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Abstract
Video-based person re-identification (re-id) is an
important application in practice. However, only
a few methods have been presented for this prob-
lem. Since large variations exist between different
pedestrian videos, as well as within each video, it’s
challenging to conduct re-identification between
pedestrian videos. In this paper, we propose a
simultaneous intra-video and inter-video distance
learning (SI2DL) approach for video-based person
re-id. Specifically, SI2DL simultaneously learns an
intra-video distance metric and an inter-video dis-
tance metric from the training videos. The intra-
video distance metric is to make each video more
compact, and the inter-video one is to make that
the distance between two truly matching videos
is smaller than that between two wrong matching
videos. To enhance the discriminability of learned
metrics, we design a video relationship model, i.e.,
video triplet, for SI2DL. Experiments on the pub-
lic iLIDS-VID and PRID 2011 image sequence
datasets show that our approach achieves the state-
of-the-art performance.

1 Introduction
The task of person re-identification (re-id) is to match pedes-
trian images or videos observed from multiple cameras. It
has recently drawn much attention in the computer vision
and machine learning communities due to its importance in
the automated video surveillance and forensics. In recent
years, various methods have been presented to tackle this
problem. Most of the existing methods focus on the image-
based person re-id [Ahmed et al., 2015; Jing et al., 2015;
Li et al., 2015a; Liao et al., 2015]. These methods can be fur-
ther divided into two categories: feature learning and distance
learning methods. The former aims to extract distinctive fea-
tures from pedestrian images, e.g., salience features [Zhao et
al., 2013], mid-level features [Zhao et al., 2014], and salient
color features [Yang et al., 2014]. The distance learning
methods focus on learning effective distance metrics, which
can maximize matching accuracy regardless the choice of
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Figure 1: Example person sequences in the (a) iLIDS-VID,
(b) PRID 2011 datasets. Sequences in the same row are from
the same person. Only five frames are shown for each se-
quence.

representation, to measure the similarity between two images.
Popular distance learning methods include large margin near-
est neighbor (LMNN) [Weinberger and Saul, 2009], the keep
it simple and straightforward metric (KISSME) [Kostinger et
al., 2012] and relative distance comparison (RDC) [Zheng et
al., 2013], and so on.

Since videos inherently contain more information than in-
dependent images, video-based person re-id has attracted
much attention. Recently, two methods have been pre-
sented for video-based person re-id [Wang et al., 2014;
Liu et al., 2015]. Both methods focus on extracting spatial-
temporal features to represent each pedestrian video, and then
perform video-based person re-id with these features. Specif-
ically, they break down each video to generate several frag-
ments (walking cycles), and extract spatial-temporal feature
from each fragment, and then represent each video with a
set of the extracted spatial-temporal features. Therefore, re-
identification between two videos can be considered as a set
to set matching problem. In practice, due to changes in il-
lumination, pose, viewpoint, occlusions, there not only ex-
ist severe variations between different pedestrian videos, but
also large variations between the frames within each video.
Figure 1 shows some demo person sequences in the iLIDS-
VID [Wang et al., 2014] and PRID 2011 [Hirzer et al., 2011]
datasets. These variations determine that there still exist large
variations between spatial-temporal features extracted from
different videos (called inter-video variations), and between
different spatial-temporal features extracted from the same
video (called intra-video variations). However, both meth-
ods don’t deal with inter-video and intra-video variations si-
multaneously, which will directly hamper their performance.
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Set-based distance learning is an effective technique to
reduce the variations between sets. Recently, a few set-
based distance learning methods have been presented, includ-
ing manifold discriminant analysis (MDA) [Wang and Chen,
2009], set-based discriminative ranking (SBDR) [Wu et
al., 2012], covariance discriminative learning (CDL) [Wang
et al., 2012], set-to-set distance metric learning (SSDML)
[Zhu et al., 2013] and localized multi-kernel metric learning
(LMKML) [Lu et al., 2013].

