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Abstract
In this paper, we propose an end-to-end deep corre-
spondence structure learning (DCSL) approach to
address the cross-camera person-matching problem
in the person re-identification task. The proposed
DCSL approach captures the intrinsic structural
information on persons by learning a semantics-
aware image representation based on convolutional
neural networks, which adaptively learns discrim-
inative features for person identification. Fur-
thermore, the proposed DCSL approach seeks to
adaptively learn a hierarchical data-driven fea-
ture matching function which outputs the match-
ing correspondence results between the learned
semantics-aware image representations for a per-
son pair. Finally, we set up a unified end-to-
end deep learning scheme to jointly optimize the
processes of semantics-aware image representation
learning and cross-person correspondence structure
learning, leading to more reliable and robust per-
son re-identification results in complicated scenar-
ios. Experimental results on several benchmark
datasets demonstrate the effectiveness of our ap-
proach against the state-of-the-art approaches.

1 Introduction
Person re-identification (Re-ID) is a task of matching persons
captured from non-overlapping camera views, which has im-
portant applications in video surveillance systems including
tracking in the camera network, human retrieval and threat
detection.

In computer vision, the task of person Re-ID focuses on
constructing a robust feature space for describing the person
in the image, so as to minimize the intra-personal variance
while maximizing the inter-personal margin. Many existing
efforts employ low-level appearance feature representations,
including color, texture, shape, to describe the appearance of
each person. However, there exist a variety of appearance
which lead to instability of these features. One of the major
challenging problems is the misalignment caused by view-
point changes. For example, in Figure 1, the yellow dashed
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Figure 1: Examples of person Re-ID. Given the probe image
of a person in camera A marked by a blue window, the task is
to find the same person in the gallery set of camera B. The fig-
ure shows top-3 of our predicted results in CUHK03 dataset,
with the groundtruth images marked by the green bounding
boxes. The dashed bounding boxes illustrate several difficul-
ties in person Re-ID.

bounding boxes of the same person captured by two cam-
era views appear to be quite different since they respectively
show the front and back views. Such variations can enlarge
the intra-personal difference which the traditional feature rep-
resentations fail to cope with.

Inspired by the perception of humans, the images of per-
sons can be composed of a set of latent semantic units (e.g.,
head, front and back upper body, belongings), and the spatial
configurations of each person are intrinsic even if the view-
point changes. To identify the correct person given the probe
image, we first want to recognize these semantic components
according to the inherent structure representations and corre-
spond them to those of the images from other camera views,
respectively. Based on such intuition, we are able to analyse
the person by a semantic-based perspective, which is robust
to misalignment and variations.

With such structure representations, the remaining task of
person re-identification is to match these components of the
image pair across camera views. Many methods focus on
building the correspondence structure in pursuit of estab-
lishing spatial correlations between images, which can be
achieved by one-to-one matching strategy or a pre-defined
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matching function [Li et al., 2014; Ahmed et al., 2015;
Shen et al., 2015]. However, such matching strategies may
either be of low computing efficiency or have limitations
by ignoring the spatial structures. From our point of view,
matching is supposed to be a data-driven approach that proper
matching function will automatically select the critical com-
ponents and their feature representations of each image and
compare them respectively while ignoring the misaligned or
missing components (e.g., the front and back of body in Fig-
ure 1).

Thus the robust person Re-ID mainly focuses on the fol-
lowing two aspects: (1) Find the semantic components to bet-
ter describe the appearance and the spatial structure of each
person. (2) Match the representations of the image pair us-
ing a learned function to adaptively discover the correspon-
dence between the images. Based on the aforementioned ob-
servations and motivations, we propose a novel and unified
approach called Deep Correspondence Structure Learning
(DCSL) as shown in Figure 2 to deal with the challenges in
person Re-ID. In our approach, we try to capture the intrin-
sic structural information of persons by learning a semantics-
aware image representation, and then we match each com-
ponent of the structure using a learned hierarchical match-
ing strategy. We unify our approach into an end-to-end deep
learning framework to learn feature representation without
any heuristic motivations. In the experiments, we employ
mixture models for cross-domain person Re-ID learning to
further enhance the robustness of the person Re-ID system
for cross-dataset evaluation.

