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Abstract
In this paper, we propose a novel visual tracking
framework that intelligently discovers reliable pat-
terns from a wide range of video to resist drift error
for long-term tracking tasks. First, we design a Dis-
crete Fourier Transform (DFT) based tracker which
is able to exploit a large number of tracked sam-
ples while still ensures real-time performance. Sec-
ond, we propose a clustering method with tempo-
ral constraints to explore and memorize consistent
patterns from previous frames, named as “reliable
memories”. By virtue of this method, our tracker
can utilize uncontaminated information to allevi-
ate drifting issues. Experimental results show that
our tracker performs favorably against other state-
of-the-art methods on benchmark datasets. Further-
more, it is significantly competent in handling drifts
and able to robustly track challenging long videos
over 4000 frames, while most of others lose track
at early frames.

1 Introduction
Visual tracking is one of the fundamental and challeng-

ing problems in computer vision and artificial intelligence.
Though much progress has been achieved in recent years [Yil-
maz et al., 2006; Wu et al., 2013], there are still unsolved
issues due to its complexity on various factors, such as illu-
mination and angle changes, clutter background, shape de-
formation and occlusion. Extensive studies on visual track-
ing employ a tracking-by-detection framework and achieve
promising results by extending existing machine learning
methods (usually discriminative) with online learning man-
ner [Avidan, 2007; Grabner et al., 2008]. To adaptively model
various appearance changes, they deal with a large amount of
samples1 at both detection and updating stages. However, all
of them face the same dilemma: While more samples grant
better accuracy and adaptiveness, they also come with higher
computational cost and risk of drifting. In addition to dis-
criminative methods, [Ross et al., 2008; Mei and Ling, 2011;
Wang and Lu, 2014] utilize generative models with a fixed

1Here “samples” refers to positive (and negative) target patches
for trackers based on generative (or discriminative) models.

learning-rate to account for target appearance changes. The
learning-rate is essentially a trade-off between adaptiveness
and stability. However, even with very small rate, for-
mer samples’ influence on their models still drops expo-
nentially through frames, and drift error may still accumu-
late. In order to alleviate drift error, [Babenko et al., 2011;
Hare et al., 2011; Zhang et al., 2014b] are designed to
exploit hidden structured information around the target re-
gion. Other methods [Collins and Liu, 2003; Avidan, 2007;
Kwon and Lee, 2010] try to avoid drifting by making the
current model a combination of the labeled samples in the
first frame and the learned samples from the tracking process.
However, limited number of samples (e.g., the first frame)
can be regarded as “very confident”, which in turn restrict
their robustness in long-term challenging tasks. Recently,
several methods [Bolme et al., 2010; Danelljan et al., 2014b;
Henriques et al., 2015] employ Discrete Fourier Transform
(DFT) to perform extremely fast detection and achieve high
accuracy with the least computational cost. However, same as
other generative methods, the memory length of their models
is limited by a fixed forgetting rate, and therefore they still
suffer from accumulated drift error in long-term tasks.

A very important observation is that, when the tracked tar-
get moves smoothly, e.g., without severe occlusion or out-
of-plane rotations, its appearances across frames share high
similarity in the feature space (e.g., edge features). Contrar-
ily, when it undergoes drastic movements such as in/out-of-
plane rotations or occlusions, its appearances may not be that
similar to previous ones. Therefore, if we impose a temporal
constraint on clustering these samples, such that only tempo-
rally adjacent ones can be grouped together, the big clusters
with large intra-cluster correlation can indicate the periods
when the target experiences small appearance changes. We
take human memory as an analogy for these clusters, using
reliable memories to represent large clusters that have been
consistently perceived for a long time. In this context, earlier
memories supported by more samples have higher probabil-
ity to be reliable than more recent ones with less support, es-
pecially when drift error accumulates across frames. Thus, a
tracker may recover from drift error with preference to choose
candidates that share high correlation to earlier memories.

