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Abstract
Attribute based object recognition performs object
recognition using the semantic properties of the ob-
ject. Unlike the existing approaches that treat at-
tributes as a middle level representation and re-
quire to estimate the attributes during testing, we
propose to incorporate the hidden attributes, which
are the attributes used only during training to im-
prove model learning and are not needed during
testing. To achieve this goal, we develop two dif-
ferent approaches to incorporate hidden attributes.
The first approach utilizes hidden attributes as ad-
ditional information to improve the object classifi-
cation model. The second approach further exploits
the semantic relationships between the objects and
the hidden attributes. Experiments on benchmark
data sets demonstrate that both approaches can ef-
fectively improve the learning of the object clas-
sifiers over the baseline models that do not use
attributes, and their combination reaches the best
performance. Experiments also show that the pro-
posed approaches outperform both state of the art
methods that use attributes as middle level repre-
sentation and the approaches that learn the classi-
fiers with hidden information.

1 Introduction
Object recognition in computer vision generally refers to
the recognition of object images into different categories
such as “bird”, “aeroplane”, “bicycle”, etc. In recent years,
computer vision researchers explore to assign a list of at-
tributes [Farhadi et al., 2009] to the object images. These
attributes [Ferrari and Zisserman, 2007] are manually speci-
fied and semantically meaningful descriptions about the ob-
ject shape (e.g. “is cylindrical”), parts (e.g. “has head”, “has
leg”), materials (e.g. “made of wood”), color (e.g. “is red”),
etc. The approaches [Farhadi et al., 2009; Lampert et al.,
2009; Wang and Mori, 2010; Parikh and Grauman, 2011a;
Kovashka et al., 2011]) that utilize the assigned attributes to
benefit object recognition can be called attribute-based object
recognition.

Most existing attribute-based object recognition ap-
proaches (e.g. [Farhadi et al., 2009; Lampert et al., 2009;

Bird 
“has beak” 
“has wing” 
“feather” 
“has head” 
“has torso” 

Cow 
“has ear” 
“has snout” 
“furry” 
“has head” 
“has torso” 

Figure 1: An example of attributes for two animals, where
the bird has “beak”, “wing” and is covered with “feather”,
and the cow has “ear”, “snout” and is “furry”.

Wang and Mori, 2010; Parikh and Grauman, 2011a; 2011b;
Kovashka et al., 2011]) utilize attributes as an intermediate
layer in the classifiers cascade. In the testing phase of these
approaches, attributes are first predicted by the pre-trained
attribute classifiers. And, these predicted attributes are fur-
ther utilized by the attribute based object classifiers as mid-
level input for object recognition. Typical applications of
these approaches include zero-shot transfer learning [Lam-
pert et al., 2009], description of unfamiliar objects [Farhadi
et al., 2009], and improving the object classification [Wang
and Mori, 2010], event recognition [Wang and Ji, 2012], and
phone recognition [Zhao et al., 2015].

However, due to tremendous variations in vision applica-
tions, attribute recognition itself is challenging. Moreover,
poor quality attribute measurements in the middle level would
adversely affect the subsequent object classification. This
dilemma motivates us to avoid utilizing attributes as middle
level representation, and to explore incorporating attributes
in a different way, where we have access to ground truth at-
tributes during training, but do not utilize the predicted at-
tributes explicitly or implicitly for final stage recognition dur-
ing testing. In this paper, we call these attributes that are
available only during training as hidden attributes. We hope
the hidden attributes utilized in our approach can still improve
the object recognition.

This hidden attribute setting lies in the “learning with
hidden information” (LHI) paradigm [Vapnik and Vashist,
2009]. In this paradigm, the hidden information a are uti-
lized only during training. They help learn a better classi-
fier (e.g. linear classifier y = sign(w>

x)) from feature x

to label y that can outperform the traditional classifier (e.g.
y = sign(w>

0 x)) learned without hidden information. Hence,
in this paradigm, the hidden information serves only for the
purpose of obtaining a better parameter vector w that is in the
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same dimension as the original parameter vector w0. Com-
pared to the traditional mid-level based attribute approaches,
this paradigm can avoid the propagation of erroneous at-
tribute predictions to the subsequent object classification.

