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Abstract

An important approach for efficient inference in
probabilistic graphical models exploits symmetries
among objects in the domain. Symmetric variables
(states) are collapsed into meta-variables (meta-
states) and inference algorithms are run over the
lifted graphical model instead of the flat one. Our
paper extends existing definitions of symmetry by
introducing the novel notion of contextual symme-
try. Two states that are not globally symmetric,
can be contextually symmetric under some specific
assignment to a subset of variables, referred to as
the context variables. Contextual symmetry sub-
sumes previous symmetry definitions and can rep-
resent a large class of symmetries not representable
earlier. We show how to compute contextual sym-
metries by reducing it to the problem of graph iso-
morphism. We extend previous work on exploiting
symmetries in the MCMC framework to the case
of contextual symmetries. Our experiments on sev-
eral domains of interest demonstrate that exploit-
ing contextual symmetries can result in significant
computational gains.

1

An important approach for efficient inference in probabilis-
tic graphical models exploits symmetries in the underlying
domain. It is especially useful for statistical relational learn-
ing models such as Markov logic networks [Richardson and
Domingos, 2006], which exhibit repeated sub-structures —
many objects are indistinguishable from each other and their
associated relations have identical probability distributions.
Lifted inference algorithms (see [Kimmig et al., 2015] for
a survey) exploit this phenomenon by grouping symmetric
states (variables) into meta-states (meta-variables) and per-
forming inference in this reduced (lifted) graphical model.
Early approaches to lifted inference devised first order ex-
tensions of propositional inference algorithms. These include
approaches for lifting exact inference algorithms such as vari-
able elimination [Poole, 2003; de Salvo Braz et al., 2005],
weighted model counting [Gogate and Domingos, 2011],
knowledge compilation [Van den Broeck et al., 2011], as
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well as lifting approximate algorithms such as belief prop-
agation [Singla and Domingos, 2008; Kersting et al., 2009;
Singla er al., 2014], Gibbs sampling [Venugopal and Gogate,
2012] and importance sampling [Gogate et al., 2012]. In all
these approaches, the lifting technique is tied to the specific
algorithm being considered. More recently, another line of
work [Jha er al., 2010; Bui er al., 2013; Niepert and Van den
Broeck, 2014; Sarkhel er al., 2014; Kopp et al., 2015] has
started looking at the notion of symmetry independent of the
inference technique. In several cases, these symmetries are
compactly represented using permutation groups. The com-
puted symmetries have been used downstream for lifting ex-
isting algorithms such as variational inference [Bui er al.,
2013], (integer) linear programming [Noessner et al., 2013;
Mladenov et al., 2014], and Markov chain Monte Carlo
(MCMC) [Niepert, 2012; Van den Broeck and Niepert, 20151,
which is our focus.

A key shortcoming of existing algorithms is that they only
identify and exploit sets of variables (states) that are sym-
metric unconditionally. Our goal is to extend the notion of
symmetries to contextual symmetries, sets of states that are
symmetric under a given context (variable-value assignment).
Our proposal is inspired by the extension of conditional inde-
pendence to context-sensitive independence [Boutilier et al.,
1996], and analogously extends unconditional symmetries to
contextual. As our first contribution, we develop a formal
framework to define contextual symmetries. We also present
an algorithm to compute contextual symmetries by reducing
the problem to graph isomorphism.

Figure 1(a) illustrates an example of contextual symme-
tries. A couple A and B may like to go to a romantic movie.
They are somewhat less (equally) likely to go alone compared
to when they go together. However if the movie is a thriller,
A may be less interested in going by herself, but B may not
change his behavior. Hence, A and B are symmetric to each
other if the movie is romantic, but not symmetric if the movie
is a thriller. We will call the A and B contextually symmetric
conditioned on the movie being romantic.

