned features and classifiers as follows:

p(ot|st) / exp(�
KX

k=1

ktk �D

k
u

kk22

�⇢|
KX

k=1

�

k
((w

k
)

T
D

k
u

k
+ b

k
)� 1|) (14)

Here we use the joint decisions based on the reconstruction
error and classification reliability of multiple visual cues to
find out the true state of the target. This is because a good can-
didate should have high confidence to be the label of the target
(+1) while it should also have low reconstruction error with
multiple features. Therefore, both the representation abilities
and discriminabilities of multiple visual cues are jointly ex-
ploited for target state estimation. It should be noted that the
classification reliability is based on the reconstructed samples
from the learned features instead of using the original sam-
ples. This is because the classifiers are estimated using the
learned features, and it is more reliable to perform classifica-
tion in the learned feature space.

5 Experiments
In this section, we report the experimental results of the pro-
posed tracker quantitatively and qualitatively.

5.1 Experimental Setting
In this section, we evaluate the proposed tracker using fif-
teen sequences which covers different kinds of challenging
factors including cluttered background, illumination varia-
tions, partial occlusion, pose variation, etc. We compared
the proposed tracking algorithm with other ten state-of-the-art
trackers which include discriminative multiple feature track-
ers: OAB [Grabner and Bischof, 2006], SemiT [Grabner et
al., 2008], MIL [Babenko et al., 2011], generative track-
ers which explicitly model the noise/outliers: L1T [Mei and
Ling, 2011], MTT [Zhang et al., 2013b], feature learning-
based trackers: IVT [Ross et al., 2008], and other state-
of-the-art methods: CT [Zhang et al., 2012], DFT [Sevilla-
Lara and Learned-Miller, 2012], LOT [Oron et al., 2012],
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Table 1: Center Location Error. The best three results are shown in red, green and blue.
Sequence STRUCK LOT OAB SemiT L1T MTT MIL IVT DFT CT Proposed Method
Crossing 3 36.6 4.6 3.8 62.9 56.5 2.9 2 21.8 3.2 3

Car11 1.1 31.4 2.9 2.5 1.4 1.8 44 8.9 59 119.3 2.7
Car4 8.8 167.4 95.9 152.7 77 22.6 50.2 2.4 62.5 86 9.2

Animal 5.3 64.9 6.8 61.6 24.1 19.1 100.2 182.6 98.3 246.2 7
DavidIndoor 42.3 24.4 22.2 46.8 13.8 32.5 17.3 4.6 42.5 10.9 11.8

Trellis 7.1 48 98.7 69.5 62.3 69 72 120 44.3 42.2 7.5
Skating1 83.2 110.4 43.2 288.3 159.2 293.8 139.6 247.6 174.6 150.9 10.2

Mountain-bike 9 25.1 12.2 240.7 8.5 7.3 72.6 8.1 154.7 213.7 8.1
Subway 4.1 5 113.2 105.6 148.1 166.3 8 131.3 3.2 11.6 4.9
Faceocc 19.3 35.2 25.1 75.1 17.8 21.6 30.1 18.9 23.8 26.3 18.4
Faceocc2 6 15 19.8 50.9 12.9 10.2 13.9 7.8 8.1 18.9 9.3
Walking2 10.7 64.5 28.7 11.9 4.5 3.5 60.2 2 28.5 58.3 7.3

Bolt 399.3 12.1 256.5 363.7 409 409.2 394.1 397.5 367.7 364.2 8.9
Shaking 30.1 82.7 191.6 275 109.7 97.3 24 86.1 26.3 79.4 9.7

DavidOutdoor 106.7 9.7 83.5 237 89.8 341.8 30 51.9 51 88.6 7.2

Table 2: Success Rate. The best three results are shown in red, green and blue.
Sequence STRUCK LOT OAB SemiT L1T MTT MIL IVT DFT CT Proposed Method
Crossing 0.96 0.33 0.84 0.88 0.25 0.23 0.99 0.24 0.66 0.99 0.99

Car11 1 0.56 0.95 0.93 1 1 0.18 0.7 0.34 0 1
Car4 0.41 0.05 0.28 0.25 0.3 0.32 0.28 1 0.26 0.28 0.45

Animal 1 0.06 0.96 0.86 0.72 0.87 0.13 0.03 0.31 0.04 0.99
DavidIndoor 0.24 0.16 0.15 0.21 0.7 0.29 0.25 0.8 0.24 0.44 0.59

Trellis 0.78 0.32 0.18 0.2 0.16 0.2 0.24 0.32 0.52 0.36 0.81
Skating1 0.37 0.28 0.34 0.08 0.13 0.14 0.1 0.08 0.16 0.11 0.28

Mountain-bike 0.86 0.7 0.92 0.29 0.93 0.97 0.58 0.99 0.35 0.17 0.97
Subway 0.94 0.7 0.22 0.38 0.23 0.08 0.81 0.21 0.99 0.8 0.87
Faceocc 1 0.3 0.91 0.71 1 1 0.77 0.98 0.81 0.86 1

Faceocc2 1 0.35 0.76 0.56 0.81 0.9 0.94 0.92 1 0.76 0.99
Walking2 0.46 0.39 0.4 0.38 0.98 0.99 0.39 1 0.39 0.39 0.44