In this paper, we propose two novel formulations to in-
corporate hidden attributes during model learning. Our first
approach (xLR+) utilizes hidden attributes as additional in-
formation to improve the target model that predicts object
label y from image feature x. In the second approach (LR-
Rel+), we further incorporate the semantic relationships be-
tween the objects and the hidden attributes. Finally,we further
combine both formulations as regularization terms into one
unified learning objective (xLR-Rel+) that receives the best
performance.

In summary, the major contributions of this work include:
1) we propose to incorporate hidden attributes for object clas-
sification; 2) we propose the formulations including xLR+,
LR-Rel+ and xLR-Rel+ that use hidden attributes as extra in-
formation and exploit their relationships with objects.

2 Related Work
Utilizing attributes to enhance the object recognition perfor-
mance has drawn great attention in recent years. Work in this
area can be divided into sequential attribute and object recog-
nition, and joint attribute and object recognition. The sequen-
tial approaches [Farhadi et al., 2009; Lampert et al., 2009;
Parikh and Grauman, 2011a; 2011b; Akata et al., 2013;
Wang and Ji, 2014] utilize attributes as an intermediate rep-
resentation between low-level image features and high-level
categories. [Farhadi et al., 2009] use linear classifiers like
SVM to predict attributes from shared image features, and
then use the predicted attributes for object categorization.
However, the sequential approaches still require to train at-
tribute classifiers with training data, and then predict the at-
tribute labels or infer attribute scores during testing. The per-
formance of these methods is therefore subject to the perfor-
mance of the attribute classifiers. To address this problem,
the joint approach performs attribute and object recognition
simultaneously in order to exploit their interdependencies.
Wang and Ji [Wang and Ji, 2013] utilize a Bayesian network
(BN) with learned structure to improve both attribute predic-
tion and object recognition with captured attribute relation-
ships. Also, the multi-task learning approach in [Hwang et
al., 2011] simultaneously learns multiple classifiers for object
recognition and attribute prediction tasks based on the shared
feature assumption. The joint approaches need learn attribute
and object classifiers simultaneously and they are therefore
computationally complex. In contrast, our approach focuses
only on the object recognition task.

Recently, [Wang et al., 2014] propose to incorporate hid-
den information for learning logistic regression classifier
LR+. While its formulation looks similar to the first formu-
lation in this paper, our work significantly differs from the
work in [Wang et al., 2014]. The work in [Wang et al., 2014]
studies learning LR+ using hidden information as extra infor-
mation. Comparatively, our work focuses on object recogni-
tion with hidden attributes. We incorporate hidden attributes
as extra information in xLR+, exploit the object-attribute re-

lationships in LR-Rel+, and further propose a combined for-
mulation xLR-Rel+. Both LR-Rel+ and xLR-Rel+ are com-
pletely different from the LR+ in [Wang et al., 2014]. Our
xLR+, LR-Rel+, and xLR-Rel+ approaches all outperform
the LR+ approach by [Wang et al., 2014] in the experiments.

3 Object Recognition With Hidden Attributes
We first define both the traditional supervised object recog-
nition and the the proposed object recognition with hidden
attributes.

Traditional supervised object recognition can generally be
formulated as: given a set of N labeled training samples rep-
resented by image feature vector set X = {x1, · · · , xN} ⇢
X ⇢ Rd, and the object label set Y = {y1, · · · , yN} 2 Y
with Y = {�1, 1} for binary cases, learn a mapping function
f : X 7�! R with parameter w from the function space F of
all possible functions (e.g. all linear functions f(x) = w

>
x)

to predict the object label y from the input image feature x as
accurate as possible. Generally, the object classifier param-
eter w can be learned by minimizing the objective function
shown in Equation 1, where l(yi, xi;w) is the loss function
and ||w||22 is a regularization term to avoid overfitting.

min

w

N
X

i=1

l(yi, xi;w) +

�

2

kwk22 (1)

Object recognition with hidden attributes differs from the
traditional supervised object recognition problem in that ad-
ditional hidden information vectors (i.e., the ground truth at-
tributes in this paper) A = {a1, · · · , aN} ⇢ A are also pro-
vided for each training sample, where each M dimensional
vector ai corresponds to the training sample pair (xi, yi). Ob-
ject recognition with hidden attributes can hence be stated
as: given N labeled training triplets {(xi, ai, yi)

N
i=1}, learn a

mapping function f

0
: X 7�! R, with parameters w

0 from
the same function space F of all possible functions (e.g. all
linear functions f(x) = w

>
x) to predict object label y from

input image feature x as accurate as possible.
Following this definition, the new mapping function f

0
:

X 7�! R does not depend on hidden attribute space A, but
hidden attributes will influence parameter w0 in training. We
expect w0 to be better than w in predicting y from x.