Based on these motivations, we propose a novel tracking
framework, which efficiently explores self-correlated appear-
ance clusters across frames, and then preserves reliable mem-
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Figure 1: This figure illustrates the basic philosophy of our method. Here we use Snake (video game) as an analogy for
learning-rate based visual trackers (tracker1 and tracker2): In order to track the target on ideal path, they continuously take
in new samples, and forget old ones due to limited memory length. Contrarily, our tracker discovers and preserves multiple
temporally constrained clusters as memories, covering a much wider range on the whole sequence. As shown above, tracker1,
tracker2 and our tracker depart from the ideal path at time t1 and t2 for drastic target appearance changes. After that, all three
trackers absorb a certain amount of drifted samples. With only limited length of memory, tracker2 can hardly recover from drift
error even if familiar target appearance shows up at t3. Similarly, tracker1 deviates from the ideal path for long and is degraded
by drifted samples from time t1 to t3. Even it happens to be close to the ideal path at t3 by chance, without keeping memory
on similar samples long before, it still drifts from the ideal path with a high probability. On the contrary, when similar target
appearance occurs at t3, our tracker corrects tracking result with consistent and reliable memories, and recovers from drift error.

ories for long-term robust visual tracking. First, we design a
DFT-based visual tracker, which is capable of retrieving good
memories from a vast number of tracked samples for accurate
detection, while still ensures real-time performance. Second,
we propose a novel clustering method with temporal con-
straints to discover distinct and reliable memories from previ-
ous frames to help our tracker resist drift error. This method
harvests the inherent correlation of the streaming data, and is
guaranteed to converge at a fast speed2 by carefully design-
ing upon Integral Image. To the best of our knowledge, our
temporally constrained clustering is novel to vision streaming
data analysis, and its high converging speed and promising
performance show great potential in online streaming prob-
lems. Particularly, it is very competent in discovering clusters
(i.e., reliable memories) consisted of uncontaminated sequen-
tial samples that are tracked before, and grants our tracker
remarkable ability to resist drift error. Experimental results
show that our tracker is considerably competent in handling
drift error and performs favorably against other state-of-the-
art methods on benchmark datasets. Further, it can robustly
track challenging long videos with over 4000 frames, while
most of the others lose track at early frames.

2 Circulant Structure based Visual Tracking
Recent works [Bolme et al., 2010; Henriques et al., 2012;

Danelljan et al., 2014b; Henriques et al., 2015] achieve the
state-of-the-art tracking accuracy with the least computa-
tional cost by exploiting the inherent relationship between
DFT and the circulant structure of dense sampling on the tar-
get region. In this section, we briefly introduce these methods
that are highly related to our work.

Suppose x 2 RL is a vector of an image patch with size
M⇥N , centered at the target (L = M⇥N ), and xl denotes a

2Its computational complexity is O(n log n), which costs less
than 30 ms for n = 1000 frames.

2D circular shift from x by m⇥n (l is an index for all M⇥N
possible shifts, 1  l  L). y 2 RL is a vector of a designed
response map of size M ⇥N with a Gaussian pulse centered
at the target, too. (x,x0

) =< '(x),'(x0
) > is a positive

definite kernel function defined by mapping '(x) : RL !
RD. We aim to find a linear classifier f(xl) = !

T'(xl) +

b that minimizes the Regularized Least Square (RLS) cost
function:

min "(!) = min

!

X

l

||yl � f(xl)||2 + �||f ||2. (1)

The first term is an empirical risk to minimize the difference
between the designed gaussian response y and the mapping
x ! fL(x) 2 RL, where fl(x) = f(xl). The second term
||f || is a regularization term. It is denoted by ||f || since it
lies in the Kernel Hilbert Space reproduced by .

By Representer Theorem [Schölkopf et al., 2001], cost
"(!) can be minimized by a linear combination of in-
puts: ˆ

! =

P
l

↵l'(xl). By defining kernel matrix K 2

RL⇥L,K(l, l0) = (xl,xl0), a much simpler form for Eq. 1
can be derived as:
minF (↵) = min

↵

(y �K↵)

T
(y �K↵) + �↵TK↵. (2)

This function is convex and differentiable, and has a closed
form minimizer ˆ

↵ = (K+�I)�1
y. As proved in [Henriques

et al., 2012], if the kernel  is unitarily invariant, its kernel
matrix K is a circulant matrix, that K = C(k), where vector
k 2 RL, ki = (x, P i

x). P i is a permutation matrix that
shifts vectors by i-th element(s), C(k) is a circulant matrix
from k by concatenating all L possible cyclic shifts of k. and
ˆ