1.1 Motivation and Contribution
Existing distance learning based person re-id methods
[Kostinger et al., 2012; Zheng et al., 2013] have demonstrated
the effectiveness of distance learning technique for the person
re-id task. However, these methods were designed for image-
based person re-id, rather than for video-based person re-id
particularly. Although a pedestrian video can be regarded as a
sample set, existing set-based distance learning methods were
not designed to tackle the video-based person re-id. Due to
the existence of large intra-video and inter-video variations
in the pedestrian video data, it’s necessary and meaningful
to investigate how to learn the more discriminative distance
metric by reducing the influence of these variations.

The main contribution of this paper can be summarized as
follows.

(1) We propose a novel video-based person re-id approach,
namely simultaneous intra-video and inter-video distance
learning (SI2DL). To the best of our knowledge, this is the
pioneer work to solve video-based person re-id by employing
set-based distance learning technique.

(2) We design a new set-based distance learning model,
which aims to learn a pair of intra-video and inter-video dis-
tance metrics to deal with the intra-video and inter-video vari-
ations, respectively. By using the learned intra-video met-
ric, each video becomes more compact. Then by using the
learned inter-video metric, the distance between truly match-
ing videos becomes smaller than that between wrong match-
ing videos.

(3) To enhance the discriminability of the learned inter-
video distance metric, we design a new video relationship
model, i.e., video triplet, which is constituted by a pair of
truly matching videos and an “impostor” video.

(4) We evaluate the performance of SI2DL and related
methods on the public iLIDS-VID and PRID 2011 pedestrian
sequence datasets. Experimental results demonstrate that our
approach achieves the state-of-the-art performance.

2 Related Work
In this section, we briefly review two types of works that
are related to our approach: (1) Video based person re-
identification methods, (2) Set-based distance learning meth-
ods.

Video-based Person Re-identification. Video-based per-
son re-identification is an important application in practice.
Some early researches related to video-based person re-
identification include [Cong et al., 2009; Bedagkar-Gala and
Shah, 2011]. Recently, video-based person re-identification
methods [Wang et al., 2014] and [Liu et al., 2015] are pre-
sented. Both methods focus on extracting spatio-temporal

features from videos. Method in [Wang et al., 2014] divides
each video into several fragments by employing the flow en-
ergy profile signal, and then learns a ranking model with the
HOG3D features extracted from these fragments. Method in
[Liu et al., 2015] divides each video sequence into small seg-
ments corresponding to the action primitives, then each seg-
ment is further divided to a series of body-action units, fi-
nally, Fisher vectors extracted from all body-action units are
concatenated as the representation of the video. The ma-
jor differences between our SI2DL approach and methods
[Wang et al., 2014; Liu et al., 2015] are two-folds. Firstly,
these methods focus on extracting spatial-temporal features,
while SI2DL focuses on learning a pair of distance metrics
simultaneously. Secondly, these methods don’t deal with the
intra-video and inter-video variations simultaneously, while
SI2DL copes with them by learning an intra-video distance
metric and an inter-video distance metric.

Set-based Distance Learning. Video-based classification
is an important problem in several computer vision tasks.
Since a video can be considered as an image set, a few set-
based distance learning methods have been presented to solve
this problem [Huang et al., 2015c]. Method in [Wang and
Chen, 2009; Huang et al., 2015b] models each set as a man-
ifold, and learns an embedding space to maximize manifold
margin. Methods [Wang et al., 2012] learn a set-to-set dis-
tance metric by modeling each set as a covariance matrix.
Method [Zhu et al., 2013] extends the point-to-point distance
learning to the set-to-set distance learning by modeling each
set as a convex hull. The major differences between our
approach and these methods can be summarized into two
aspects. Firstly, these methods are designed for image clas-
sification tasks (e.g., face recognition and object categoriza-
tion), while our approach is designed for video-based person
re-id particularly. Secondly, these methods learn a common
distance metric to deal with the within-set and between-set
variations, while our approach learns a pair of distance met-
rics to cope with intra-video and inter-video variations.