3.1 Hidden Attributes as Extra Information
In the object recognition with hidden attribute setting, hidden
attributes can be utilized as additional information to learn a
mapping function g : A 7�! R with parameter w⇤ for the pre-
diction of class label y. In this paper, we call the g mapping
function with parameter w

⇤ as the hypothetic model. And
also, the f function f : X 7�! R could be called as the target
model.

As shown in Figure 2, during training, the hypothetic
model and target model share the same object class labels
{yi}i=1,...,N , but the information input for the hypothetic
model is {ai}i=1,...,N which is the ground truth attributes.

Since both the image feature x and the hidden attributes a
describe the object for each training sample, our basic idea
in this formulation is to link the hypothetical model and the
target model by regularizing the prediction score f(x;w) of
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Figure 2: The hypothetical model and the target model for
object recognition with hidden attributes. The hypothetical
model is learned with attributes, and it helps improve the
learning of the target model.

the target model to be close to the prediction score g(a;w

⇤
)

of the hypothetical model. We denote this regularization as
the dissimilarity regularization.

Suppose the loss functions of the target model and hypo-
thetic model for the ith training sample to be represented by
l(yi, xi;w) and l(yi, ai;w

⇤
) respectively. Under the dissim-

ilarity regularization, we would learn the parameters w and
w

⇤ of two models simultaneously with the dissimilarity reg-
ularization term, and the two parameter regularization terms
kwk22 and kw⇤k22 incorporated as shown in Equation 2:

min

w,w⇤

N
X

i=1

l(yi, xi;w) + ⌘

N
X

i=1

l(yi, ai;w
⇤
)

+

�

2

N
X

i=1

{f(xi;w)� g(ai;w
⇤
)}2 + �1

2

kwk22 +
�2

2

kw⇤k22 (2)

where � is a positive coefficient for the dissimilarity regular-
ization term, �1 and �2 are the positive coefficients for the
corresponding parameter regularization terms, and ⌘ is the
positive weight on the loss function of the hypothetic model.
With this objective function, our general approach would not
only minimize the loss functions for supervised learning of
both models, but also minimize the dissimilarity between the
predictions of two models on the original feature space and
the hidden information space respectively. The regularization
term effectively ties the learning of the target classifier to that
of the hypothetical model such that the hidden attributes a can
influence the parameters of the target model.

The general approach described in Equation 2 incorporates
a squared difference term which is similar to the squared
difference terms in co-regularization based multi-view semi-
supervised learning (SSL) approaches [Krishnapuram et al.,
2005; Sindhwani and Rosenberg, 2008; Sindhwani et al.,
2005; Farquhar et al., 2005; Belkin et al., 2006], which
are also regarded as the “co-training” approaches [Blum and
Mitchell, 1998; Zhou and Li, 2010]. However, different from
the SSL setting which focuses on better utilizing the addi-
tional unlabeled training data, the scenario of classification
with hidden information assumes that hidden information is
only available during training but not available during testing.
We want to use such information to improve the target object
classifier built on primary features. Moreover, the squared
difference term in co-regularization SSL approaches are im-
posed on the unlabeled samples while it is imposed on labeled
samples in our proposed approach.

The proposed method can be applied to different types of
linear classifiers such as logistic regression (LR) and sup-
port vector machine (SVM) by selecting different loss func-
tions. For instance, if we use hinge loss as l(yi, xi;w) =

max(0, 1 � yiw
>
xi), the objective function in Equation 2

would apply our additional information modeling to the SVM
learning. Since the hinge loss is still convex, subgradient
based optimization can be used to solve the objective. In this
paper, we apply the it to the LR model. The loss function of
LR model is:

l(yi, xi;w) , � ln p(yi|xi;w) = ln

⇣

1 + exp(�yiw
>
xi)

⌘

where yi 2 {�1, 1}. Since the LR loss function term is con-
vex and differentiable, gradient based methods can be applied
to solve the objective function.