Finally, our paper extends the line of work on Orbital
MCMC [Niepert, 2012] — a state-of-the-art approach to ex-
ploit unconditional symmetries in a generic MCMC frame-
work. Orbital MCMC achieved reduced mixing times com-
pared to Gibbs sampling in domains where such symmetries
exist. We design CON-MCMC, an algorithm that uses con-
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Figure 1: Movie Network a): Contextual Symmetry when
Genre is Romantic b) Orbital Symmetry

textual symmetries within the MCMC framework. Our ex-
periments demonstrate that on various interesting domains
(relational and propositional), where contextual symmetries
may be present, CON-MCMUC can yield substantially gains
compared to Orbital MCMC and Gibbs Sampling. We also
release a reference implementation of CON-MCMC sampler
for wider use.!

2 Background

Let X = {Xi,...,X,} be a finite set of discrete random
variables. For ease of exposition, we consider Boolean ran-
dom variables although our analysis extends more generally
to n-ary random variables. We denote s € {0,1}" to repre-
sent a state. A graphical model G over X can be represented
as the set of pairs { fx, ws} ", Where fj is a formula (fea-
ture) over a subset of variables in X’ and wy, is the associated
weight [Koller and Friedman, 2009]. This is the represen-
tation used in several existing models such as Markov logic
networks [Domingos and Lowd, 2009].

2.1 Symmetries in Graphical Models

Some states may be symmetric; thus, they will have the same
joint probability. This fact can be exploited in inference algo-
rithms. To define symmetries, we make use of the formalism
of automorphism groups, which are generic representations
for symmetries between any set of objects. Automorphism
groups over graphical models are defined using another alge-
braic structure called a permutation group.

A permutation 6 is a bijection from the set X onto itself.
We use 6(X) to denote the application of 6 to the element
X € X. We also overload 6 by denoting 6(s) as the permu-
tation of a state s in which each component random variable
X is permuted using 6(X).

A permutation group O is a set of permutations which con-
tains the identity element, has a unique inverse for every ele-
ment in the set, and is closed under composition operator.

Following previous work [Niepert, 2012] we define sym-
metries and automorphism groups in graphical models as fol-
lows:

"https://github.com/dair-iitd/con-mcmc
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Definition 2.1. A symmetry of a graphical model G over
the set X is represented as the permutation 0 of the variables
in X that maps G back on to itself, i.e. results in the same set
of weighted formulas.

Definition 2.2. An automorphism group of a graphical
model G is defined as the permutation group (©) over G such
that each 6 € © is a symmetry of G.

This definition of an automorphism group of a graphical
model is analogous to that of an automorphism group of an
edge-colored graph, where variables in G act as vertices in
graph, features act as edges (or hyperedges) and weights act
as colors on edges. We next define an orbit of a state.

Definition 2.3. The orbit (I') of a state s under the automor-
phism group © is defined as all the states that can be reached
by applying a symmetry 6 € © on the variables of s, i.e.,
To(s)={s €{0,1}" |30 € O s.t. 6(s) = s'}.

Henceforth, we will refer to these unconditional symme-
tries of a graphical model as orbital symmetries. Let P(s)
be the probability distribution defined by model G over the
states.

Theorem 2.1. If © is an automorphism group of G, then
Vs € To(s) : P(s) = P(s'), i.e. orbital symmetries of a
graphical model are probability preserving transformations.

Therefore, the automorphism group © for a graphical
model is also referred to as an automorphism group for the
underlying probability distribution. The symmetries of a
graphical models as defined above can be obtained via solv-
ing a graph automorphism problem. Though the problem is
not known to be in P or NP-complete,2 efficient solutions
can be obtained using the software such as Saucy and Nauty
[Darga et al., 2008; McKay and Piperno, 2014].

2.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a popular approach
for approximate inference in graphical models. A Markov
chain is set up over the state space such that its stationary
distribution is the same as the underlying probability distri-
bution. An Orbital Markov chain [Niepert, 2012] exploits the
orbital symmetries of a model by setting up a Markov chain
combining the original MCMC moves with orbital moves.
Let M, denote an orbital Markov chain and M be the cor-
responding original Markov chain. Then, given the current
state s(*), the next state s(*+1) in M, is sampled as follows:

e original move: sample an intermediate state s’(‘*1) from
5(*) based on the transition probability in M.

e orbital move: sample a next state s(**1) uniformly at
random from the orbit F@(S/(t+1))'

Orbital MCMC converges to the same stationary distribution
as the original MCMC and is shown to have significantly
faster convergence properties.