3 Simultaneous Intra-video and Inter-video
Distance Learning (SI2DL)

3.1 Problem Formulation
Denote by X = [X1, ..., Xi, ..., XK ] a set of p-dimensional
training samples from K pedestrian videos, where Xi 2
Rp⇥ni is the training sample set corresponding to the ith

video, and ni is the sample number in Xi. Denote by xij

the jth sample in Xi. Since there exist large variations both
within each video and between different videos, it’s not an
easy task to directly match between two videos. Intuitively,
reducing the intra-video variation is beneficial to enhancing
the inter-video separability. If we can make each video more
compact, it will be easier to learn a video-to-video distance
metric that has favorable discriminative capability. Therefore,
we intend to jointly learn an intra-video distance metric and
an inter-video distance metric from the training samples. The
intra-video distance metric is to increase the compactness of
each video, and the inter-video one is to enhance the separa-
bility of videos after intra-video distance learning. The basic
idea of our SI2DL approach is illustrated in Figure 2.
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Figure 2: Illustration of our SI2DL approach. Circles containing the same shape represent videos from the same person.

Therefore, we design the framework of SI2DL as follows:

J(V,W ) = argmin
V,W

f(V,X) + µg(W,V,X)

s.t. kvik22  1, kwik22  1
(1)

where V 2 Rp⇥K1 and W 2 RK1⇥K2 separately represent
the intra-video and inter-video distance metrics to be learned,
K1 and K2 are positive integers. vi and wi are the ith column
vectors in V and W , respectively. f(V,X) is the intra-video
congregating term, which requires that each sample should
move close to the center of video to which it belongs. The
second term g(W,V,X) is the inter-video discriminant term
to ensure that the distance between two truly matching videos
is smaller than that between two wrong matching videos. µ
is a balancing factor. The constraints are used to restrict the
scale of V and W .

There are several models that can be employed to represent
a set [Li et al., 2015b]. Considering that the intra-video dis-
tance learning results should be able to be directly used for
learning the inter-video distance metric, we select the first-
order statistics, which shows the averaged position of the
sample set in the high dimensional space, to represent each
video. For feature set Xi, its first-order statistics, denoted by
mi, can be computed with (2):

mi =
1
ni

niX

j=1

xij (2)

Therefore, we design f(V,X) as follows:

f(V,X) =
1
N

KX

i=1

niX

j=1

���V T (xij �mi)
���
2

2
(3)

where N is the total image number in X , mi represents the
first-order statistics of Xi. g(W,V,X) is designed as follows:

g(W,V,X)=
1
|D|

X

<i,j,k>2D

(
���WT

V

T (mi�mj)
���
2

2
�

⇢

���WT
V

T (mi�mk)
���
2

2
)

(4)

where D represents the collection of video triplets, with each
triplet consisting of a truly matching video pair and one of
its “impostor” videos under V . Detailed information about

the construction of a video triplet can be found in Defi-
nition 1. |D| denotes the number of video triplets in D.
⇢ = exp(�kV T (mi�mk)k22/kV T (mi�mj)k22) is a penalty
factor. By substituting (3) and (4) into (1), the objective func-
tion of our approach can be written as:

min

V,W

1
N

KX

i=1

niX

j=1

���VT(xij�mi)
���
2

2
+

µ

|D|
X

<i,j,k>2D

(
���WT

V

T(mi�mj)
���
2

2

�⇢

���WT
V

T (mi�mk)
���
2

2
)

s.t. kvik22  1, kwik22  1
(5)

The learned intra-video distance metric V ensures that all
samples in each video move close to the corresponding first-
order statistics, such that the first-order statistics can better
represent each video, which will facilitate the learning of
inter-video distance metric W . Furthermore, W is learned
by exploiting the information provided by impostor videos
according to the characteristics of pedestrian data, and there-
fore owns favorable discriminative ability.
Definition 1 (Video Triplet) Given the intra-video distance
metric V and videos Xi, Xj and Xk as well as their cor-
responding first-order statistics representations mi, mj and
mk, where Xj is a true matching of Xi, while Xk is a wrong
matching of Xi. If kV T (mi �mk)k22 < kV T (mi �mj)k22,
Xk is called an impostor video of Xi under V , then Xi, Xj

and Xk constitute a video triplet, denoted by < i, j, k >.