For linear models, the dissimilarity regularization term in
Equation 2 can be written as:

�

2

N
X

i=1

{f(xi;w)� g(ai;w
⇤
)}2

=

�

2

(Xw � Aw

⇤
)

>
(Xw � Aw

⇤
) , �

2

w>
Cw (3)

where X = [x1, x2, . . . , xN ]

> denotes the training data ma-
trix, A = [a1, a2, . . . , aN ]

> denotes the hidden information
matrix, C = [X,�A]

>
[X,�A], and w = [w

>
, w

⇤>
]

>.
Since w>

Cw = {[X,�A]w}T {[X,�A]w} � 0, the ma-
trix C is positive semi-definite for any vector w. Thus, the
score similarity term is also a convex quadratic term. Its gra-
dient with respect to vector w is:

rw
�

2

N
X

i=1

{f(xi;w)� g(ai;w
⇤
)}2 = �Cw (4)

This gradient can be directly combined with the gradients of
the remaining terms in Equation 2 to optimize the objective
for the learning of parameters w and w

⇤.

3.2 Object-Attribute Relationships as Hidden
Information

To further improve the performance of object recognition
with hidden attributes, we propose to exploit the additional
information in the attributes, i.e. the relationships between
objects and attributes. As a set of semantic descriptions about
the objects, attributes hold strong relationships with cate-
gories of objects that are determined by the intrinsic prop-
erties of different categories of objects. For instance, the
object “bird” holds co-occurrence relationship with attribute
“has wing”, and holds mutually exclusive relationship with
attribute “has horn”. We believe such relationships, if cap-
tured as additional hidden information, would enforce the ob-
ject classification to fit not only with the object labels, but
also with the intrinsic properties of objects. In this way, the
classifiers learned with attributes as hidden information can
generalize better in the testing data.

To simplify the analysis, we consider the relationship be-
tween object label y and each of the M types of attributes,
i.e. am with m 2 [1,M ], in a pairwise manner. Suppose the
relationship between object label y and attribute a

m can be
evaluated by a d dimensional real valued vector tym. Also,
the relationship between predicted object ŷ and attribute a

m

can be evaluated by another d dimensional real valued vector
ˆ

tym. Since the predicted object ŷ is given by the mapping
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function f : X 7�! R with parameter w, ˆtym should also be
a function of w as ˆtym(w).

The essence of our method here is enforcing the relation-
ship between the predicted object ŷ and each of the attribute
label to be close to the relationship between the ground truth
object label and the corresponding attribute label. In this way,
our classifier learning can be connected with the hidden infor-
mation. Such a regularization is natural, since a perfect object
classification should also preserve the relationships between
objects and attributes perfectly. Suppose the above two re-
lationships can be evaluated by vectors ˆ

tym(w) and tym re-
spectively, we can hence enforce the `2 norm of the vector
difference ˆ

tym(w) � tym to be small. Combining such a re-
lationship regularization with the terms for standard object
classifier learning as in Equation 1, our general formulation
for exploiting object-attribute relationships can then be writ-
ten as in Equation 5.

min

w

N
X

i=1

l(yi, xi;w) +

�

2

kwk22 +
⇣

2

M
X

m=1

kˆtym(w)� tymk22 (5)

Compared to the formulation in Equation 2, this formulation
does not require to learn a hypothetic classifier and is there-
fore more computationally efficient.

To fulfill the general formulation in Equation 5, we fur-
ther introduce the detailed definition of ˆtym(w) and tym. We
utilize the linear regression coefficients to evaluate the rela-
tionships between object y and each of the attribute am. Here,
the regression coefficients rym and sym reconstruct the object
label y from the attribute a

m as y = rym + syma

m. Coeffi-
cients rym and sym can then be obtained by minimizing the
mean square error as:

min

rym,sym

1

N

N
X

i=1

(yi � rym � syma

m
i )