↵ can be obtained without inverting (K+ �I) by:

ˆ

↵ = F�1
(

F (y)

F (k) + �
), (3)

where F and F�1 are DFT and its inverse, and is an
n by 1 vector with all entries to be 1. Division in Eq. 3
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is in Fourier domain, and is thus performed element-wise.
In practice, there is no need to compute ˆ

↵ from ˆA, since
fast detection can be performed on given image patch z

by ˆ

y = F�1
(F (

˜

k) � F (

ˆ

↵)), where ˜

k 2 RL with
˜kl = (z, ˆxl). ˆ

x is the learned target appearance. Pulse
peak in ˆ

y shows the target translation in input image z.
Detailed derivation is in [Gray, 2005; Rifkin et al., 2003;
Henriques et al., 2012].

Though recent methods MOSSE [Bolme et al., 2010],
CSK [Henriques et al., 2012] and ACT [Danelljan et al.,
2014b], have different configurations of kernel functions and
features (e.g., dot product kernel  leads to MOSSE, and RBF
kernel leads to the latter two), all of them employ a simple lin-
ear combination to learn target appearance model {ˆxp, ˆAp}
at current frame p by

ˆQp
= (1� �) ˆQp�1

+ �Qp, Q = {x,A,AN,D}. (4)

While CSK updates its classifier coefficients ˆAp by Eq. 4 di-
rectly, MOSSE and ACT update the numerator ˆAp

N and de-
nominator ˆAp

D of coefficients ˆAp separately for stability pur-
pose. The learning-rate � is a trade-off parameter between
long memory and model adaptiveness. After expanding Eq. 4
we obtain:

ˆQp
=

pX

j=1

�(1� �)p�jQj , Q = {x,A,AN,D}. (5)

This shows that, all three methods have an exponentially
decreasing pattern of memory: Though the learning-rate �
is usually small, e.g., � = 0.1, the impact of a sample
{xj ,Aj} at a certain frame j is negligible after 100 frames
(�(1 � �)100  10

�8). In other words, these learning-rate
based trackers are unable to recourse to samples accurately
tracked long before to help resist accumulated drift error.

3 Proposed Method
Aside from the convolution based visual trackers men-

tioned above, many other trackers [Jepson et al., 2003;
Nummiaro et al., 2003; Ross et al., 2008; Babenko et al.,
2011] also update their models ˆQ in similar form as ˆQp

=

(1��) ˆQp�1
+�Qp with a learning-rate parameter � 2 (0, 1]

and suffers from the drifting problem.
We observe that smooth movements usually offer con-

sistent appearance cues, which can be modelled as reliable
memories to recover the tracker from drifting issues caused
by drastic appearance change (illustrated in Fig. 1). In this
section, we first introduce our novel framework that is capa-
ble of handling vast number of samples while still ensures fast
detection speed. Then we elaborate the details of intelligently
arranging past samples into distinct and reliable clusters that
grant our tracker resistance to drift error.

3.1 The Circulant Tracker over Vast Samples
Given new positive sample x

p at frame p, we aim to build
an adaptive model {ˆxp, ˆAp} for fast detection in the coming
frame p+ 1 with sample image z by

y

p+1
= F�1

(

ˆAp � F (

˜

k

p
)), (6)

where y

p+1 is the response map which shows the estimated
translation of the target position, vector ˜

k

p 2 RL, with its
l-th entry ˜

k

p
l := (z, ˆxp

l ). As we advocated, this model
{ˆxp, ˆAp} should be built upon vast samples for robustness
and adaptiveness. Thus, ˆxp should have the form:

ˆ

x

p
= (1� �)

p�1X

j=1

�j
x

j
+ �xp, � 2 (0, 1],

p�1X

j=1

�j
= 1.