%A quasipolynomial time algorithm [Babai, 2015] has been pro-
posed recently for the related graph isomorphism problem which
remains to be verified.



3 Contextual Symmetries

Our work proposes the novel notion of contextual symmetries
— symmetries that only hold under a given context. We now
extend the definitions of the previous section to their contex-
tual counterparts. First we define a context.

Definition 3.1. A context C' is a partial assignment, i.e., a
set of pairs (X;, x;), where X; € X and z; € {0, 1}, and no
X is repeated in the set.

For example, in Figure 1, we can define a context (Genre,
“Romantic”). We refer to a context as a single variable con-
text if there is only one element in the context set.

We say that a variable X; appears in a context if there is
a pair (X;,z;) € C. Given a context C, we will use X¢ to
denote the subset of variables of & which appear in C. We
will use X to denote the complement of this set. Given a
state s, we will use (x, (s) to denote the value of X; in state
s. We say that a state s is consistent with the context C' iff
V(X;,x;) € C we have x; = (x, (s).

In order to define contextual automorphism, we will need
to define the notion of a reduced model.

Definition 3.2. Given a graphical model G = { fi,, wi } ",
and a context C, the reduced model G, is defined as the new
graphical model obtained by substituting X; = x; in each
Sformula fy for all (X;,x;) € C and keeping the original
weights wy.

Note that G/, is defined over the set Xe. As an example,
if the model is represented by the formulas {(P V @, w),
(RVQV S, ws)}, the reduced model under the single variable
context {(R,0)} will be {(P V Q, wy) and (Q V S, w2)}. In
the factored form representation, reduction by a context cor-
responds to fixing the values of the context variables in the
potential table. E.g., in Figure 1 given the context "Roman-
tic”, we reduce the factor to the bottom four rows of the po-
tential table where Genre has value "Romantic”. We are now
ready to define a contextual symmetry of a graphical model.

Definition 3.3. A contextual symmetry of a graphical
model G under context C' is represented as a permutation
0 of variables in X s.t. a) 0(X;) = X, VX; € X¢ ie.
variables in the context are mapped to themselves, and b) 3
an orbital symmetry 0" of the reduced model G, such that
0(X;) = 0"(X;) VX, € X¢, i.e. mapping of the remaining
variables defines an orbital symmetry of the reduced graphi-
cal model under context C.

For example, in Figure 1, let a permutation 6* be: 6*(G)
G,0*(A) = B,0*(B) = A. 6* is a contextual symmetry un-
der the context (Genre, “Romantic”), but not under the con-
text (Genre, “Thriller”).

Definition 3.4. A contextual automorphism group of a
graphical model G under context C is defined as a permuta-
tion group (©¢) over G, such that each 0 € O¢ is a contex-
tual symmetry of G under context C.

Definition 3.5. The contextual orbit of a state s under the
contextual automorphism group O¢ (given the context C)
is the set of those states which are consistent with C and
can be reached by applying 0 € Oc¢ to s, ie., Tg.(s) =
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{s' € {0,1}™ | 30 € B¢ s.t. 6(s)
C,Cxi(s") = wi}.

Note that s must be consistent with C for it to have a non-
empty contextual orbit. Analogous to orbital symmetries,
contextual symmetries are also probability preserving.

s’ /\ V(XZ, (E,) S

Theorem 3.1. A contextual symmetry 0 of G under context
C = {(X;,;)} is probability preserving (P(s) = P(6(s))),

as long as s is consistent with C.

3.1 Relationship with Related Concepts

The set of contextual symmetries subsumes that of orbital
symmetries — any orbital symmetry is a contextual symme-
try under a null context (). The two notions are even more
related, as the following two lemmas show. Let X91 be the
set of variables that map onto itself in a permutation 6, i.e.
VX € X 0(X) = X.