2

where a

m
i is the value of attribute a

m for sample i.
Both the coefficients rym and sym have their specific

meanings for representing the relationship. When y and a

m

are binary values with “1” standing for positive label and
“-1” standing for negative label, sym will reflect the “co-
occurrence” (sym > 0) and “mutually exclusive” (sym < 0)
relationships with its amplitude indicating the extent of the
relationship. When sym ⇡ 0, the two variables tend to be
“unrelated”. Also, rym represents the bias between y and a

m

values. It gives the prior information on whether y would be
more frequent to present than a

m or not.
Here, we define the matrix �m, the object label vector y,

and the relationship evaluation vector tym as:

�m =

2

6

4

a

m
1 1

...
...

a

m
N 1

3

7

5

y =

2

6

4

y1

...
yN

3

7

5

tym =



sym

rym

�

Vector tym can then have a closed form solution as tym =

(�

>
m�m)

�1
�

>
my ⌘ �

+
my, where �

+
m is the Moore-Penrose

pseudo-inverse [Penrose, 1955] of matrix �m. Given the ob-
ject and attribute labels in the training data, vector tym should
be a constant unrelated to classifier parameter w.

The predicted object ŷ can be further represented by the
object classifier response w

>
x. Hence, the regression coef-

ficients r̂ym and ŝym should reconstruct w>
x from attribute

a

m as w

>
x = r̂ym + ŝyma

m. These two coefficients are
obtained by minimizing the following mean square error:

min

r̂ym,ŝym

1

N

N
X

i=1

(w

>
xi � r̂ym � ŝyma

m
i )

2

Define the training sample matrix X, and the relationship
evaluation vector ˆtym(w) as:

X =

2

6

4

x

>
1

...
x

>
N

3

7

5

ˆ

tym(w) =



ŝym

r̂ym

�

then the closed form solution for relationship evaluation vec-
tor is ˆtym(w) = �

+
mXw.

Now, we replace the ˆ

tym(w) term in Equation 5 as �+
mXw,

and keep the pre-calculated constant term tym. The complete
objective function formulation can then be given in Equa-
tion 6.

min

w

N
X

i=1

l(yi, xi;w) +

�

2

kwk22

+

⇣

2

M
X

m=1

n

�

�

+
mXw � tym

�> �

�

+
mXw � tym

�

o

(6)

From Equation 6, we can see our formulation captur-
ing object-attribute relationship would bring in an additional
quadratic term w

>X>
(�

+
m)

>
�

+
mXw. Reshaping this term,

we find it equals to (�

+
mXw)

>
(�

+
mXw) � 0 for any w.

Hence, the matrix X>
(�

+
m)

>
�

+
mX is positive semi-definite,

and the whole quadratic term is then convex. Such a quadratic
convex term is easy to optimize.

Similar to our previous formulation discussed in Sec-
tion 3.1, the formulation in Equation 6 can also be applied
to different types of linear classifiers such as logistic regres-
sion (LR) and support vector machine (SVM) by selecting
different loss functions. As discussed in Section 3.1, if we
use hinge loss as l(yi, xi;w) = max(0, 1 � yiw

>
xi), the

objective function in Equation 6 would apply our relation-
ship modeling to the SVM learning. Since the hinge loss is
still convex, subgradient based optimization can be used to
solve the objective. In this paper, we apply the relationship
modeling to the LR model. The optimization of the LR loss
functions have been discussed in Section 3.1.

For our formulation in Equation 6, the gradient of the rela-
tionship term can be represented as:

rw
⇣

2

M
X

m=1

n

�

�

+
mXw � tym

�> �

�

+
mXw � tym

�

o

=⇣

M
X

m=1

n

X>
(�

+
m)

>
�

+
mXw � X>

(�

+
m)

>
tym

o

(7)

Since the relationship term in Equation 6 is still convex, we
can directly combine the gradient in Equation 7 with the gra-
dients of LR loss functions and the `2 norm parameter regu-
larization term for object classifier learning.
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3.3 Combined Formulation
The formulation discussed in Section 3.1 utilizes hidden at-
tributes as additional information, and enforce the score dis-
similarity between the hypothetic model on the hidden at-
tributes and the target model on the image feature to be small.
On the other hand, the formulation in Section 3.2 models the
relationships between hidden attributes and the object. It en-
forces preservation of the relationships between attributes and
the object category. These two formulations incorporate dif-
ferent properties of hidden attributes, and hence can be further
combined into one objective function. The combined objec-
tive function can be written as:

min

w,w⇤

N
X

i=1

l(yi, xi;w) + ⌘

N
X

i=1

l(yi, ai;w
⇤
)

