
Rule-Based Programming of Molecular
Robot Swarms for Biomedical Applications

Inbal Wiesel-Kapah1, Gal A. Kaminka1, Guy Hachmon2, Noa Agmon1, Ido Bachelet3
1Computer Science Department, Bar Ilan University, Israel

2XLX Technologies, Israel
3Augmanity, Ltd., Israel

wieseli@biu.ac.il, {galk,agmon}@cs.biu.ac.il, guy.hachmon@gmail.com, dogbach@gmail.com

Abstract
Molecular robots (nanobots) are being developed
for biomedical applications, e.g., to deliver medi-
cations without worrying about side-effects. Future
treatments will require swarms of heterogeneous
nanobots We present a novel approach to gener-
ating such swarms from a treatment program. A
compiler translates medications, written in a rule-
based language, into specifications of a swarm built
by specializing generic nanobot platforms to spe-
cific payloads and action-triggering behavior. The
mixture of nanobots, when deployed, carries out
the treatment program. We describe the medication
programming language, and the associated com-
piler. We prove the validity of the compiler output,
and report on in-vitro experiments using generated
nanobot swarms.

1 Introduction
Nanometer-scale molecular robotics has emerged as a
promising approach for targeted drug delivery. Molecular
robots (nanobots) can operate inside a living body [Dong and
Nelson, 2007; Amir et al., 2014], carrying out simple molecu-
lar actions, such as releasing a molecular payload only under
some environmental conditions or shielding the body from
toxic payloads [Douglas et al., 2012]. If used as a platform
for drug delivery, a nanobot can, in principle, overcome many
of the safety issues, as drugs are released only in the presence
of their targets.

Currently, every nanobot must be designed by an expert,
for the specific task: medical expertise must meet nanobot
design expertise. As procedures grow in complexity, the
challenge is further exacerbated: nanobot developers mix
different types of nanobots—each type specifically tailored
to its role—in heterogeneous swarms, such that the medi-
cal outcome emerges out of the interactions of the nanobots
in the swarm [Ruoslahti et al., 2010; Park et al., 2010a;
2010b].

We present a novel approach to developing nanobot
swarms. Inspired by modern software development environ-
ments, which separates high-level programming languages
from specific CPU details, we aim to allow medical profes-
sionals to directly program treatments in a Athelas, a rule-

based medication programming language, modeled after rule-
based languages for knowledge-based systems [Hayes-Roth,
1985; Hopgood, 2001; Ligêza, 2006]. A compiler (Bilbo)
translates Athelas programs to nanobot specifications, guar-
anteed to implement the written program. The compiler relies
on a library of generic nanobot arch-types, and specializes
them to create the specific roles needed for the swarm.

We believe this separation between medical expertise
and nanobot design expertise can significantly accelerate
the development of new medical treatments relying on
nanobot technology: Medical experts will program treat-
ments. Molecular roboticists will develop generic nanobots.
And compilers will synthesize swarms of nanobots that carry
out the programs, with performance and safety guarantees.

In this paper, we will introduce the Athelas language and
the compilation algorithms used in Bilbo. We prove the
soundness and completeness of the compilation process, and
present results of the compiler in-vitro experiments, with ac-
tual nanobots.

2 Background and Motivation
Nanobots are nanometer-scale devices that can operate in-
side of a living body [Cavalcanti et al., 2009; Dong and Nel-
son, 2007; Banerjee et al., 2013; Amir et al., 2014], and
have the potential to revolutionize medicine [Freitas, 2005],
in a variety of ways. Specifically for drug delivery, hetero-
geneous nanobot swarms can deliver chemicals directly to
molecular targets, with little or no secondary damages due
to side effects [Ruoslahti et al., 2010; von Maltzahn et al.,
2011]. However, all nanobot and their interactions are cur-
rently manually planned.