3.2 The Optimization of SI2DL
The objective function (5) is not jointly convex to (V , W ). To
update V and W , we introduce two variable matrices A and
B, and relax (5) to the following problem:

min

V,W,A,B

1
N

KX

i=1

niX

j=1

���VT(xij�mi)
���
2

2
+
���WT

A

���
2

F
�
���WT

B

���
2

F

+⌧1

���V T
M1�A

���
2

F
+ ⌧2

���V T
M2 �B

���
2

F

s.t. kvik22  1, kwik22  1

(6)

where M1 and M2 are matrices with corresponding columns
being respectively

q
µ
|D|(mi�mj) and

q
µ⇢
|D| (mi�mk), <
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i, j, k >2 D. k · kF represents the Frobenius norm. Then we
can solve (6) by updating A, B, V and W iteratively. Detailed
steps are as follows.

• Update A and B by fixing V and W .
Firstly, we should initialize V and W . Here, V is initial-

ized by solving (7).

min

V

KX

i=1

niX

j=1

���VT(xij�mi)
���
2

2
, s.t. V

T
V = I (7)

By constructing the Lagrange function and setting the deriva-
tive to zero, we get

Q1V = �V (8)
where Q1 =

Pn
i=1

Pni

j=1(xij �mi)(xij �mi)T . It is clear
that (8) is an eigen-decomposition problem and can be solved
easily. We select eigenvectors corresponding to the smallest
K1 eigenvalues as V . After initializing V , we initialize W by
solving (9):

min

W

X

<i,j,k>2D

(
���WT

V

T (mi�mj)
���
2

2
�⇢

���WT
V

T(mi�mk)
���
2

2
)

s.t. W

T
W = I

(9)

Similar to (7), this problem can also be solved by eigen-
decomposition. Finally, W is set as the eigenvectors corre-
sponding to the smallest K2 eigenvalues.

When V and W are fixed, A and B can be easily obtained
by solving problems (10) and (11), respectively.

min

A

���WT
A

���
2

F
+ ⌧1

���V T
M1 �A

���
2

F
(10)

min

B
�

���WT
B

���
2

F
+ ⌧2

���V T
M2 �B

���
2

F
(11)

• Update V by fixing A, B and W .
When A, B and W are fixed, the objective function regard-

ing V can be written as
min

V
h(V ), s.t. kvik22  1 (12)

where

h(V)=
1
N

KX

i=1

niX

j=1

���VT(xij�mi)
���
2

2
+⌧1

���VT
M1�A

���
2

F
+⌧2

���VT
M2�B

���
2

F

(13)
We optimize (12) with a similar way as [Gu et al., 2014], i.e.,
introducing a variable S:

min

V,S
h(V ), s.t. V = S, ksik22  1 (14)

The optimal solution of (14) can be obtained by the ADMM
algorithm:8
><

>:

V =argmin
V

h(V ) + �kV � S + Pk2F
S = argmin

S
� kV � S + Pk2F , s.t. ksik22  1

P =P + V � S, update � if appropriate.

(15)

where the initial value of P is a zero matrix.
• Update W by fixing A, B and V .
By fixing A, B and V , the objective function regarding W

can be written as
min

W

���WT
A

���
2

F
�

���WT
B

���
2

F
s.t. kwik22  1 (16)

Similar to (12), problem (16) can also be solved with the
ADMM algorithm by introducing a variable S. The proposed
SI2DL algorithm is summarized in Algorithm 1.