+

�

2

N
X

i=1

{f(xi;w)� g(ai;w
⇤
)}2 + �1

2

kwk22 +
�2

2

kw⇤k22

+

⇣

2

M
X

m=1

M
X

m=1

n

�

�

+
mXw � tym

�> �

�

+
mXw � tym

�

o

(8)

This objective function hence minimizes the score dissimilar-
ity term and the relationship regularization term simultane-
ously during the learning of parameters w and w

⇤.
The gradient of the objective function in Equation 8 with

respect to w and w

⇤ is the combination of the gradients for
each term in this equation. The gradients of our proposed
score dissimilarity term and the relationship regularization
term are given in Equation 4 and Equation 7 respectively.
Since each term in Equation 8 is convex, the optimization
can be solved by gradient descent based methods.

4 Experiments
We perform experiments on natural scene object classifica-
tion on two benchmark datasets: aPascal dataset [Farhadi et
al., 2009] and Animals with Attributes (AWA) dataset [Lam-
pert et al., 2009]. The goal is to compare the performance
of our proposed approaches incorporating hidden attributes
with the basic approaches without using attributes, the tradi-
tional attribute approaches using attributes as the middle level
representation, and the existing approaches for learning with
hidden information.

Models. The models evaluated in our experiments include:
the standard logistic regression model (LR) and support vec-
tor machine (SVM) learned with only the training data, the
proposed formulation in Equation 2 using attributes as ex-
tra information (xLR+), the proposed formulation in Equa-
tion 6 with incorporating attribute relationships (LR-Rel+),
the formulation in Equation 8 further combining formulations
in Equation 2 and Equation 6 (xLR-Rel+).

The aPascal dataset contains 6340 training images and
6355 testing images collected from Pascal VOC 2008 chal-
lenge. Each sample belongs to one of the twenty object cat-
egories: people, bird, cat, cow, dog, horse, sheep, aeroplane,
bicycle, boat, bus, car, motorbike, train, bottle, chair, din-
ing table, potted plant, sofa, and tv/monitor. The dataset
also provides 9751 dimensional base feature for each of the
training and testing sample. Various types of color, textural,

HOG, shape and edge descriptors are combined with a Bag-
of-Words approach to formalize the 9751 dimensional base
feature vector. The base feature is used in all of the following
experiments.

A list of 64 attributes are annotated for each sample in the
dataset with examples shown in Figure 1. Each attribute is
quantized into “-1” or “1” binary values to represent the ab-
sence or presence of the attribute. These hidden attributes are
used for the proposed algorithms xLR+, LR-Rel+ and xLR-
Rel+. We use a one-versus-all strategy to perform multi-class
object classification in this dataset. A total of 20 classifiers
are trained to predict each category against the remaining cat-
egories. The final decision is made by comparing the scores
for each object type.

During classifier learning, the coefficients are tuned
through a two fold cross validation procedure within the train-
ing set. The results are shown in Table 1, where both the
overall accuracy rate and mean per-class recognition accu-
racy rate are given. We also include the results from state
of art middle level representation work [Farhadi et al., 2009;
Wang and Mori, 2010; Wang and Ji, 2013], and the results
from the state of art learning with hidden information ap-
proaches include the SVM+ approach [Vapnik and Vashist,
2009] and the LR+ approach [Wang et al., 2014] in Table 1.

Table 1: Object recognition results on aPascal dataset com-
pared to state of the art middle level representation based at-
tribute methods.

Methods (%) Model Mean Overall
LR 43.29 59.76

This work xLR+ 43.87 60.23
This work LR-Rel+ 47.52 62.03
This work xLR-Rel+ 47.82 63.10

[Farhadi et al., 2009] SVM 37.70 59.40
[Wang and Mori, 2010] LSVM 50.84 59.15

[Wang and Ji, 2013] BN 44.82 63.02
[Vapnik and Vashist, 2009] SVM+ 42.08 60.02

[Wang et al., 2014] LR+ 42.21 60.17

Firstly, we compare the baseline LR approach with our
proposed models xLR+, LR-Rel+, and xLR-Rel+. From the
results, we can see that by incorporating hidden attributes,
the proposed models xLR+, LR-Rel+, and xLR-Rel+ all out-
perform LR in terms of both the overall and mean per-class
accuracies, which shows the effectiveness of the proposed
algorithms. In addition, xLR-Rel+ outperforms both xLR+
and LR-Rel+ in both accuracy evaluations. This compari-
son shows that the combination further improves the perfor-
mance.