Recent advances have begun to explore generic nanobot
arch-types, which can be “programmed” (specialized) in spe-
cific ways. [Banerjee et al., 2013] reports DNA ”cages”
which can hold small payloads. Both the openning triggers
and the payloads can be varied. Recently developed nano-
particles [Tonga et al., 2015] serve as an additional exam-
ple. These nanobots are built from a nanometer-scale gold
bead, to which various DNA strands can be attached, e.g., to
bind with specific biomarkers. These particle nanobots can-
not shield their payload—it is always exposed. However, as
the DNA strands hybridize with the target bio-markers, the
exposure will take place at the target.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3505

We use the DNA-based clamshell nanobot [Douglas et al.,
2012] in the experiments. It resembles a hexagonal clamshell,
open at both ends (Figure 1). On one side, a gate con-
sisting of two dsDNA (double-stranded DNA) arms controls
the nanobot state. When the arms are in dsDNA configura-
tion, the two halves of the clamshell are held locked. How-
ever, when these duplexes unzip, the nanobot can entropically
open, exposing its internal side. We can program the nanobot
by specializing its parameters: choosing the appropriate com-
ponents such that the clamshell opens when it encounters the
pre-defined signature of molecules and biological conditions.
The internal side can be programmed by loading it with a
variety of payloads, including small molecules, drugs, and
proteins. When more complex actions are required, a hetero-
geneous swarm is needed. The clamshell robots essentially
respond as a two-input AND gate. If the target is identifiable
by three or more markers in combination, no single clamshell
nanobot type can correctly open only in the target location.
Instead, a heterogeneous combination of clamshells (one re-
sponding to markers A and B by releasing an compound T,
and one responding to T and C) is needed.

Figure 1: A clamshell DNA nanobot. Up: a schematic view of the
two states: closed (left) and open (right). Down: TEM images (scale
bar, 25nm).

To date, all such single and swarm nanobot program-
ming (specializations) were manually planned. But the emer-
gence of nanobot arch-type as described opens the door
for automated generation of specialization procedures, based
on parameterizable template preparation protocols. Moti-
vated by the (sometimes forgotten) success of rule-based
systems at capturing expert knowledge [Hayes-Roth, 1985;
Gupta et al., 1986; Hopgood, 2001; Ligêza, 2006] we pro-
pose a rule-based approach to nanobot programming. The
rule based language, Athelas, allows specification of biomedi-
cal applications, without considering individual swarm mem-
bers or the swarm composition. It differs from other swarm
programming languages, such as Buzz [Pinciroli et al., 2015],
and Proto [Bachrach et al., 2010] which focus on spatial
swarm behaviors, computation, and synchronized knowledge.

3 Compiling Medications into Swarms
The Tolkien development environment for nanobot-based
biomedical applications includes a high level language for
programming medications (Section 3.1) which are compiled
into swarm specifications (Section 3.2).

3.1 The Athelas Language
Medications work by moving compounds between locations
in the body: picking compounds (by molecular binding) or
exposing (and sometimes releasing) them in diseased areas.
We consider these to be nanobot swarm tasks, to be pro-
grammed by a user.

As activities will be carried out by a swarm of millions
of nanobots, we adopt a rule-based programming paradigm,
in which programs are specified by sets of rules that are
continuously considered in parallel, against changing condi-
tions [Gupta et al., 1986]).

Each rule has four clauses, discussed below (Figure 2
shows an example). As a matter of notation, Athelas code
uses $ to denote payloads, and @ for location expressions de-
noting biological markers (e.g., CD Antigens), which can be
aliased for convenience using #define macros. Locations
can be specified using logical operators (AND, OR, NOT).

The Initialize clause specifies the set of payloads to
be built into the drug when it is injected (i.e., before any ac-
tion is taken). For example, a nanobot carrying insulin for a
diabetes patient would be assumed to have an initial insulin
payload, differently from a nanobot which begins empty, and
is tasked to locate some specified matter and pick it. In Fig-
ure 2, the rule states that the drug contains compounds Z and
X when it begins.

The When and Until clauses are each composed of a set
of tests, e.g., pH level or concentration of a specific chemical
in specific location. The When tests must hold in order for
the drug to become activated (here, when the concentration
of Y in the vicinity of T is above 5mol/m3). The Until ter-
minates the activity of the drug (here, when the concentration
drops below 2mol/m3). Note that the When conditions do
not need to hold through the activation of the drug; they only
trigger it.