Lemma 1. An orbital symmetry 0 is a contextual symmetry
under a context C if Xo C XOI .

Lemma 2. Let V C X. If a permutation 0 is a contextual
symmetry of G under all possible contexts C; where Xc,
V, then 0 is an orbital symmetry of G.

We now distinguish the notions of context and contextual
symmetries from two other related concepts. First, a context
is different from evidence. External information in the form
of evidence modifies the underlying distribution represented
by the graphical model. In contrast, a context has no effect
on the underlying distribution.

Second, it might be tempting to confuse contextually sym-
metric states with contextually independent states [Boutilier
et al., 1996]. In the example of Figure 1(a) given
Genre="Thriller”, A and B are contextually independent, i.e.,
probability of A does not change depending on B. For this
context A and B are non-symmetric. For Genre="Romantic”
A and B are symmetric but not independent.

Finally, in Section 7, we discuss the relationship between
contextual symmetries and the recent notion of conditional
decomposability [Niepert and Van den Broeck, 2014].

3.2 Computing contextual symmetries

Computing contextual symmetries for G under a context C' is
equivalent to computing orbital symmetries on the reduced
model G&. = {ff,w;}™ . To compute orbital symme-
tries we adapt the procedure from Niepert [2012]. Follow-
ing Niepert, we describe the construction when each f/ is a
clause, though it can be extended to the more general case.

Niepert’s procedure creates a colored graph, with two
nodes corresponding to every variable (one each for the pos-
itive and negative state), and one node for every formula f/.
Edges exist between the positive and negative states of every
variable, and also between the formula nodes and the variable
nodes (either positive or negative) appearing in the formula.
Finally, colors are assigned to nodes based on the following
criteria: (a) every positive variable node is assigned a com-
mon color, (b) every negative variable node is assigned a dif-
ferent common color, and (c) every unique formula weight
wy, is assigned a new color. The formula nodes f} inherit the
color associated with their weight wy.



This color graph is then passed through a graph isomor-
phism solver (e.g., Saucy), which computes the automor-
phism group for G¢.. This is equivalent to computing con-
texual automorphism group for G under C:

Theorem 3.2. The automorphism group for the color graph
of the reduced graphical model G{. along with an identity
mapping of the context variables gives a contextual automor-
phism group of G under C.

Note that in case we have any evidence E available, the
reduced model over which we induce a colored graph corre-
sponds to G, . This is in contrast with original Niepert’s
procedure, where evidence nodes are not removed from the
color graph and instead act as additional formulas for the
original graphical model with infinity weights. This elimi-
nation of evidence nodes helps discover many more symme-
tries in the corresponding color graph while still preserving
correctness. For example, if the model is represented by for-
mulas {(P V R, wy), (Q, w1)}, and evidence is (—R), P and
@ become symmetric only if R is eliminated from the color
graph, and not in Niepert’s procedure.

4 Contextual MCMC

We now extend the Orbital MCMC algorithm from Sec-
tion 2.2 so that it can exploit contextual symmetries; our
algorithm is named CON-MCMUC, and is parameterized by
a € [0,1). Orbital MCMC reduces mixing times over orig-
inal MCMC, because it can easily transition between high
probability states falling in the same orbit, which may other-
wise be separated by low probability regions. Unfortunately,
as Figure 1 demonstrates, a domain may have little orbital
symmetry, but still important contextual symmetry. CON-
MCMC(«) exploits these for inference.

We are given a set of context variables V' C X’ (more on
this later). Let Cy denote the set of all possible contexts in-
volving all the variables in V. Overloading the notation, we
will use Cy (s) to denote the (unique) context in Cy consis-
tent with state s. We compute contextual symmetries O¢ un-
der each context C' € Cy using the algorithm from Section
3. We are also given an original regular Markov chain M that
converges to the desired probability distribution 7(s). CON-
MCMC(«) runs a Contextual Markov Chain M., («) that

samples a state (1) from s(*) as follows:

1. Gibbs-orig move: We sample an intermediate state
s'(+1) from the current state s(*) as:
(a) with probability « (Gibbs): flip a random context
variable in s*) using Gibbs transition probability.
(b) with probability 1-« (original): make the move from
5(*) based on the transition probability in M.

con-orbital move: Let C = Cy(s'**1)) be the con-
text consistent with s'**1), Let T'g,, (s'**1)) denote the
contextual orbit of s'(*+1) under the context C.. Sample
a state s(*1) uniformly at random from I'g ., (s'(“+1)).