To summarize, we have several contributions as follows.
• We propose an end-to-end deep learning framework to

deal with the challenges in person Re-ID task. The pro-
posed approach enables the feature representation of an
image to keep stable under lots of variations. Further-
more, it also seeks to adaptively learn a data-driven fea-
ture matching function with efficient hierarchical match-
ing strategy. The learned image and correspondence rep-
resentations are robust to be adapted to other camera set-
tings or scenarios.

• The proposed DCSL approach employs a unified frame-
work to learn the semantics-aware image representation
and adaptive correspondence representation jointly by
a data-driven approach. The framework enables both
representations to be regularized from the person Re-ID
task to find the most discriminative representations.

2 Related Work
In the proposed work, we mainly aim at establishing
semantics-aware correspondence between images captured
from non-overlapping cameras. In the literature, previous
efforts of person Re-ID mainly focus on the following two
points: feature extraction for image representation and image
matching based on the extracted features.

Early papers pay attention to effective feature representa-
tions for better modelling the person in the image. People
employ hand-crafted features for detecting determinative in-
formation including HSV color histogram [Farenzena et al.,
2010], SIFT [Zhao et al., 2013], LBP features [Li and Wang,

2013] and the combination of them. Unlike hand-crafted fea-
tures, the methods based on deep learning [Li et al., 2014;
Zhao et al., 2014a] learn feature representation directly from
tasks which have shown significant improvement compared
with traditional features .

With the extracted features, many existing efforts are de-
voted to handling the overall appearance variations between
the given images [Paisitkriangkrai et al., 2015; Hirzer et

al., 2012]. In order to learn the spatial relationship be-
tween images from different views, people utilize location-
related matching strategies to find higher-level correlation be-
tween the images. Among these efforts, patch-based match-
ing methods [Li et al., 2014; Shen et al., 2015; Ahmed et

al., 2015] decompose images into patches and perform patch-
wise matching strategy to find the spatial relationship. To re-
duce the computing cost due to the comparisons among the
patch compositions, some saliency based methods are pro-
posed to guide spatial matching methods [Zhao et al., 2014b].
Both patch-based and saliency-based methods capture the ap-
pearance correlations such as color or texture. Compositional
approaches [Xu et al., 2013] first localize the body parts
and search for part-to-part correspondence between reference
samples and observations, which have promising results on
the challenging datasets. These methods depend on the per-
formance of body parser, which are limited in some specific
scenes.

3 Our Approach
Before describing this work, we first introduce a number of
notations used hereinafter. For notational convenience, we let
an uppercase boldfaced letter denote a feature map blob, and
a lowercase boldfaced letter denote a feature vector. Specifi-
cally, for a given feature map blob X, xij is associated with
the feature vector at the (i, j)-th location of X, while xijk

stands for the k-th element of xij . Namely, X is generated
from a 2D spatial stack of xij along the two spatial dimen-
sions of X. To distinguish feature maps or vectors from dif-
ferent views, we employ the superscript letters for notational
representations (e.g., X

A and X

B respectively for camera
views A and B). Moreover, a general function is written in
the form of f(X1,X2, ...;✓) with {Xi} and ✓ respectively
being the input variables and the parameters to be learned.

3.1 Problem Formulation
In the beginning, we collect the person Re-ID dataset
{(Xn, ln), n = 1, ..., N}, where Xn = (I

A
, I

B
)n denotes

the paired images of the n-th sample and ln 2 {0, 1} denotes
its label, and here ln = 1 indicates that the pair belongs to the
same person. In our approach, the task of person Re-ID is to
learn a classifier s(Xn;✓) parameterized by ✓ to distinguish
whether the image pair Xn represents the same person or not
by measuring the similarities between them.

In order to perform the robust similarity measurement, the
proposed approach involves two factors: (1) image represen-
tation of each image by a semantics-aware feature extraction
approach, (2) image matching based on the representations
of the image pair to adaptively discover the correspondence
of them and measure the similarity guided by the correspon-
dence.
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Figure 2: Architecture of Deep Correspondence Structure Learning (DCSL). The input of the network is the paired images of
size 160 ⇥ 80 ⇥ 3. The network consists of two kernel procedures: (1) semantics-aware image representation to represent the
semantic components of each image by modified GoogLeNet, (2) hierarchical image matching using multi-layer CNNs based
on the representations of shape 10⇥ 5⇥ 1024 of each image. Finally we will compute the final decision of whether the image
pair belongs to the same person or not by Softmax activations.