The Actions clause contains the actions to be executed
when the drug is active. pick($payload @location)
instructions cause the nanobots to be built with appropri-
ate compounds to bind $payloads (if encountered near
@location) so that is carried by the nanobot. Similar ac-
tions are defined for releasing the payload, allowing it to float
freely (drop), and for protecting it from, or exposing it to,
the environment (protect, expose, e.g., via a mech-
anism such as a protective outer shell, as in the clamshell
nanobot). Other actions include disable, enablewhich
operate on rules (and are given rule names). This type of
reflection to address inter-drug interactions, e.g., to set drug
action priorities.

In Figure 2, there are two drop actions. One to
drop the compound $Z which the drug initially con-
tains, at location @T. The other drops $Y at the location
@(A AND B AND C), i.e., a location marked by the pres-
ence of all biomarkers A, B, C (#define#’d elsewhere).

We are not aware of any nanobot design capable of im-
plementing this rule in a singe nanobot. For instance, the
clamshell nanobot previously discussed is capable of drop-
ping a payload in a location marked by at most two markers
(e.g., A AND B), and it cannot selectively drop only Z or ex-
pose only X in a location. Thus in order to have nanobots

3506

Rule : ToxicDrugClean
{

I n i t i a l i z e : Z , X;
When : conc ($Y @T) > 5 ;
Act ions :

d rop ($Z @T)
expose ($X @(A AND B AND C)) ;

U n t i l : conc ($Y @T) < 2 ;
}

Figure 2: An example rule with all components.

execute this rule, a mixture of different nanobots (a heteroge-
neous nanobot swarm) is needed. The role of the compiler is
to synthesize this swarm, choosing between multiple options
if possible to optimize cost, yield, and reliability.

3.2 The Bilbo Compiler
The Bilbo compiler takes two inputs: an Athelas program,
and a library of generic robot types (with defined ways of
parameterizing them, including parameterizable preparation
protocols). It then synthesizes a specification for a hetero-
geneous swarm of specialized nanobots, which would carry
out the program, once deployed. The output specification for
each specialized robot includes a specialized preparation pro-
tocols.

The compilation process is done in two phases. A front-
end phase consists of the lexical and syntax analyzers, gen-
erates finite state machines (FSMs) representing the rules.
The back-end phase then transforms such FSMs into a final
nanobot swarm specification (recipe). We discuss both in de-
tail below.

The Front-End. The general idea is to transform every rule
into a set of threads: ordered sequences of actions that depend
on each other. These are represented using finite state ma-
chines (FSMs). Each state consists of three parts: the payload
status (compound if held, empty otherwise); the payload ex-
posure (exposed or protected); and the location. For example,
($X , exposed, @A) indicates the process contains payload
$X that is exposed to the environment and in location @A.
Actions specified in the rule mark transitions between states.
We focus below on the transformation of the Initialize
and Actions clauses.

When processing an Initialize clause, the front-end
creates a new FSM for each material $M in the clause. The
new FSM starts with the states (null, ?, ?), and ($M, ?, ?)
with a transition Initialize $M connecting them. This rep-
resents the medical process starting without payload (null)
and gaining one by an initialization action (which the com-
piler will add to the nanobot generation recipe). The other
parts of the state are labeled with ?, since they are unknown
at this stage. An illustration of the process is shown in Figure
3.

For an action pick($M @B) the front-end adds a state
(null, ?,@B), and a transition from it to another new state
($M, ?,@B). This represents a transition from a state in lo-
cation @B without a payload, to a state in the same location

Figure 3: Illustration of Initialize case in the front-end

with the payload $M . An illustration of the process is shown
in Figure 4.

Figure 4: Illustration of Pick case in the front-end

For an action drop($M @B), the front-end searches for
an FSM that ends with the state ($M, ⇤,@B), where * stands
for any exposure state. If one is found, the front-end connects
it to a new state, (null, ?,@B) with the transition drop($M
@B). Otherwise, it searches for a terminal state ($M, ⇤,@⇤),
i.e., any state with payload $M, but not in location @B. It then
connects it via an "- transition to a new state ($M, ?,@B)
(and then continues as in the first case). The "- transition rep-
resents traveling via the bloodstream until arrival at the drop
location. Figure 5 shows the two cases. The compilation pro-
cess for actions expose() or protect() are handled sim-
ilarly. However, here the ending state is ($M, exposed,@B)
and ($M,protected,@B), respectively.