Bolt 0.02 0.55 0.04 0.07 0.01 0.01 0.01 0.01 0.04 0.01 0.75
Shaking 0.17 0.08 0.01 0.01 0.04 0.01 0.23 0.01 0.82 0.04 0.96

DavidOutdoor 0.34 0.95 0.34 0.18 0.46 0.1 0.69 0.64 0.75 0.35 0.93

(a) Trellis (b) Skating1 (c) DavidOutdoor (d) Bolt
STUCK LOT OAB SemiT L1T MTT MIL IVT DFT CT Proposed method

Figure 1: Quantitative frame-by-frame comparison of 11 trackers on 4 Challenging videos in terms of center location error

STRUCK [Hare et al., 2011]. We use the source codes pro-
vided by the authors of these papers and set them to be with
the same initialization parameters for fair comparison.

We empirically set ↵1, ↵2, �1, and �2 to be 0.25, 0.25, 0.1,
0.01, respectively. All ✓k(k = 1, ...,K) are set to be 1. The
training samples Y k

(k = 1, ...,K) consists of the tracking
results of the initial 5 and recent 10 frames, and 10 back-
ground samples in the current frame. We implement the `1
tracker [Mei and Ling, 2011] with multiple features to track
the target in the initial 15 frames to get target samples for fea-

ture learning. We use HOG [Dalal and Triggs, 2005] as global
features and covariance descriptors [Tuzel et al., 2006] with
log-Euclidean metric [Arsigny et al., 2006] as local features
which describe the 2-by-2 non-overlapping parts. So totally
5 kinds of raw visual features are used.

5.2 Experimental results
We adopt two metrics: center location error and success rate
for quantitative comparison. The center location error is the
Euclidean distance between the center of bounding box and
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STUCK LOT OAB SemiT L1T MTT MIL IVT DFT CT Proposed method

Figure 2: Qualitative results on some typical frames including some challenging factors (video name). (a) Illumination (Car4,
Car11, Trellis). (b) Pose (Shaking, Mountain-bike, Skating1). (c) Occlusion (Subway, DavidOutdoor, Faceocc2). (d) Cluttered
background (Crossing, Animal, Bolt)

the ground truth. The VOC overlapping rate is defined as
area(ROIT

T
ROIG)

area(ROIT
S

ROIG) , where ROIT and ROIG are the bound-
ing boxes of the tracker and ground-truth. The tracking result
of each frame is considered as a success if the overlapping
rate is larger than 0.5.

Tables 1 and 2 record the center location error and the suc-
cess rate on the 15 videos, respectively. The results show
that the proposed tracker outperforms other compared track-
ers on most videos in terms of both two evaluation metrics
such that the center location error of the proposed method
rank in top three on 12 videos while the success rate ranks
in top three on 14 videos. Particularly, the proposed method
demonstrates its superior performance in videos which cover
cluttered background (e.g. Trellis, Crossing, Bolt), occlusion
(e.g. DavidOutdoor, Faceocc), and illumination (e.g. Shak-
ing, Skating1). This is because the feature learning is per-
formed by simultaneously removing contaminated features
and imposing discriminability which enables the appearance
model to be less sensitive to target samples contaminated by
occlusion and large illumination variation and more discrimi-
native under cluttered background. Figure 1 shows the quan-
titative frame-by-frame comparison result on some challeng-
ing videos, i.e. Trellis, Skating1, DavidOutdoor and Bolt.
We can see that compared with most of other trackers, the
proposed tracker can maintain a relatively low tracking er-
ror throughout these videos. We can also see that although
the proposed tracker is able to track the target throughout the
videos FaceOcc2 and Walking2 which encounter in-plane ro-
tation and large scale change, respectively, it does not achieve
good quantitative results. This is mainly because the rotation
and scale state of the tracked target is not well modeled by the

particle filter used in the proposed tracker. Since we adopt the
sparse representation scheme for target representation and the
iterative algorithm for optimization, the proposed tracker can
not run in real-time speed. The running time is about 3 frames
per second.

Figure 2 illustrates some qualitative results on some typical
frames including cluttered background and appearance varia-
tions caused by illumination, pose, and occlusion. By prop-
erly fusing the learned features from multiple visual cues, the
proposed tracker is more stable under some large illumina-
tion variations (e.g. Car4#196, Trellis#242). And explicitly
modeling the discriminability of the learned features facili-
tates the resistance to cluttered background (e.g. Shaking#60,
Mountain-bike#172). Removing contaminated/corrupted fea-
ture for appearance modeling enhances the robustness to oc-
clusion (e.g. DavidOutdoor#88, Faceocc2#162).

6 Conclusion

In this paper, we proposed a novel feature learning frame-
work called robust joint discriminative feature learning for
visual tracking with multiple features. By removing the cor-
rupted/contaminated features, introducing the discriminabili-
ties and explicitly modeling the consistency and complemen-
tarity in the discriminabilities of multiple visual cues for fea-
ture learning in an optimal unified framework, the proposed
framework is able to jointly exploit the representation abil-
ities and discriminabilities from multiple visual cues for ap-
pearance modeling with multiple features. Extensive compar-
ison experiments with other ten state-of-the-art trackers show
its effectiveness and superior performance.
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