Secondly, we compare with state of art middle level rep-
resentation approaches by [Farhadi et al., 2009], [Wang and
Mori, 2010] and [Wang and Ji, 2013]. We can see that al-
though predicted attributes are not utilized during testing, all
three of our models (i.e. xLR+, LR-Rel+ and xLR-Rel+)
outperform the approach proposed in [Farhadi et al., 2009].
Compared to the results by [Wang and Mori, 2010], our xLR-
Rel+ approach performs better in overall recognition rate by
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around 4%, and performs lower in mean per-class recogni-
tion rate by about 3%. This is expected. As argued in [Wang
and Ji, 2013], [Wang and Mori, 2010] use the loss function
specifically designed for skewed data, and the aPascal data
is skewed by having 2571 of 6355 testing samples to be in
“person” category. [Wang and Mori, 2010] also report their
performances with the standard “0/1” loss function. Results
are 46.25% for mean accuracy, and 62.16% for overall accu-
racy, which are both not as good as our performances. The
approach in [Wang and Ji, 2013] also combines the attribute
relationship in the model, and its object recognition perfor-
mance in aPascal is not as good as our xLR-Rel+ model for
both overall and mean per-class evaluations. These results
show that our approaches are quite effective for improving
object classifier learning compared to traditional middle level
representation methods.

Thirdly, we compare our methods with learning with
hidden information approaches including the SVM+ ap-
proach [Vapnik and Vashist, 2009] and the LR+ ap-
proach [Wang et al., 2014]. From Table 1, we can see all
our three models (i.e. xLR+, LR-Rel+ and xLR-Rel+) outper-
forms both SVM+ and LR+ approaches in both the mean and
overall recognition accuracy. We perform the Wilcoxon rank
sum test to evaluate the performance improvement of the pro-
posed xLR-Rel+ model over both LR and SVM+ approaches.
Both tests show performance improvements are statistically
significant with a p-value less than 5%.

To further compare the performances of our proposed
model with the learning with hidden information state of the
arts including SVM+ and Rank Transfer, we test the proposed
algorithm for object classification on the Animals with At-
tributes (AWA) dataset [Lampert et al., 2009]. This dataset
includes 6180 images that belong to 10 testing classes. These
10 testing classes are different wild animals including chim-
panzee (CP), giant panda (GP), leopard (LP), persian cat
(PC), pig (PG), hippopotamus (HP), humpback whale (HW),
raccoon (RC), rat (RT), and seal (SL).

To compare with the results in [Sharmanska et al., 2013],
we follow the same experimental setting as in [Sharmanska et
al., 2013]. In such setting, the models are tested on recogniz-
ing each possible pair of the 10 animal classes. This would
give us 45 animal pairs. Also, the provided SURF descrip-
tor in 2000 dimensions are used as features, and the predicted
attributes in the format of probability estimates provided by
[Lampert et al., 2009] are used as hidden information during
training. With the provided feature and hidden information,
45 binary object classifiers are trained for each animal pair.
We use 100 samples per object class for training, and 200
samples per object class for testing. As in [Sharmanska et
al., 2013], we repeat such training/testing split procedure for
20 times. The results with comparisons to SVM+ and Rank
Transfer methods are presented in Table 2

From the results in Table 2, our proposed xLR-Rel+ is very
effective for incorporating hidden attributes. Among the 45
possible cases, the SVM performs the best only in 1 case,
the SVM+ performs the best in 7 cases, the Rank Transfer
method performs the best in 11 cases, and our proposed xLR-
Rel+ model performs the best in 26 out of the 45 cases. The
average values of accuracies over the total 45 pairs also show