When a = 0 our algorithm reduces to a direct extension of
Orbital MCMC, where in second step, we sample uniformly
from a contextual orbit instead of the original orbits. In the
more interesting case of o > 0, we enable the Markov chain
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to move more freely between different contexts using a Gibbs
flip over the context variables. This Gibbs transition helps us
carry over the effect of symmetries exploited under one con-
text (via the orbital moves in step 2) to others. This can be
especially useful when symmetries are unevenly distributed
across multiple contexts (as also confirmed by our experi-
ments).

In order to sample a state uniformly at random from a con-
textual orbit, we use the product replacement algorithm [Pak,
2000] as described and used by Niepert [2012]. Recall that
since we are working with contextual permutations, the con-
text variables are mapped to themselves and we are guaran-
teed to not change the context. Next, we show that CON-
MCMC(«) converges to the desired stationary distribution
7(s). We need the following lemma.

Lemma 3. Let My and Ms be two Markov chains defined
over a finite state space S with transition probability func-
tions Py and Ps, respectively, such that 7(s) is a stationary
distribution for both Py, Py, i.e., m(s) = > g m(r)*Pi(r —
s), i € {1,2}. Further, let My be regular. Then, the
Markov chain M’ with the transition function P'(s — r) =
axPi(s — r)+ (1 —a)* Py(s — r) is also regular and has
a unique stationary distribution 7(s) for a € [0, 1).

Let M9°(«) refer to the family of Markov chains con-
structed using only step 1 of our algorithm i.e. no orbital
moves. M is regular with the stationary distribution 7(s).
Further, each individual Gibbs flip over a variable satis-
fies stationarity with respect to the underlying distribution
7(s) [Koller and Friedman, 2009]. Hence, using Lemma 3,
M9°(«) is regular with 7r(s) as a stationary distribution.

Theorem 4. The family of contextual Markov chains
Mee"(«v) constructed using CON-MCMC(«) converges to
the stationary distribution of original Markov chain M for
any choice of context variables V and o € [0, 1).

Proof. Let 7(s) be the stationary distribution of M. Since
M?9°(«) is regular it is easy to see that M “°™(«) is also regu-
lar (there is always a non-zero probability of coming back to
the same state in an orbital move). Therefore, M “°"(«) con-
verges to a unique stationary distribution. Then, we only need
to show that 7(s) is the stationary distribution of M " (a).
Let S = {0,1}™ denote the set all of all the states. For
r,s € S, let P9°[a](s — r) and P°°"[a](s — ) represent
the transition probability functions of M9°[«] and M“"[a],
respectively. In order to show that M “°"[«/] also converges to
7(s), we need to show that:

w(s) = Z w(r) P a](r — s)

res

(D

The RHS of the above equation can be written as:

1
= m(r Pla)(r - §')=——
7;5 ( )Slergczvos)(s) ol )|F@CV(S)(5)|
- Z Z m(r) P[] (r — s )m

res S’EF@CV (s) (s)



o 1
= X APl = )|
s'€le. () Lres Ocy (s)
1
= Z 7(8)
s'€loq () |F®CV(5)(S)|
1
= > Oy
s'€lec () ‘F@cv(s)(sﬂ
= 7(s)

Here, recall that O¢,, (s) denotes the contextual automorphism
group for the (unique) context Cy (s) consistent with the state
s, and 'e, ., (s) denotes the corresponding orbit. Step 1
above follows from the definition of contextual orbital move.
Step 4 follows from the stationarity of M9°[a]. Step 5 fol-
lows from the fact that all the states in the same contextual
orbit have the same probability (Theorem 3.1). O