(7)
As shown, the adaptive learned appearance ˆ

x

p is a combina-
tion of past p samples with concentration on x

p of a certain
proportion �. Coefficients {�j}p�1

j=1 represent the correlation
between the current estimated appearance ˆ

x

p and the past
appearances {xj}p�1

j=1 . A proper choice of {�j}p�1
j=1 should

make the model: 1) adaptive to new appearance changes, and
2) consistent with past appearances to avoid risk of drifting.
In this paper, we argue that the set {�j}p�1

j=1 with preference
to previous reliable memories can provide our tracker with
considerable robustness to resist drift error. We discuss how
to find these reliable memories in Sec. 3.2, and their connec-
tions with {�j}p�1

j=1 are introduced in Sec. 3.3.
Now, we focus on finding a set of classifier coefficients ↵

that fit both the learned appearance ˆ

x

p for consistency and
the current appearance x

p for adaptiveness. Based on Eq. 1
and Eq. 2, we derive the following cost function to minimize:

F p
(↵) =(1� �)

h
(y � ˆKp

↵)

T
(y � ˆKp

↵) + �↵T
ˆKp

↵

i

+ �
⇥
(y �Kp

↵)

T
(y �Kp

↵) + �↵TKp
↵

⇤
,

(8)

where the kernel matrix ˆKp
= C(

ˆ

k

p
), and vector entry

ˆkpl = (ˆxp, ˆxp
l ) (similar for Kp and k

p). � is a balance
factor between the memory consistency and model adaptive-
ness. By setting the derivative rF p

↵

= 0, the accurate solu-
tion ˆ

↵

p will have a very complicated form. We observe that
the adaptively learned appearance ˆ

x

p should be very close to
the current one xp, since it is a linear combination of close ap-
pearances in the past {xj}p�1

j=1 and the current appearance xp,
as shown in Eq. 7. Notice both kernel matrix Kp and ˆKp (and
their linear combination with �I) is positive semidefinite. By
relaxing Eq. 8 with ˆKp ' (1��) ˆKp

+�Kp ' Kp, we obtain
an approximate minimizer ˆ

↵

p in a very simple form:

ˆ

↵

p '
h
C((1� �)ˆkp

+ �kp
+ ��)

i�1
y

= F�1
(

F (y)

(1� �)F (

ˆ

k

p
) + �F (k

p
) + �

).
(9)

� is an L-dimensional vector in the form � = [1, 0, ..., 0]T,
with property that C(�) = I and F (�) = ( is an
L-dimension vector of ones). Note that in the bracket of
F�1

(·), division is performed element-wise.
As long as we find a proper set of coefficients {�j}p�1

j=1 ,
we can build up our detection model {ˆxp, ˆAp} by Eq. 7 and
Eq. 9. In the next frame p+1, fast detection can be performed
by Eq. 6 with this learned model.
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Distance Matrix and Clustering Result Six temporally constrained clusters with distinct appearances

Figure 2: Left: the distance matrix D as described in Alg. 1. Right: Six representative clusters with corresponding colored
bounding boxes are shown for intuitive understanding. The image patches in the big bounding boxes is an average appearance
of a certain cluster (memory), while the small patches are samples chosen evenly on the temporal domain from each cluster.

Algorithm 1 Temporal Constrained Clustering Algorithm
Input: Integral image J of Distance Matrix D 2 Rp⇥p,
s.t. Dij = ||�(xi

)� �(xj
)||2, 8i, j = 1, ..., p;

M = {mi}pi=1, mi = Pi
�, 8i = 1, ..., p;

Pi is a shifting matrix and � = [1, 0, ..., 0]T;
Stoping factor ⇢, and N = |M|+ 1.
Output: ˆM = {mi}Hi=1.
while (|M| < N) do
N = |M|;
for h = 1 : 2 : |M| do do

Evaluate ⌧(sh, sh+1
) = C(sh

T
sh+1) � (C(sh) +

C(sh+1
)) using J.

if ⌧(C(sh, sh+1
))  ⇢(C(sh) + C(sh+1

)) then
mh = mh +mh+1, remove mh+1 from M;

end if
end for

end while
ˆM = M.

3.2 Clustering with Temporal Constraints

In this subsection, we introduce our temporally constrained
clustering, which learns distinct and reliable memories from
the incoming samples in a very fast manner. Together with the
ranked memories (Sec. 3.3), our tracker is robust to inaccurate
tracking result, and is able to recover from drift error.

Suppose a set of positive samples are given at frame p: S =

{xi}pi=1, and we would like to divide them into H subsets
{sh}Hh=1 with indexing vector set M = {m1, ...,mH} 2
{0, 1}p, such that sh := {xi

: mh
i = 1, 8i = 1, ..., p}. Our

objective are as follows: 1) Samples in each subset sh are
highly correlated; 2) Samples from different subsets have rel-
atively large appearance difference, so a linear combination
of them is vague or even ambiguous to describe the tracked
target (e.g., samples from different viewpoints of the target).