Algorithm 1 Simultaneous intra-video and inter-video dis-
tance learning (SI2DL)
Require: Training sample set X
Ensure: The learned distance metrics V and W

1: Initialize V and W by Eq. (7) and (9), respectively;
2: while not converge do
3: Fix V and W , update A and B by (10) and (11), re-

spectively;
4: Fix A, B and W , update V according to (15);
5: Fix A, B and V , update W by Eq. (16);
6: end while
7: return V and W ;

1 2 3 4 5 6 7 8 9 10
6

6.5

7

7.5

Iteration Number

En
er

gy

Figure 3: The convergence curve of SI2DL on the PRID 2011
dataset.

3.3 Complexity and Convergence
In the training phase of SI2DL, V and W are firstly ini-
tialized, and then V and W are updated alternatively. The
time complexity of initializing V and W are respectively
O(Np2+p3) and O(L(K1p+K1

2)+K1
3), where L = |D|.

In each iteration, M1M1
T and M2M2

T as well as Q1 are not
changed, thus the time complexities of updating A, B, V and
W are O(K1

2K2+K1
3+K1

2p), O(K1
2K2+K1

3+K1
2p),

O(K1p
2+T1(p2K1+p3)) and O(K1p

2+K1
2p+T2(K1

3+
K1

2K2)), respectively, where T1 and T2 are the iteration
numbers in ADMM algorithm for updating V and W , respec-
tively. We experimentally found that in most cases T1 and T2

are less than 10. In practice, the dimension p and N are much
smaller than L.

The objective function in (6) is a bi-convex problem for
{(V , W ), (A, B)}, i.e., by fixing (A, B) the function is con-
vex for (V , W ), and by fixing (V , W ) the function is convex
for (A, B). The convergence of such a problem has already
been intensively studied in [Gorski et al., 2007]. Figure 3
shows the convergence curve of our algorithm on the PRID
2011 dataset. One can see that the energy drops quickly and
becomes stable after 3 iterations. In most of our experiments,
our algorithm will converge in less than 5 iterations.

3.4 Video-based Person Re-identification with the
Learned Distance Metrics

With the learned intra-video and inter-video distance metrics
(V , W ), we can perform video-based person re-identification
easily. Let Y = [Y1, ..., Yi, ..., Yn] be a set of p-dimensional
samples from n gallery pedestrian videos, where Yi 2 Rp⇥li

is the sample set corresponding to the ith gallery video, and
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li is the number of samples in Yi. Denote by Zi 2 Rp⇥ni

the sample set corresponding to the ith probe video, where ni

is the number of training samples in Zi. Let yij (zij) repre-
sent the jth sample in Yi (Zi). Detailed re-identifying steps
between Zi and Y are as follows.

(1) Calculating the first-order statistics representations of
Zi and each gallery video Yi under V and W according to
Eq. (17).

r(Zi) =
1

ni

niX

j=1

WTV T zij (17)

(2) Computing the distance between the probe video and
each gallery video by kr(Zi)� r(Yk)k22 , k = 1, 2, ..., n.

(3) Sorting the obtained distances, and the gallery video
with the smallest distance is the true matching of Zi.

4 Experimental Results
To evaluate the effectiveness of our approach, we conduct
extensive experiments on two publicly available person se-
quence datasets, including iLIDS-VID [Wang et al., 2014]
and PRID 2011 [Hirzer et al., 2011].

4.1 Experimental Settings
Baselines. We compare our approach with the state-of-the-art
video-based person re-id methods, including discriminative
video fragments selection and ranking (DVR) [Wang et al.,
2014], and its two enhancements Salience+DVR and MS-
Colour&LBP+DVR [Wang et al., 2014], spatial-temporal
fisher vector representation (STFV3D) and its enhancement
method STFV3D+KISSME [Liu et al., 2015].

Feature Extraction. In experiments, we employ the effec-
tive feature (i.e., STFV3D) provided by the author of [Liu et
al., 2015] for both the iLIDS-VID and PRID 2011 datasets,
which is the latest pedestrian video feature reported in exist-
ing video-base person re-id works. In particular, each video
is represented with a sample set, with each sample being a
Fisher vector extracted from a waling cycle. The dimension-
ality of each sample is 2208 and 2512 in the iLIDS-VID and
PRID 2011 datasets, respectively.