Figure 5: An Illustration of the two cases of Drop action compila-
tion in the front-end.

The Back-End. The input to the Back-End phase includes
a set of FSMs, which is the output of the Front-End phase
(see example in Figure 2) and a library of generic nanobot
arch-types, which the compiler uses in the recipes recipes.
The back-end transforms each FSM to an AND/OR graph
(see below) which represents alternative swarm specifications
(nanobot mixes). It then uses AO* [Nilsson, 1980] to deter-
mine an optimal AND/OR path in the graph, which corre-
sponds to a specific heterogeneous swarm, made of special-
ized nanobot arch-types and their preparation protocols.

Algorithm 1 (ConstructTree), which transforms FSMs
into and/or graphs, is the heart of the back-end phase. It
uses a graph rewriting approach to carry out the trans-

3507

Figure 6: The front-end’s output, the back-end’s input. Two FSMs generated for the rule in Figure 2.

formation, working with four graph-rewriting operators:
SUBSTITUTE, MERGE, REJECT and DECOMPOSE.

Algorithm 1 ConstructTree (input: FSM , Nanobot-
library)

1: // We denote a non-"-transition t by ↵t
2: AOGraph FSM
3: while 9↵t or non-terminal robot-state do
4: for all transitions ↵t connecting states A, B do
5: SUBSTITUTE(t, A, B, AOGraph)
6: for all compatible, "-connected states A,B do
7: MERGE (A, B, AOGraph)
8: for all incompatible, "-connected states A,B do
9: REJECT(A, B, AOGraph)

10: for all non-terminal robot-state t do
11: DECOMPOSE(t, AOGraph)
12: return AOGraph

We illustrate the operation of Algorithm 1 by transforming
the EXPOSE FSM in Figure 6 (right). For this demonstra-
tion, we assume the two nanobot arch-types previously de-
scribed (Section 2): the clamshell [Douglas et al., 2012], and
the nano-particle [Tonga et al., 2015].

The SUBSTITUTE operator replaces all non-" transitions
with subgraphs of abstract robot-states, a robot-state for each
generic nanobot in the nanobot library with the ability of ex-
ecuting the transition action (and ignoring location and pay-
load on the transition action). In case the transition cannot
be replaced, it is removed. The transition Expose($X @(A

AND B AND C)) in Figure 6 is substituted in Figure 7 by
a clamshell and nano-particle. In addition, the transition Ini-

tialize $X is substituted also by clamshell and nano-particle
since they both can be initialized with $X. The robot-states
are connected to the incoming vertex of the original transi-
tion with an OR and "-transitions.

Next, Algorithm ConstructTree MERGES each pair of
compatible robot-states connected by a path of "-transitions.
A pair of robot-states is compatible if their parameters are
either identical or complementary. The MERGE operation
removes the "-transitions between a given pair of robot-states
and merges the states to a one robot-state representing both
of them. The new state is connected to the first robot-state’s
incoming vertex and to the second robot-state’s outgoing ver-
tex with "-transitions. Applying MERGE to Figure 7 (left)
results in Figure 7 (right).

The REJECT operator removes all pairs of incompati-

ble robot-states, connected by "-transitions, i.e., states whose
parameters are not identical, and conflict (i.e., cannot be
merged). For example, this would apply to a robot-state rep-
resenting a clamshell and a robot-state representing a gold
nano-particle. The REJECT operation removes the pair of
states from the tree, and thereby rejects their path from the
back-end’s output.