3.2 Semantics-aware Image Representation
In person Re-ID, image representation is confronted with a
number of challenges, such as occlusion and viewpoint varia-
tions. As discussed previously, there exists inherent semantic
structure in an image, and such structure is composed of in-
trinsic latent components such as upper body and head, which
are robust to the variations of views and background. Based
on the semantic representations of the image, we will be able
to capture the correlations of the image pair.

To effectively encode these components in an adaptive
manner, we adopt convolutional neural networks (CNNs) to
model and abstract the multi-scale semantic information for a
hierarchical representation parameterized by ✓1 to represent
the image:

Y = fCNN(I;✓1) (1)

As observed in [Zeiler and Fergus, 2014], these representa-
tions contain both low-level visual information and high-level
semantic components of the image. Without loss of gener-
ality, we decompose the representations to Y = {V,C},
where V denotes the low-level representations and C stands
for the representation of semantic components. The repre-
sentation of each component is associated with a subset of
feature maps in C, and here we assign E for representing one
specific component.

3.3 Image Matching via Correspondence
Structure Learning

Given paired images from different camera views, we extract
their corresponding feature representations by Eq. (1), writ-
ten as Y

A
= {VA

,C

A} and Y

B
= {VB

,C

B}. With Y

A

and Y

B , the problem of image matching is converted to the
task of how to correspond the components by their represen-
tation maps and to perform the similarity measurement based
on the correspondence representation. First we will discuss
the correspondence structure learning of the specific compo-
nent representations EA and E

B .
Correspondence structure learning based on E

A and
E

B . We first define the correspondence structure based on

the semantic components of the person to cope with the mis-
alignment in person Re-ID.

In our approach the correspondence structure E

A ! E

B

encodes the spatial correspondence distributions between the
specific component of the image pair.

Many methods adopt a discrete distribution as the cor-
respondence structure [Shen et al., 2015], which is a set
of pair-wise matching probabilities: {P(e

A
ij ,E

B
)}, where

P(e

A
ij ,E

B
) describes the correspondence distribution in E

B

for the feature vector eAij in E

A. The distribution P(e

A
ij ,E

B
)

can be obtained through different strategies. For example,
(1) compute an optimal assignment matrix from e

A
ij to ev-

ery vector {eBst} in E

B by dense matching; (2) conduct local
search in a small neighbourhood of the given location. For
(1), one-to-one location-specific matching strategy searches
in the whole space of possible solutions, resulting in low
computational efficiency. Moreover, it may induce additional
matching noise since it lacks the capability of modelling the
spatial neighbourhood matching consistency of each image;
for (2), local spatial neighbourhood matching is often trapped
in local correspondence optimums as a result of heuristically
predetermined searching ranges.

To deal with these difficulties, we construct the correspon-
dence structure from a different perspective, which aims to
adaptively capture the correspondence relationships between
the multi-scale semantic component representations in a hi-
erarchical matching fashion. As shown in Figure 3, the cor-
respondence structure is discovered through a pyramid-like
matching strategy. We generate the correspondence maps be-
tween the feature maps of each image. The value of each lo-
cation (i, j) indicates the correspondence probability at that
location. To deal with misalignment, we further down-sample
the feature maps by max-pooling so as to preserve the most
discriminative information of the component and align it in a
larger region.

In this case, we denote the set of multi-level feature maps
as {EA,t} and {EB,t} generated from E

A and E

B by max-
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Figure 3: Illustration of correspondence structure learning by
pyramid matching. The representation of component “shoul-
der bag” is represented by {EA,t} and {EB,t} respectively.
The red and green bounding boxes indicate that the bag ap-
pears at a different location and misaligns in the first corre-
spondence map Q

0. We solve the problem by max-pooling
for choosing the most relevant pairs.

pooling using the stride of 2:

e

t
ijk =

(
eijk, t = 0

max

0u,v<kp

e

t�1
2i+u,2j+v,k, t = 1, 2, 3, ...

(2)

where kp denotes the kernel size in the pooling stage, and t is
the level of max-pooling.