5 Experimental Evaluation

Our experiments evaluate the use of contextual symmetries
for faster inference in graphical models. We compare our
approach against Orbital MCMC, which is the only avail-
able algorithm that exploits symmetries in a general MCMC
framework. We also compare with vanilla Gibbs sampling,
which does not exploit any symmetries. We implement CON-
MCMC(«) as an extension of the original Orbital MCMC
implementation® available in the GAP language [GAP, 2015].
The existing implementation uses Saucy [Darga er al., 2008]
for graph isomorphism and Gibbs sampler as the base Markov
chain. We experiment on two versions each of two different
domains, with context variables pre-specified. We next de-
scribe our domains.

5.1 Domains and Methodology

Sports Network: This Markov network models a group of
students who may enter a future sport league, which could be
for one of two sports, badminton or tennis (modeled as the
variable Sport). Each student belongs to one of the dorms on
campus. The league accepts both singles as well as doubles
entries. For each student X, the domain has a variable for
playing singles, Sx. For each pairs of students X, Y com-
ing from the same dorm, we have a variable indicating that
they will play doubles together, D xy . Multiple students (in
the same dorm) train together in training groups, which are
different for the two sports. A student’s participation in the
league for a given sport is (jointly) influenced by the partic-
ipation of other students in her training group for that sport.
Moreover, if two students decide to play singles, it increases
the probability that they may also team up to play doubles in-
dependent of their training groups. In this domain, different
subsets of students in a dorm (based on their training groups)
are symmetrical to each other depending upon Sport, which
becomes a natural choice for the context. In our experiments,
we use training groups of 5 students and dorms with 25 stu-
dents each.

*https://code.google.com/archive/p/lifted-mcmc/
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Young and Old: This domain is modeled as an MLN and
is an extension of the Friends and Smokers (FS) [Singla and
Domingos, 2008] network. Y &O has a propositional variable
IsY oung determining whether we are dealing with a popu-
lation of youngsters or older folks. For every person X in the
domain, we have predicates Smokes(X), Cancer(X) and
EatsOut(X). We also have the predicate F'riends(X,Y)
for every pair of persons. We have rules stating that young
persons are more likely to smoke and older people are less
likely to smoke. Similarly, we have rules stating that young
people are more likely to eat out and old people are less
likely to eat out. When the population is young, everyone
has the same weight for the smoking rule and slightly differ-
ent weight (sampled from a Gaussian) for eating out. When
the population is old, everyone has a slightly different weight
(again sampled from a Gaussian) for smoking and the same
weight for eating out. As in the original FS, we have rules
stating smoking causes cancer and friends have similar smok-
ing habits. We also have rules stating that cancer and friends
variables have low prior probabilities. In this domain, smok-
ing, cancer and friends variables are symmetric to each other
when population is young, whereas all eating out variables
are symmetric when the population is old. Clearly, IsY oung
is a natural choice for context in this domain.

An important property of both these domains is that differ-
ent contextual symmetries exist for both assignments of the
respective context variables. To test the robustness of CON-
MCMC we further modify these domains so that contextual
symmetries exist only on one of the two assignments of con-
text variable. In Y'&O (Single), we give (slightly) different
weights to FatsOut(X) variables when IsY oung is false,
i.e., symmetries exist only when IsY oung is true. In Sports
Network (Single), Sx variables involved in a training group
are symmetric only for tennis; for badminton, each Sx in a
group behaves (slightly) differently. We refer to these two
variations as the Single side versions of the original domains.

For these four domains, we plot run time vs. the KL-
divergence between approximate marginal probabilities com-
puted by each algorithm and the true marginals.* For both
Orbital MCMC and CON-MCMC, the time to compute sym-
metries is included in the run time. For each problem we
run 20 iterations of each algorithm and take the mean of the
marginals to reduce variance of the measurements. We also
plot the 95% confidence intervals. We show CON-MCMC
results for « = 0 and 0.01, which was chosen based on per-
formance on smaller problem sizes. We perform various con-
trol experiments by varying the size of domains, amount of
available evidence, marginal posterior probability of the con-
text variable and the value of a parameter. All the experi-
ments are run on a quad-core Intel i-7 processor.