Algorithm 1 uses DECOMPOSE on all non-terminal
robot-states. A robot-state is terminal if and only if all of
its parameters can be produced together in exactly one robot
of its kind. In other words, if it describes a fully specified,
producible robot. The DECOMPOSE operation replaces a
given non-terminal robot-state with a terminal one and an ac-
tion transition, representing two actions that together com-
plete the original robot-state action. In case the non-terminal
robot-state cannot be decomposed, it is removed. In Figure 8,
the robot-state representing Expose($X @(A AND B AND

C)) by a clamshell is replaced by a transition of Expose($T

@(A and B)) and a terminal robot-state representing the orig-
inal expose action, but this time in locations T and C: Ex-

pose($X @(T AND C)). Logically, together they complete
the original Expose action. Note that these two states are con-
nected to the incoming (original) state by two "-transitions
marked by an AND, i.e., both have to be taken if this option
is selected.

Finally, ConstructTree iterates back to apply the graph
rewriting operators on the rewritten graph. The process re-
peats until no "-transitions and non-terminal robot states are
left. Then the final graph is returned.

The AO* algorithm [Nilsson, 1980] then selects an optimal
path from the initial state to the end, where transitions have
weights denoting costs (or based on number of steps, other-
wise). The final recipe is consist of all the protocols belong
to the robots in the selected path, such that each protocol de-
scribes in details the way of producing its robot according to
the robot’s specification in its state from the graph.

4 Proofs
The generated nanobot swarms are intended to one day serve
in biomedical applications, thus safety and performance guar-
antees are crucial. In this section we prove that Algorithm
ConstructTree is complete, is sound, and halts. For the sake
of the analysis we distinguish between the robot who imple-
ments the transitions given as an input and those who imple-
ment transitions created by DECOMPOSE. We refer the first
as the main robot and the others as the assistant robots.

3508

Figure 7: Illustration of SUBSTITUTE (up) and MERGE (down) operations on input shown in Figure 6.

Figure 8: DECOMPOSE operation on the results of previous steps. The arc marks AND transitions in the AND/OR graph.

Lemma 1. Algorithm ConstructTree is complete, i.e., if a
solution to the input exists, the algorithm will return it (and
if more than one solution exists, the algorithm will return at
least one solution).

Proof. Assume that there exists a solution to the prob-
lem, yet Algorithm ConstructTree failed to return it (the
AND/OR graph is empty). Following the algorithm’s steps,
this could happen in one of the following cases: (i) In the
SUBSTITUTE step not all transitions were substituted to ab-
stract robots. However, if a solution exists, there must be a
main robot of some type X that implements the FSM’s tran-
sitions. Therefore SUBSTITUTE must offer it as an option
to all the transitions. (ii) REJECT removed all the possible
paths from the tree because no robotic option could have been
merged. However, since robot type X was offered to all the
transitions, MERGE merges all those robots, and specifically
REJECT does not reject them. (iii) DECOMPOSE could
not decompose the solution’s abstract robot and canceled its
path. However, if the main robot X should be assisted by
other robots, then DECOMPOSE must offer their help, thus
does not cancel the path. (iv) Dependency-check removed it
because of incompatibility of its robots. By the assumption
that there exists a solution to the problem, necessarily it does
not have dependencies problems, thus the dependency-check
cannot remove it. Thus, given that the input is correct, the
algorithm will not remove a valid solution along its way.

Lemma 2. Algorithm ConstructTree is sound, i.e., the out-
put is a correct implementation of the given FSMs.

Proof. (Sketch) Given a nanobot cocktail recipe R that was
returned as an output by the back-end algorithm for a given
FSM f , then R can be incorrect (i.e. it is not a valid imple-
mentation of f) due to one of the following reasons:
a) R does not contain all the needed robots, thus is missing
either the main robot or assistant robot(s). Based on the fact
that no sub-process removes the main robot (thus it cannot
be missing), and DECOMPOSE adds all assistant-robots and
then loops thus they cannot be removed later, it follows that
no robot can be left out of ConstructTree.
b) R contains unnecessary robots, and specifically harmful
ones. However, we show that it is impossible to offer un-
necessary robots, since only ones that implement a transition
(that are necessary for the recipe) are offered by the algo-
rithm.
c) The interaction between the different robots is problematic
due to dependencies they share. However, the dependency-
check goes over all possible combinations of robots that may
depend on one another (directly or indirectly), thus this case
is also impossible.