The final correspondence representation can be defined as
a set of hierarchical correspondence maps {Qt}, where Q

t

denotes the correspondence distribution at level t. Inspired by
[Han et al., 2015], we calculate it by learning the interactions
between all the feature vectors eA,t

ij and e

B,t
ij using the learned

weights ✓t
2:

Q

t
= fCNN([E

A,t
,E

B,t
];✓t

2) (3)

where [E

A,t
,E

B,t
] is the concatenation of the two feature

maps, and the set {Q}t will be augmented by introducing
more semantic-level components from C

A and C

B .
To summarize, the correspondence structure learning by

pooling strategy has two advantages in learning context sim-
ilarities: 1) it effectively improves the cross-view matching
robustness by using a hierarchical multi-stage matching strat-
egy; 2) it makes full use of multi-scale spatial matching con-
sistency by multi-level max pooling. The above two parts are
modelled in a totally data-driven learning scheme, resulting
in the flexibility in practice.

Similarity measurement based on V

A and V

B . Be-
fore matching two images by their correspondence represen-
tations, we have to first measure the similarity given the low-
level feature vectors of the selected pairs. We first construct
the hierarchical feature representations {VA,t} and {VB,t},
which are built from V

A,t and V

B,t in the same way as that
of {EA,t} and {EB,t}. Then the similarity representations
{St} upon the feature representations learn the interactions
between the vectors by the weights ✓t

3:

S

t
= fCNN([V

A,t
,V

B,t
];✓t

3) (4)

Correlation of the images based on {Qt} and {St}. Cor-
relation of the paired images is characterized by evaluating

the similarities of the mutually corresponding semantic com-
ponents after correspondence structure learning. It is formu-
lated as a multi-level matching function with ✓4:

s = fCNN

�
[{St}, {Qt}];✓4

�
(5)

3.4 Unified Correspondence Structure Learning
In principle, image representations and correspondence struc-
ture learning are two correlated and complementary prob-
lems. Namely, better semantic representations contribute to
guiding correspondence network to find more meaningful
structures. Meanwhile, better correspondence structures reg-
ularize feature representation network to learn more effective
features for matching.

Thus we develop a unified end-to-end data-driven frame-
work, where the feature, correspondence and metric repre-
sentations are learned jointly and adaptively in a supervised
setting using the structure illustrated in Figure 2. We train the
network by minimizing the cross-entropy error:

E✓ = � 1

N

NX

n=1

h
ln log

ˆ

ln + (1� ln) log(1� ˆ

ln)

i
(6)

over a training set of N pairs using stochastic gradient de-
scent. ln is the 1/0 label for the input pair Xn while ˆ

ln and
(1�ˆ

ln) is the Softmax activations computed on the two output
nodes of the similarity function s(Xn;✓), namely s0(Xn;✓)
and s1(Xn;✓):

ˆ

ln =

exp(s1(Xn;✓))

exp(s0(Xn;✓)) + exp(s1(Xn;✓))
(7)

The proposed approach is finally simplified to the unified
framework by synthesizing Eq. (1) for semantics-aware im-
age representation and Eqs. (3)-(5) for correspondence-based
image matching, which is defined as the deep correspondence
network (DCN) with ✓ = {✓1, {✓t

2}, {✓
t
3},✓4}:

s(Xn;✓)

=fCNN

�
[{St}, {Qt}];✓4

�

=fCNN

�
[Y

A
,Y

B
];✓4,

�
✓t
3

 
,

�
✓t
2

 �

=fCNN

�
[fCNN(I

A
;✓1), fCNN(I

B
;✓1)];✓4,

�
✓t
3

 
,

�
✓t
2

 �
.

(8)

In summary, the deep correspondence structure learning is
performed to capture the semantics-aware components auto-
matically from the person Re-ID task. We employ convo-
lutional neural networks for robust semantic representations.
The concatenation of feature maps captures correspondence
between images from different camera views and also en-
ables part-wise matching by the correspondence structures,
together with the efficient hierarchical alignment strategy by
max-pooling operations. The models of the two tasks are
learned jointly by combining the appearance and semantic
representation with the correspondence structures to find the
optimal representation of the input image pair to be matched.
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(a) CUHK03 labelled (100 test IDs) (b) CUHK01 (100 test IDs) (c) CUHK01 (486 test IDs)

Figure 4: CMC curves of intra dataset experiments on CUHK03 labelled and CUHK01 dataset. Rank-1 identification rates
are shown in the figure beside the method legend. In the legends of DCSL, “GN” means that we use GoogLeNet for feature
extraction of each image while “AN” stands for AlexNet. We also evaluate the effect of hard negative mining (“hnm”) by
training with or without hard negative mining.

4 Experimental Results
We have implemented our architecture using Caffe [Jia et al.,
2014], which is a widely used deep learning framework in
recent years. We use an NVIDIA TITAN X GPU for training
the networks. It takes around 30 hours for training one DCSL
model and 1.7ms for computing the similarity given a pair of
images.