Thus, it can be modeled as a very general clustering problem:

min

M

X

h

C(sh) + ⌘r(|M|),

s.t. hmi,mji = 0, 8mi,mj 2 M, i 6= j;
X

h

m

h
= p⇥1.

(10)

Function C(sh) measures the average sample distance in fea-
ture space �(·) within subset s

h, in the form: C(sh) =

( p⇥1
T ⇥m

h
)

�1
P

8xi,xj2s

h,i<j ||�(xi
) � �(xj

)||2. Reg-
ularizer r(|M|) is a function based on the number of subsets
|M|, and ⌘ is a balance factor. This is a discrete optimiza-
tion problem and known as NP-hard. By fixing the number of
subsets |M| to a certain constant k, k-means clustering can
converge to a local optimal.

However, during the process of visual tracking, we do not
know the sufficient number of clusters. While too many clus-
ters cause problem of over-fitting, too few clusters may lead
to ambiguity. More importantly, as long as we allow random
combinations of samples during clustering, any cluster has a
risk of taking in contaminated samples with drift error, even
wrongly labeled samples, which in turn will degrade the per-
formance of models built upon them.

One important observation is that, target appearances
closed to each other in the temporal domain may form a very
distinguished and consistent pattern, i.e., reliable memories.
E.g,, if a well-tracked target moves around without big rota-
tion or large change in angle for a period of time, its edge-
based feature would have much higher similarity compared
with feature under different angles. In order to discover these
memories, we add temporal constraints on Eq. 10:

m

h 2 T, 8h = 1, ..., H;

T := {t 2 {0, 1}p : all ti = 1 are concatenated.}.
(11)

Then Eq. 10 with Eq. 11 becomes segmenting S into subsets
{sh}Hh=1, that each subset only contains timely continuous
samples sh = {xi}vi=u (u, v are certain frame numbers).
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Still, the constraint of this new problem is discrete and the
global optimal can hardly be reached. We carefully designed
a greedy algorithm, as shown in Alg. 1, which starts from
a trivial status of p subsets. It tries to reduce the regular-
izer r(|M|) in the object function of Eq. 10 by combining
temporally adjacent subsets s

h and s

h+1, while penalizing
the increase of the average sample distance ⌧(sh, sh+1

) :=

C(sh
T
sh+1)� (C(sh) + C(sh+1

)).
With an intelligent use of Integral Image [Viola and Jones,

2001], the evaluation operation in each combining step in
Alg. 1 only takes O(1) running time with integral image J ,
and each iteration takes linear O(p) operations. The whole
algorithm processes in a bottom-up binary tree structure, and
runs at O(p log p) in the worst case, and runs less than 30ms
on a desktop for over 1000 samples. Designed experiments
will show that the proposed algorithm is very competent in
finding distinguished appearance clusters (reliable memories)
for our tracker to learn.

3.3 The Workflow of Our Tracking Framework
Two feature pools are employed in our framework, one for

coming positive samples across frames, and the second ( de-
noted by U) for the learned memories. Every memory u 2 U
contains a certain number of samples {xu

j }N
u

j=1 and a confi-
dence c

u

:
c
u

= e�(�1B
u��2N

u), (12)
where Nu is the number of samples in memory u and Bu

is the beginning frame number of memory u. This memory
confidence is consistent with our hypothesis that earlier mem-
ories with more samples are more stable and less likely to be
affected by accumulated drift error. For each frame, we first
detect the object using Eq. 6 to estimate the translation of the
target, and then utilize this new sample to update our appear-
ance model {ˆxp, ˆAp} by Eq. 7 and Eq. 9.

The correlation coefficient {�j}p�1
j=1 is then calculated by:

�j
= ⇥

�1
exp{�

X

j2û

||�(xp
)� �(xj

)||2}, (13)

where scalar ⇥ is a normalization term that assuresPp�1
j=1 �

j
= 1, and ˆ

u is the most similar memory to the cur-
rent learned appearance ˆ

x

p in feature space �(·).
To update memories, we use Alg. 1 to cluster positive sam-

ples in the first feature pool into ‘memories’, and import all
except the last one into U. Note when |U| reaches its thresh-
old, memories with the lowest confidence would be aban-
doned immediately.