Theorem 3. Algorithm ConstructTree halts, and is com-
plete and sound.

Proof. Completeness and soundness of the algorithm are
proven by Lemmas 1 and 2. In order to show that

3509

ConstructTree halts, note that the number of the FSMs in
the FSM list which Algorithm ConstructTree works on is fi-
nite. Due to the fact that in each iteration at least one robot is
created, the recursion’s depth of construct-tree algorithm for
each FSM is limited by the number of the robots in the longest
recipe (which is bounded by the number of robots, which is
finite). Therefore, the algorithm will necessarily halt.

5 Experimental Results
The Bilbo compiler has been implemented. To evaluate its
use, we conducted several compilation experiments, and fol-
lowed these with in-vitro experiments, to confirm the compi-
lation results. In these experiments, Bilbo compiled Athe-
las programs, none of which could be implemented using
a single robot type. In all, the compiler generated nanobot
swarm recipes, sometimes proposing several options. We im-
plemented these by carefully mixing robots according to the
compiler-generated recipes, and show their effectiveness in
in-vitro experiments.

5.1 AND decomposition
In our first experiment we want a dummy molecular pay-
load denoted by $., and normally protected from the environ-
ment, to be exposed, when in the vicinity of beads marked by
three different DNA strands, denoted A, B, and C (as in the
expose() instruction used in the rule in Figure 2). We lim-
ited the compiler to using only clamshell nanobots. Each of
these has two gates only and as a consequence can recognize
only two markers. Thus a single clamshell nanobot cannot be
specialized to correctly recognize the target location.

The Bilbo compiler’s output is given in Figure 9 (we omit
here the preparation protocols). It solved the problem by
splitting the strands detection into two steps, each to be exe-
cuted by one specialized type of clamshell such that together
they complete the task. The first responds to A and B by re-
leasing an intermediate compound T. The second responds to
T and C by exposing $.. This cascade causes $. to be exposed
only in the presence of A and B and C, as specified.

1: Clamshell: <$T, true, @A, @B>
2: Clamshell: <$., true, @T, @C>

Figure 9: Bilbo compiler output for AND decomposition ex-
periement.

We conducted in-vitro experiments to evaluate the com-
piler output. In a first experiment, we mixed a first type
of nanobot, to demonstrate that it can detect strands A and
B. We then added a second type of nanobot, detecting C.
To measure the results, we use fluorescent materials to mark
the activity of the robots. Figure 10(a) presents the flow cy-
tometry results from this experiment. The histogram plots
the fluoresceine-isothiocyanate intensity (horizontal axis, log
scale) against the number of events detected (vertical axis).
The figure shows lower or no responses when only the first
nanobot is interacting with the beads (black line, left peak).
But when the second nanobot is added, we see high response

(red line, right peak), evidence of the two robots interacting
together to cause exposure of the dummy payload.

(a) Exp. 1. Beads and
one nanobot type (left peak)
vs. beads and the two nanobot
types (right peak)

(b) Exp. 2. Beads only (left peak)
vs. beads and nanobot (right peak)

Figure 10: Flow cytometry histograms of both experiments.

5.2 AND/OR, Multiple Options
In a second experiment we demonstrate the compiler’s capa-
bility to generate different implementation alternatives for the
same program. To do this, we extended the nanobot library
to also include the gold nano-particles [Tonga et al., 2015]
previously described. We forced the compiler to generate all
alternatives, by disabling the path selection stage. Thus all
implementation alternatives are produced.

We compiled the Athelas program shown in Figure 11. The
task is to expose the dummy molecular payload $. when in
the vicinity of beads marked by DNA strands A, B, and C, or
by D and E. The more complex target specification gives rise
to different implementation alternatives.

Rule:ExposeDrugAtComplicatedLoc
{

Actions: Expose ($. @((A AND B AND C)
OR (D AND E));

}

Figure 11: Rule used in the second experiment.

The compiler offers three different implementations. The
first uses a nano-particle nanobot (marked au in Figure 12).
The second, uses a combination of clamshell and nano-
particles (Figure 13), and the third combines three types of
clamshell nanobots (Figure 14).