In this section, we compare our approach with the state-
of-the-art approaches on several datasets. To avoid accidental
results, experiments are conducted on the datasets with 10
random training and testing splits. We evaluate all the ap-
proaches with Cumulative Matching Characteristics (CMC)
curves by single-shot results. The CMC curve characterize a
ranking result for every image in the gallery given the probe
image. We first report results of our proposed model on three
challenging datasets with the same evaluation criteria. Fi-
nally, we report cross domain transfer learning on the trained
networks with cross dataset evaluation.

4.1 Dataset
We evaluate our method on three public datasets, namely
CUHK03(labelled) [Li et al., 2014], CUHK01 [Li et al.,
2012], VIPeR [Gray et al., 2007]. Table 1 shows the descrip-
tion of each dataset and our experimental settings with the
training and testing splits.

Table 1: Datasets and settings in our experiments.

Dataset CUHK03 CUHK01 VIPeR
# identities 1360 971 632
# images 13,164 3,884 1,264
# cam./ ID 2 2 2
# train IDs 1,160 871;485 316
# test IDs 100 100;486 316

Among the three datasets, CUHK03 is a relatively large
dataset, which can cover a number of variations to construct
the spatial configurations and also contain several challeng-
ing situations including illumination changes, cross-view de-
formations, occlusions, etc.

In addition, we also conduct cross-dataset experiments to
evaluate the performance on CUHK01 and VIPeR using the
trained model on CUHK03 and Market-1501 [Zheng et al.,
2015].

4.2 Training the Network
In this section, we use pre-trained AlexNet [Krizhevsky et al.,
2012] and GoogLeNet [Szegedy et al., 2015] models as our
deep architecture for extracting the feature maps as shown
in Figure 2. The parameters of these parts are initialized
with the model trained on ImageNet-1K [Russakovsky et al.,
2014]. In our experiments, we use “norm2” maps of AlexNet
and “inception 5b/output” maps of GoogLeNet to represent
semantics-aware information of each image. To improve the
ability of spatial representations, we remove “pool4/3x3 s2”
layer of GoogLeNet. As a result, given the input shape of
160⇥ 80⇥ 3, the shapes of feature maps which we obtained
are 19⇥9⇥256 in AlexNet and 10⇥5⇥1024 in GoogLeNet.
These feature maps are directly fed to the concatenation layer
to learn the correspondence of the image pair.

In our method, we use stochastic gradient descent for up-
dating the weights of the network. Training pairs are divided
into mini-batches. For training efficiency, we set the base
learning rate as ⌘(0) = 0.01 and use a polynomial decay for
learning rate to train around 100,000 batches of size 100. We
use a momentum of µ = 0.9 and weight decay � = 0.0002.

Data Augmentation. To generate more training pairs, we
also apply the data augmentation strategy for training the neu-
ral network. We randomly perform affine transformation over
the shape of the original images and thus generate 5 aug-
mented images per image for training.

Hard Negative Mining. There still exist some scenarios
that are hard to distinguish, which require more negative sam-
ples for training. To increase the efficiency of model training,
we use the trained model to classify all the negative pairs and
choose the top ranked ones for retraining our network.

Mixture of the DCSL networks. To deal with the dataset
biases when transferring the trained model to real-world ap-
plications, We employ a mixture of DCSL networks to rep-
resent the domains of different distributions inspired by [Ge
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Table 2: Top recognition rate (%) of the various methods over CUHK03 dataset with 100 test IDs, CUHK01 dataset with 100
test IDs, CUHK01 dataset with 486 test IDs with rank = 1, 5, 10. We use the benchmarks provided by [Ahmed et al., 2015] and
some results on CUHK01 with 486 test IDs and VIPeR are not reported.