4 Experiments
Our framework is implemented in Matlab with running

speed ranges from 12fps to 20fps, on a desktop with an Intel
Xeon(R) 3.5GHz CPU, a Tesla K40c video card and 32GB
RAM. The adaptiveness ratio � is empirically set as 0.15
through all experiments. Stoping factor ⇢ is decided adap-
tively as 1.2 times the average covariance of the samples at
the first 40 frames on each video. HOG [Dalal and Triggs,
2005] is chosen as the feature �(·). The maximum number of
memories |U| is set as 10 and max(Nu

) is set to 100.

4.1 Evaluation of Temporally Constrained
Clustering

In order to validate our assumption that temporally con-
strained clustering on sequentially tracked samples forms re-
liable and recognizable patterns, we perform Alg. 1 on the
off-line positive samples based on our tracking results. Note
that our algorithm gives exactly the same result in the on-
line/offline manner, since previously clustered samples have
no effect on clustering the unfixed sample afterwards. Due
to space limitation, here we present illustrative results from
sequences Sylvester in Fig. 2. As shown, the target expe-
riences illumination variation, in-plane and out-of-plane ro-
tation through a long term of 1345 frames. The left part
shows the distance matrix D as described in Alg. 1, that
Dij = ||�(xi

) � �(xj
)||2, 8i, j = 1, ..., p. Pixel Dij

with dark blue (light yellow) implies small (large) distance
between sample x

i and x

j in feature space �(·). Different
colored diagonal bounding boxes represent different tempo-
rally constrained clusters. The right part shows six represen-
tative clusters, corresponding to colored bounding boxes on
the matrix. Memory #1 and memory #8 are two large clus-
ters containing large amount of samples with high correlated
appearance (blue color). Memory #11 represents a cluster
with only 16 samples. Its late emergence and limited number
of samples result in a very low confidence c

u

and thus it is
not likely to replace any existing reliable memories.

4.2 Boosting by Deep CNN
Our tracker’s inherent requirement to efficiently search fa-

miliar patterns (memories) at a global scale of the frame
overlaps with object detection task [Girshick, 2015; He et
al., 2015]. Recently, with the fast development of convo-
lutional neural networks (CNN) [Krizhevsky et al., 2012;
Zeiler and Fergus, 2014], Faster-RCNN [Ren et al., 2015]
achieves � 5 fps detection speed by using shared convolu-
tional layers for both the object proposal and detection. To
equip our tracker with a global vision for its reliable mem-
ories, we fine-tune the FC-layers of a Faster-RCNN detec-
tor (ZF-Net) once we have learned sufficient memories in a
video, which helps our tracker resolve local minimum issues
caused by limited effective detection range. Though only sup-
plied with coarse detections with a risk of false alarms, our
tracker can start from a local region close to the target and
then ensure accurate and smooth tracking results. Note that
we only tune the CNN once, with around 150 seconds running
time on one Tesla K40c for 3,000 iterations. When the track-
ing task is long, e.g., more than 3,000 frames, the average fps
is larger than 15, which is certainly worthy for significant im-
provement in robustness. In the following stage, we perform
CNN detection every 5 frames, each taking less than 0.1s.

4.3 Quantitative Evaluation
We first evaluate our method on 50 challenging sequences

from OTB-2013 [Wu et al., 2013] against 12 state-of-the-
art methods: ACT [Nummiaro et al., 2003], ASLA [Jia et
al., 2012], CXT [Dinh et al., 2011], DSST [Danelljan et al.,
2014a], KCF [Henriques et al., 2015], LOT [Oron et al.,
2012], MEEM [Zhang et al., 2014a], SCM [Zhong et al.,
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Success plots of OPE - out-of-plane rotation (39)
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Figure 3: Tracking result comparison on 50 sequences from the OTB-2013 dataset. Our tracker is represented by RMT and
achieved the top performance on success plots evaluation standard. MEEM, TGPR, DSST and KCF also have close performance
to our tracker. Only top-10 out of 12 tracker results are shown for clearness. Note that the percentage of successful plots is
shown after each method’s name.