Parameter Settings. There are three parameters in our
SI2DL model, i.e., µ, ⌧1 and ⌧2. In experiments, we choose
these parameters by 5-fold cross-validation on each dataset.
With respect to K1 and K2, we set them as (2200, 80) for
iLIDS-VID, and (2500, 100) for PRID 2011, respectively.
The choice of the values of K1 and K2 will be discussed in
Section 4.4.

Evaluation Settings. We follow the evaluation protocol
in [Wang et al., 2014] for both iLIDS-VID and PRID 2011
datasets. In particular, we randomly split all sequence pairs
into two sets of equal size, with one for training and the other
for testing. Then we further select sequences from the first
camera in the testing set to form the probe set, and those from
the other camera are used as the gallery set. We employ the
standard cumulated matching characteristics (CMC) curve as
our evaluation metric, and report the Rank-k average match-
ing rates of 10 trials.

4.2 Evaluation on the iLIDS-VID Dataset
The iLIDS-VID dataset [Wang et al., 2014] consists of 600
image sequences for 300 persons, with each person having
a pair of image sequences from two camera views. The
length of each image sequence ranges from 22 to 192 frames,
with an average number of 71. Due to clothing similarities
among people, lighting and viewpoint variations across cam-
era views, cluttered background and occlusions, the iLIDS-
VID dataset is very challenging. Figure 1 (a) shows some
example image sequences in iLIDS-VID. The parameters µ,
⌧1 and ⌧2 are set as 0.00005, 0.2 and 0.2, respectively.
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Figure 4: CMC curves of average matching rates on the
iLIDS-VID and PRID 2011 datasets. Rank 1 matching rate is
marked before the name of each approach.

Figure 4 (a) shows the CMC curves of the compared meth-
ods. Table 1 shows the detailed rank-1, rank-5, rank-10, and
rank-20 matching rates of all the compared methods. We
can observe that our SI2DL approach achieves higher match-
ing rates in each rank, especially the rank-5 matching rate is
improved by at least 9.4% (81.1%-71.7%). Compared with
the competing methods, the main advantage of SI2DL is that
SI2DL learns a pair of distance metrics with favorable dis-
criminability, which can be used for reducing the intra-video
and inter-video variations simultaneously.

Table 1: Top r ranked matching rates (%) on iLIDS-VID
Method r=1 r=5 r=10 r=20
DVR 23.3 42.4 55.3 68.4
Salience+DVR 30.9 54.4 65.1 77.1
MS-Colour&LBP+DVR 34.5 56.7 67.5 77.5
STFV3D 37.0 64.3 77.0 86.9
STFV3D+KISSME 44.3 71.7 83.7 91.7
SI2DL 48.7 81.1 89.2 97.3

4.3 Evaluation on the PRID 2011 Dataset
The PRID 2011 person sequence dataset [Hirzer et al., 2011]
consists of image sequences recorded from two disjoint cam-
eras (Cam-A and Cam-B). Cam-A and Cam-B contain 385
and 749 person sequences, respectively. Each sequence con-
tains 5 to 675 image frames, with an average number of 84.
Among them, the first 200 persons appear in both views. For
the PRID 2011 dataset, the sequence pairs with less than
20 frames are ignored due to the requirement on the se-
quence length for extracting walking cycles [Liu et al., 2015].
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Table 2: Top r ranked matching rates (%) on PRID 2011
Method r=1 r=5 r=10 r=20
DVR 28.9 55.3 65.5 82.8
Salience+DVR 41.7 64.5 77.5 88.8
MS-Colour&LBP+DVR 37.6 63.9 75.3 89.4
STFV3D 42.1 71.9 84.4 91.6
STFV3D+KISSME 64.1 87.3 89.9 92.0
SI2DL 76.7 95.6 96.7 98.9

Some example person sequences of the PRID 2011 dataset
are shown in Figure 1 (b). The parameters µ, ⌧1 and ⌧2 are
set as 0.00005, 0.1 and 0.1, respectively.