Table 2: Object Recognition with Hidden Attributes on AWA
Dataset

Rank
SVM SVM+ Transfer xLR-Rel+

1 CP vs. GP 91.53 92.12 91.83 83.85 ± 1.45
2 CP vs. LP 94.16 94.23 94.80 98.03 ± 1.03
3 CP vs. PC 91.09 91.73 91.86 95.17 ± 1.24
4 CP vs. PG 87.45 88.06 88.59 86.57 ± 1.58
5 CP vs. HP 87.58 87.53 87.57 87.08 ± 1.65
6 CP vs. HW 98.12 98.57 98.52 99.60 ± 0.88
7 CP vs. RC 89.00 89.67 89.54 87.98±1.43
8 CP vs. RT 86.84 87.96 88.47 92.95 ± 2.15
9 CP vs. SL 92.53 92.59 92.58 90.54 ± 2.19

10 GP vs. LP 95.13 94.95 95.11 97.74 ± 0.92
11 GP vs. PC 94.66 94.68 94.38 93.27 ± 1.86
12 GP vs. PG 88.67 88.95 88.69 81.87 ± 1.70
13 GP vs. HP 92.35 92.85 92.78 88.93 ± 1.68
14 GP vs. HW 98.77 98.76 98.88 98.97 ± 0.73
15 GP vs. RC 91.76 91.90 91.33 86.99 ± 1.91
16 GP vs. RT 90.50 90.61 90.33 90.69 ± 1.15
17 GP vs. SL 93.33 93.40 93.58 89.85 ±1.05
18 LP vs. PC 95.50 95.65 95.92 97.65 ± 1.11
19 LP vs. PG 90.40 90.40 90.88 96.95 ± 0.87
20 LP vs. HP 93.60 93.83 93.81 96.12 ± 1.30
21 LP vs. HW 99.06 99.20 99.17 99.43 ± 1.41
22 LP vs. RC 83.23 83.18 83.15 90.66 ± 2.84
23 LP vs. RT 90.28 90.65 90.98 96.50 ± 1.44
24 LP vs. SL 94.98 95.14 95.49 97.09 ± 1.59
25 PC vs. PG 83.23 83.38 83.39 78.31 ± 1.99
26 PC vs. HP 92.66 93.14 93.41 94.14 ± 0.93
27 PC vs. HW 96.19 96.69 97.26 99.64 ± 1.42
28 PC vs. RC 90.46 90.94 91.20 88.40 ± 1.67
29 PC vs. RT 69.38 69.43 70.40 68.41 ± 1.89
30 PC vs. SL 86.06 86.97 86.91 90.43 ± 1.78
31 PG vs. HP 76.45 77.42 79.02 82.01 ± 2.72
32 PG vs. HW 96.78 97.04 97.32 98.66 ± 1.49
33 PG vs. RC 80.08 81.50 81.79 78.13 ± 2.10
34 PG vs. RT 72.25 72.63 73.68 73.70 ± 2.90
35 PG vs. SL 79.76 80.33 81.76 78.32 ± 2.35
36 HP vs. HW 93.83 93.63 93.75 98.17 ± 1.42
37 HP vs. RC 86.49 86.83 87.37 84.21 ± 1.80
38 HP vs. RT 85.12 85.99 87.37 90.55 ± 1.89
39 HP vs. SL 72.82 73.41 75.85 70.98 ± 3.16
40 HW vs. RC 96.92 97.11 97.15 99.32 ± 1.12
41 HW vs. RT 95.21 95.45 95.53 99.39 ± 0.92
42 HW vs. SL 86.44 86.89 86.93 96.80 ± 2.86
43 RC vs. RT 79.59 79.67 80.31 79.49 ± 2.71
44 RC vs. SL 92.22 92.55 92.80 83.09 ± 1.37
45 RT vs. SL 80.44 80.68 82.34 88.02 ± 2.55
* Average 88.95 89.30 89.64 89.88

that our proposed model performs better than SVM, SVM+,
and Rank Transfer methods.

5 Conclusion

In this work, we propose to incorporate hidden attributes for
object classification. Instead of predicting these attributes ex-
plicitly or implicitly during testing, we utilize the attributes
only during training to improve the learning of the object
classifier on the primary features. We develop two different
approaches to incorporate the hidden attributes, with one ap-
proach utilizing attributes as additional information, and the
other incorporating the relationship between attributes and
objects. Finally, these two different approaches are combined
into one learning objective. We evaluate our approach on
the natural scene object classification. Experiments demon-
strate the effectiveness of our approaches for classification
over state of the art methods on benchmark datasets.
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