5.2 Results

Figures 2 and 3 show the representative graphs across multi-
ple domains and varying experimental conditions. We find
that CON-MCMC(0.01) almost always performs the best
or at par with the best of other three algorithms. CON-
MCMC(0) usually performs better than Gibbs and Orbital

“computed by running a Gibbs sampler for sufficiently long time.
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Figure 2: (a) CON-MCMC effectiveness increases tremendously with increasing domain sizes. Note that y-axes are on different
scales. (¢) New orbital symmetries are created with increasing evidence, leading to improved performance of Orbital MCMC.
(b, d) Curves for Sports Network (Single) and Y & O (Single) respectively — CON-MCMC(0.01) performs the best and vastly

outperforms CON-MCMC(0).

MCMC, but its performance can be closer to Gibbs or CON-
MCMC(«) depending upon the experimental setting. Orbital
MCMC does not usually offer much advantage over Gibbs,
primarily because these domains don’t have many orbital
symmetries. For Sports Network, there are no orbital sym-
metries at all; Orbital MCMC avoids the overhead of the or-
bital move and performs at par with Gibbs. For Y &O Orbital
MCMC finds a few symmetries, which don’t particularly help
in reducing mixing time. However, it still incurs the overhead
of orbital moves, leading to a significantly worse performance
compared to Gibbs.

Variation with Domain Size: Figure 2(a) compares the al-
gorithms as we increase the domain size for the Sports net-
work from 50 to 200 students. The overall trends remain sim-
ilar, i.e., CON-MCMC algorithms outperform Gibbs and Or-
bital MCMC by huge margins. A closer look reveals that the
y-axes are at different scales for the three curves — the rela-
tive edge of CON-MCMC algorithms increases substantially
with larger domain sizes.

Variation with Amount of Evidence: Figure 2(c)) com-
pares the performance of the algorithms as we vary the
amount of (random) evidence available from 0% to 60% in
the Y&O domain on predicates other than F'riends(X,Y)
using a domain size of 50. As earlier, CON-MCMC algo-
rithms outperform others. We observe that the relative gain
of CON-MCMC algorithms with Orbital MCMC decreases
with increasing evidence (for 30% evidence Orbital MCMC
overlaps with Gibbs, for 60% evidence, Orbital MCMC over-
laps with CON-MCMC). We believe that this is due the fact
that more evidence tends to disconnect the network introduc-
ing additional symmetries which can be exploited by Orbital
MCMC. Nevertheless, CON-MCMC algorithms perform at
least as well as Orbital MCMC for all values of evidence that
we tested on.

Variation across Versions of a Domain: Figure 2(b) and
2(d) show the plots for the Single side versions of Sports net-
work and Y &O, respectively. We observe a significant dif-
ference in the performance of the two CON-MCMC algo-
rithms. The reason is subtle. Since symmetries exist only on
one side, that side mixes quickly for CON-MCMC(0); how-
ever, the other side does not mix as well, because of lack of
symmetries. CON-MCMC(«) for o > 0 mitigates this by
upsampling the flip of the context variable. This enables the
rapid mixing on symmetry side to regularly influence the non-
symmetry side (via Gibbs move), which leads to a faster mix-
ing on that side too. Nevertheless, CON-MCMC(O0) is still
able to outperform both Gibbs sampling as well as Orbital
MCMC by exploiting the single sided symmetry.

We also observe in the first graph of Figure 2(c),
that CON-MCMC(0) performs somewhat worse than CON-
MCMC(0.01). We believe that the reason for performance in
this two-sided symmetry domain is similar to the single-sided
case. In Y&O, when IsY oung =true, substantial symme-
tries may exist due to smoking, cancer and friends variables.
However, on the other side, the symmetries are far less (only
for eating out variables). This implies that CON-MCMC(0)
will have much faster mixing on one side, but not on the other.
On the other hand, CON-MCMC(0.01) will upsample con-
text variable flips and allow the stronger symmetry side to in-
fluence the other. In general, CON-MCMC(«) performance
is highly robust to varieties of symmetric and asymmetric do-
mains.