Table 2 and Figure 4 (b) report the top ranked matching
rates of compared methods on the PRID 2011 dataset. It is ob-
served that our SI2DL approach obtains much higher match-
ing rates than other methods. In particular, taking the rank-1
matching rate as an example, SI2DL improves the average
matching rate at least by 12.6% (=76.7%-64.1%).

4.4 Discussion
Learning a pair of distance metrics or a common one?
Our approach learns an intra-video distance metric and an
inter-video distance metric to handle the intra-video and inter-
video variations, respectively. To evaluate the effectiveness
of the manner that we learn the distance metrics, we compare
SI2DL with the modified SI2DL version that learns a common
distance metric. We call the modified version SI2DL c. Fig-
ure 5 reports the rank-1 matching rates of SI2DL and SI2DL c
on the iLIDS-VID and PRID 2011 datasets. We can see
that SI2DL significantly outperforms SI2DL c, which indi-
cates that the manner of learning a common distance metric
to catch both the intra-video and inter-video variations will
lead to a compromise to the discriminability of the learned
distance metric. Therefore, we should learn different distance
metrics to handle variations of different levels.

Dimensionality of intra-video and inter-video distance
metrics. Since the inter-video distance learning depends on
the results of intra-video distance learning, selecting proper
dimensionality for the intra-video metric (V ), i.e., K1, is im-
portant in the learning of our SI2DL model. Since V is ini-
tialized by Eq. (8), which is solved by eigen-decomposition,
the value of K1 should be smaller than the sample dimen-
sion, i.e., 2512 for PRID 2011. In experiments, we found
that the value of K1 should be close to the dimensionality
of each training sample (p), while K2 should be small. Fig-
ure 6 shows the Rank-1 matching rates of SI2DL with K1 in
the range [2400, 2500] and K2 in the range [50, 120] on the
PRID 2011 dataset. We can see that SI2DL is not very sensi-
tive to the choices of K1 and K2 in the observed ranges, and
SI2DL achieves the best performance when K1 and K2 are
separately set as 2500 and 100. Similar performance-stable
ranges can be observed on the iLIDS-VID dataset.

Comparison with set-based distance learning methods.
In experiments, we also compared SI2DL with three state-
of-the-art set-based distance learning methods, including co-
variance discriminative learning (CDL) [Wang et al., 2012],
set-to-set distance metric learning (SSDML) [Zhu et al.,
2013], and hybrid euclidean-and-riemannian metric learning
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Figure 6: Rank 1 matching rates of SI2DL versus different
values of K1 and K2 on the PRID 2011 dataset.

(HERML) [Huang et al., 2015a]. These methods used the
same features and settings as SI2DL. Experimental results
showed that the competing methods obtain rather poor match-
ing rates, so the detailed results of these methods are not pro-
vided. The main reasons for this phenomenon can be summa-
rized into three aspects: (i) These methods are designed for
image classification tasks, where each class has several image
sets (more than two). However, in the setting of video-based
person re-id, there is only one video per person for one cam-
era. (ii) They assume that training and testing sets contain the
same classes, and conduct the matching between testing sam-
ples and training samples. However, in video-based person
re-id, people in the training set will not appear in the testing
set, and the matching is conducted between two videos from
different cameras. (iii) They learn a common distance metric
and don’t deal with the intra-video variations particularly. All
these factors will bring large difficulties to them.

5 Conclusion
This paper proposes a novel set-based distance learning ap-
proach for video-based person re-identification, which simul-
taneously learns a pair of intra-video and inter-video distance
metrics. The learned intra-video distance metric can make
each video more compact, such that the extracted first-order
statistics feature can better represent each video. The learned
inter-video distance metric can make the distance between
truly matching videos smaller than that of wrong matching
videos. Experimental results on the public iLIDS-VID and
PRID 2011 datasets show that our approach achieves the best
matching rates, and also demonstrate the effectiveness of the
manner of learning a pair of distance metrics to deal with
intra-video and inter-video variations.
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