As the first implementation, the compiler used a single type
of particle nanobot, with two types of strands of DNA are at-
tached to the gold core, either of which (or both) may bind
to targets (thus forming an OR). One DNA strand binds to A,
B, and C (concatenated). The other to D and E, concatenated
(Figure 12). Multiple copies of both these types uniformly
cover the surface of the core, so they should have equal prob-
ability of binding to locations thus marked. However, here the
compiler is also displaying its limits: in practice, this solution
will work only as long as the different biomarkers (e.g., D and

3510

E) are in the same order on the same strand, but not if they are
spatially separated, which is the more general case. This is a
limitation of the current nanobot modeling language used in
the nanobot library, which we hope to address in future work.

1: au: <$.,true,@A AND B AND C,@E AND D>

Figure 12: nanoparticle implementation for rule in Fig. 11.

As a second alternative implementation, the compiler pro-
poses a swarm composed of a single clamshell and a particle
nanobot (Figure 13). The particle nanobot is almost the same
as above, so the clamshell may seem redundant. However,
it is not. The particle nanobot will bind in the same location.
But it carries a payload $T, rather than the dummy payload $..
The clamshell responds to the payload $T, by attaching itself
to the particle and releasing $. This has the nuanced differ-
ence from the first implementation in that the payload $. is
shielded from the environment throughout until activation of
the nanobots (useful, e.g., when the target payload is toxic).
Had a protect() instruction been used, this implementa-
tion would have been preferred.

1: au: <$T,true,@A AND B AND C, @E AND D>
2: Clamshell: <$., true, @T, @T>

Figure 13: Gold particle and clamshell nanobot swarm for rule in
Fig. 11.

Finally, a clamshell-only solution decomposes the OR con-
dition to its constituent parts. The (A AND B AND C) part
is identical to above, and the compiler issues the same im-
plementation (lines 2–3, Figure 12). The (D AND E) im-
plementation uses a single clamshell, reacting to presence of
both D and E (line 1).

1: Clamshell: <$., true, @D, @E>

2: Clamshell: <$T, true, @A, @B>
3: Clamshell: <$., true, @T, @C>

Figure 14: Clamshell-only implementation of rule in Figure 11.

We unfortunately do not have the facilities to conduct in-
vitro experiments involving gold particle nanobots. However,
we are able to test the final compilation result in-vitro. The
@(A AND B AND C) results are identical to those previ-
ously presented (Figure 10(a)). Figure 10(b) measures the
success of the second component (D AND E). We see a sig-
nificant boost in fluorescence when the D AND E clamshell
binds itself to the beads.

6 Conclusions and future work
This paper presents a novel approach to programming
nanobots for biomedical applications. Inspired by modern
compilation paradigms, we advocate separation of expertise:

medical experts to use Athelas, a high-level rule-based lan-
guage to program medications, and nanobot builders will de-
velop nanobots which can be used by the Bilbo compiler
to compile Athelas programs into heterogeneous nanobot
swarm specifications. Concerns with safety, we prove the
soundness and completeness of the Bilbo back-end, which
is at the heart of the compilation process. We demonstrated
that the compiler was able to generate novel swarm speci-
fications, utilizing its knowledge of generic nanobots types.
These swarms were shown in-vitro to carry out tasks not pos-
sible with a single nanobot type of the same underlying de-
sign.

We believe this paper opens the door for exciting new
opportunities for AI research, reusing and innovating tech-
nologies (e.g., rule-based languages, robot swarm program-
ming) in service of a revolutionary approach to development
of medical treatments.

References
[Amir et al., 2014] Y. Amir, E. Ben-Ishay, D. Levner, S. It-

tah, A. Abu-Horowitz, and I. Bachelet. Universal com-
puting by DNA origami robots in a living animal. Nature
Nanotechnology, 9(5):353–357, May 2014.

[Bachrach et al., 2010] Jonathan Bachrach, Jacob Beal, and
James McLurkin. Composable continuous-space pro-
grams for robotic swarms. Neural Computing and Appli-
cations, 19:825–847, 2010.