Sequence / Method Frame No. MOSSE ACT MEEM DSST KCF DSST (CNN) KCF (CNN) TLD RMT

Motocross 2,035 295.9 182.5 33.4 67.5 181.5 25.2 161.2 44.7 21.5
Volkswagon 4,000 60.6 41.3 51.1 122.7 114.1 21.3 25.3 15.9 12.3
Carchase 4,000 125.0 98.0 38.1 132.6 129.4 131.4 85.0 34.4 34.1
Panda 3,000 64.8 64.5 97.9 71.4 83.3 80.0 87.6 27.1 23.9

Overall 13,035 118.5 122.3 55.1 86.1 118.5 69.2 79.2 28.7 23.1

Table 1: Tracking result comparison based on average errors of center location in pixels (the smaller the better) on four long-term videos
over 13, 000 frames. Average performances are weighted by the frame number for fairness.

2012], Struct [Hare et al., 2011], TGPR [Gao et al., 2014],
TLD [Kalal et al., 2012] VTD [Kwon and Lee, 2010]. We
employed the released code from the public resource (e.g.,
OTB-2013) or the released version by the authors, and all
parameters are fixed for each trackers during testing. Fig. 3
shows the success plots on the whole dataset with the one pass
evaluation (OPE) standard. Our tracker, represented as RMT
(Reliable Memory Tracker), obtains the best performance,
while MEEM, TGPR, KCF and DSST also provide compet-
itive results. It is worth noting that TGPR’s idea of building
one tracker on auxiliary (very early) samples and MEEM’s
idea of using tracker’s snapshot can be interpreted as making
use of early formed memory patterns, which is very relevant
to our method. Our tracker outperforms the others on most
challenging scenarios, e.g., occlusion, out-of-plane rotation,
out of view, fast motion, as illustrated by Fig. 3. The main
reason is that our tracker possesses amount of very reliable
memories and a global vision that help it regain focus on the
target after drastic appearance changes.

In order to explore the robustness of our tracker, and
validate its resistance to drift error on long-term chal-
lenging tasks, we run our tracker on four long sequences
from [Kalal et al., 2012], over 13,000 frames in total. We
have also evaluated the convolution filter based methods that
are highly related to our method: MOSSE [Bolme et al.,
2010], ACT [Nummiaro et al., 2003] and DSST [Danelljan
et al., 2014a], KCF [Henriques et al., 2015], together with
MEEM [Zhang et al., 2014a] and a detector-based method
TLD [Kalal et al., 2012] (shown in Tab. 1). In order to
demonstrate the effectiveness of our “reliable memories” in
resisting uncontaminated samples for CNN, we also pro-
vide the comparison results with the CNN-boosted DSST and
KCF. While MOSSE often loses track at very early frames,
KCF, ACT and DSST are able to track the target stably for

hundreds of frames, but usually cannot maintain their fo-
cus after 600 frames. MEEM performs favorably on video
Motocross for over 1700 frames with its impressive robust-
ness, but it is unadaptable to scale changes and still leads to
inaccurate results. The improvement of KCF and DSST from
CNN is still limited, since CNN trained with contaminated
samples could lead to inaccuracy (even false alarm), unless
these trackers can exclude them from CNN training process
as ours do. Our tracker and TLD performs over the other
trackers on all videos since both of them have a global vision
to search for the target. However, based on an online ran-
dom forest model, TLD takes in false positive samples slowly,
which finally leads to false detections and inaccurate tracking
results. Contrarily, guided by the CNN detector trained with
our reliable memories, our tracker is only affected by very
limited number of false detections. It robustly tracks the tar-
get across all frames, and gives accurate target location and
target scale until the last frame for all four videos3.

5 Conclusion
In this paper, we propose a novel tracking framework,

which explores temporally correlated appearance clusters
across tracked samples, and then preserves reliable memories
for robust visual tracking. A novel clustering method with
temporal constraints is carefully designed to help our tracker
retrieve good memories from a vast number of samples for ac-
curate detection, while still ensures its real-time performance.
Experiment shows that our tracker performs favorably against
other state-of-the-art methods, with outstanding ability to re-
cover from drift error in long-term tracking tasks.

3A video clip with more detailed illustration can be found at
https://youtu.be/wtZAGzFDjnM.
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