Methods CUHK03 (100 test IDs) CUHK01 (100 test IDs) CUHK01 (486 test IDs) VIPeR (316 test IDs)
r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10

DCSL 80.20 97.73 99.17 89.60 97.80 98.90 76.54 94.24 97.49 44.62 73.42 82.59
ImprovedDL 54.74 86.50 93.88 65.00 89.00 94.00 47.53 71.60 80.25 34.81 63.61 75.63
KISSME 14.17 37.46 52.20 29.40 60.18 74.44 - - - 19.60 48.00 62.20
FPNN 20.65 50.94 67.01 27.87 59.64 73.53 - - - - - -
LMNN 7.29 19.64 30.74 21.17 48.51 62.98 13.45 31.33 42.25 - - -

et al., 2015]. First we denote �k(Xn;✓e) as the probabil-
ity of the image pair Xn belonging to the k-th component
which can be calculated using parameters ✓e. The output
score of the image pair is finally composed by all the K do-
main components using the weights {�k}Kk=1: s(Xn;✓) =PK

k=1 �ks(k)(Xn;✓(k))) where s(k)(Xn;✓(k)) is the output
score of the k-th DCSL model .

4.3 Experimental Results
We compare our deep correspondence structure learning
(DCSL) method with several methods in recent years, in-
cluding KISSME [Koestinger et al., 2012], FPNN [Li et al.,
2014], ImprovedDL [Ahmed et al., 2015], LDM [Guillaumin
et al., 2009], eSDC [Zhao et al., 2013], LMNN [Weinberger
et al., 2005], mFilter [Zhao et al., 2014a], SalMatch and Pat-
Match [Zhao et al., 2013]. Figure 4 and Table 2 illustrates
the recognition rate of these methods. Figure 1 shows a few
qualitative results.

Comparisons on CUHK03 and CUHK01. From Figure 4
and Table 2, we see that DCSL outperforms the state-of-the-
art methods by more than 20% on the performance of rank-1
accuracy (80.20% vs. 54.74%, 89.60% vs. 65.00%, 76.54%
vs. 47.53%). Deep learning based methods outperform the
traditional methods by its outstanding ability of data-driven
feature learning. Note that the rank-5 recognition rate of
DCSL reaches around 95%, meaning that the trained model
has high probability of finding the correct person from other
cameras given more than 100 candidate images.

Comparisons on VIPeR. The last column of Table 2 il-
lustrates that DCSL is able to compete with the state-of-
the-art methods even though the training samples are lim-
ited for deep neural networks. We have a relative better
performance than deep learning based method ImprovedDL
(44.62% vs. 34.81%), which employs the pre-trained model
on the CUHK03 and CUHK01 dataset.

Effect of different feature extraction models. We both
try AlexNet (AN) and GoogLeNet (GN) models for feature
extraction with the same correspondence networks. Figure
4(a) illustrates that the performance of GoogLeNet exceeds
that of AlexNet due to its outstanding ability to abstract the
image features.

Effect of hard negative mining. Hard negative mining
also has positive impact on the performance of our DCSL
method by mining more training pairs for further tuning the
model. We see the absolute gain over 1% compared with the
same model without hard negative mining, as shown in Figure

4(a)(b).

Table 3: Top recognition rate (%) of the cross dataset experi-
ments.

Test Set Training Set Model r = 1 r = 5 r = 10

CUHK01

CUHK03 1-DCSL 64.22 86.69 93.31
Market 1-DCSL 52.00 71.00 78.00
CUHK03+Market 1-DCSL 69.14 85.71 91.57
CUHK03+Market m-DCSL 72.48 88.64 94.31

VIPeR

CUHK03 1-DCSL 14.24 34.18 45.25
Market 1-DCSL 17.82 35.28 44.46
CUHK03+Market 1-DCSL 21.89 39.24 49.68
CUHK03+Market m-DCSL 23.40 42.11 55.80

Results of cross-dataset evaluations. We both use the sin-
gle DCSL model (1-DCSL) and a mixture of DCSL models
(m-DCSL) for the cross-dataset evaluations. Table 3 illus-
trates that our proposed DCSL model is robust to be gener-
alized to other target domains. With the mixture models of
DCSL, we are able to deploy our proposed method to the real-
world applications. Note that the rank-1 recognition rate of
CUHK01 using the model trained by CUHK03 and Market-
1501 can reach the score of 69.14%, which outperforms most
of the state-of-the-art methods that conduct training on the
CUHK01.

5 Conclusion
In this paper, we propose and evaluate a unified approach for
person Re-ID that jointly learns a deep convolutional neu-
ral network for representing the semantics-aware information
of the image as well as a network for robust image match-
ing based on correspondence structure learning. Our model
outperforms the state-of-the-art approaches by a large mar-
gin and has a considerable computing efficiency. This work
demonstrates that unified deep neural networks can be effec-
tive for general person Re-ID and can be easily generalized
through the mixture of the knowledge from different domains.
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