[Banerjee et al., 2013] Anusuya Banerjee, Dhiraj Bhatia,
Anand Saminathan, Saikat Chakraborty, Shaunak Kar, and
Yamuna Krishnan. Controlled release of encapsulated
cargo from a DNA icosahedron using a chemical trigger.
Angewandte Chemie International Edition, 52(27):6854–
6857, 2013.

[Cavalcanti et al., 2009] Adriano Cavalcanti, Bijan Shirin-
zadeh, Toshio Fukuda, and Seiichi Ikeda. Nanorobot for
brain aneurysm. International Journal of Robotics Re-
search, 28(4):558–570, 2009.

[Dong and Nelson, 2007] Lixin Dong and B.J. Nelson. Tuto-
rial - robotics in the small part ii: Nanorobotics. Robotics
Automation Magazine, IEEE, 14(3):111–121, Sept 2007.

[Douglas et al., 2012] S. M. Douglas, I. Bachelet, and G. M.
Church. A logic-gated nanorobot for targeted transport
of molecular payloads. Science, 335(6070):831–834, Feb
2012.

[Freitas, 2005] Robert A. Freitas. Current status of
nanomedicine and medical nanorobotics. Journal of Com-
putational and Theoretical Nanoscience, 2(1):1–25, 2005.

[Gupta et al., 1986] A. Gupta, C. Forgy, A. Newell, and
R. Wedig. Parallel algorithms and architectures for rule-
based systems. SIGARCH Computer Architecture News,
14(2):28–37, May 1986.

[Hayes-Roth, 1985] Frederick Hayes-Roth. Rule-based sys-
tems. Communications of the ACM, 28(9):921–932, Sep
1985.

[Hopgood, 2001] Adrian A. Hopgood. Intelligent Systems
for Engineers and Scientists. CRC Press, 2001.

3511

[Ligêza, 2006] Antoni Ligêza. Logical Foundations for
Rule-Based Systems, volume 11 of Studies in Computa-
tional Intelligence. Springer, 2006.

[Nilsson, 1980] N.J. Nilsson. Principles of Artificial Intelli-
gence. Tioga Publishing, Palo Alto, CA, 1980.

[Park et al., 2010a] J. H. Park, G. von Maltzahn, M. J. Xu,
V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and
M. J. Sailor. Cooperative nanomaterial system to sensi-
tize, target, and treat tumors. Proceedings of the National
Academy of Science, USA, 107(3):981–986, 2010.

[Park et al., 2010b] J. H. Park, G. von Maltzahn, L. L. Ong,
A. Centrone, T. A. Hatton, E. Ruoslahti, S. N. Bhatia, and
M. J. Sailor. Cooperative nanoparticles for tumor detec-
tion and photothermally triggered drug delivery. Advanced
Materials, 22:880–885, 2010.

[Pinciroli et al., 2015] Carlo Pinciroli, Adam Lee-
Brown, and Giovanni Beltrame. Buzz: An ex-
tensible programming language for self-organizing
heterogeneous robot swarms. Available online at
http://arxiv.org/abs/1507.05946, 2015.

[Ruoslahti et al., 2010] Eric Ruoslahti, Sangeeta N. Bhatia,
and Michael J. Sailor. Targeting of drugs and nanoparticles
to tumors. Journal of Cell Biology, 188(6):759–768, 2010.

[Tonga et al., 2015] Gulen Yesilbag Tonga, Youngdo Jeong,
Bradley Duncan, Tsukasa Mizuhara, Rubul Mout, Riddha
Das, Sung Tae Kim, Yi-Cheun Yeh, Bo Yan, Singyuk Hou,
et al. Supramolecular regulation of bioorthogonal cataly-
sis in cells using nanoparticle-embedded transition metal
catalysts. Nature chemistry, 7(7):597–603, 2015.

[von Maltzahn et al., 2011] G. von Maltzahn, J. H. Park,
K. Y. Lin, N. Singh, C. Schwöppe, R. Mesters, W. E.
Berdel, E. Ruoslahti, M. J. Sailor, and S. N. Bhatia.
Nanoparticles that communicate in vivo to amplify tumour
targeting. Nature Materials, 10:545–552, 2011.

3512