Variation with Posterior of Context Variable: We investi-
gate performance on Single-sided domains further by vary-
ing the posterior marginal probability of the context variable.
Figure 3 shows the results for Sports network (Single) with
marginal probability of Sport = tennis varying from 0.09 to
0.91. Note that Sport = tennis side is the side where sym-
metries exist.
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Figure 3: CON-MCMC effectiveness increases in Single Side Symmetry cases as we increase the marginal of context variable
to the side having symmetry from 0.09 to 0.91. CON-MCMC(0.01) provides significant gains even at very low posterior values.
CON-MCMC(0) performance improves with increase in the marginal.
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Figure 4: a=0.01 and a=0.1 work best across both domains.
Very high as well as very low values of « lead to poor perfor-
mance.

The graphs show an interesting trend. Even for very low
marginals, CON-MCMC(0.01) is able to benefit from one
sided symmetries. Since the marginal is low we expect any
MCMC algorithm to spend most of its time on the non-
symmetry side. However, CON-MCMC(0.01) will still go
back and forth several times between two sides; each flip to
symmetry side and back will help in potentially reaching a
different region of the state space leading to better mixing on
the non-symmetry side.

Not surprisingly, CON-MCMC(0) does not perform as
well for low marginals — it does not get to switch contexts as
often, and ends up mixing slowly on the important, non sym-
metry side. As marginal of the context variable increases, the
relative performance of CON-MCMC(0) improves substan-
tially. As marginal becomes high (0.91), both CON-MCMC
samplers end up sampling mostly on the symmetry side, and
can reap benefits of symmetries similarly. We also conduct
these experiments for the Y &O domain and observe a very
similar behavior.

Variation with o Parameter: Figure 4 shows the perfor-
mance of CON-MCMC(«) for different values of « in the
range 0.001 to 0.5 for both Sports network (single) and Y &O
(single) domains. Our algorithm is fairly robust for values of
o between 0.01 and 0.1. Its performance starts to degrade
for very low as well as very high values of a. For very low
values of «, algorithm’s behavior approaches that of CON-
MCMC(0). For very high values of «, the algorithm spends
too much time flipping the context variable and not enough
time exploring the state space, resulting in poor performance.

Overall, we conclude that CON-MCMC(0.01) is robust to
various experimental settings and obtains the best results sig-
nificantly outperforming Orbital MCMC and Gibbs. This un-
derscores the importance of our contextual symmetry frame-

work for probabilistic inference.

6 Discussion and Future Work

While our work extends the capability of lifted inference to
a wider range of settings, it also raises important questions.
In many cases, the set V' of context variables is known from
domain knowledge or domain description especially in re-
lational models. An open question is how to automatically
compute a good set V, since trying all possible sets can
be prohibitive. We have designed a heuristic approach that
greedily chooses the most useful context variable every it-
eration and adds it to the context set. It uses a few initial
rounds of the color passing algorithm [Kersting ef al., 2009]
to approximate the amount of additional symmetry obtained
by making a variable part of the context. More experiments
are needed to assess the effectiveness of our approach.

Another important observation is that the set of contextual
symmetries may not monotonically increase with increasing
context size. This may happen if additional context variables
break existing symmetries, since context variables are forced
to undergo identity mapping. Then, how do we design al-
gorithms so that their effectiveness monotonically increases
with larger contexts in all cases? This is an important direc-
tion for future work.

Another question concerns the robustness of performance
of symmetry-based inference algorithms. Over the course
of our experiments, we tested our algorithms on several do-
main variations. While in most cases CON-MCMC(0.01)
and CON-MCMC(0) performed much better than Gibbs, in
rare cases, the performance was worse too. Further investiga-
tions revealed two main sources of lower performance.

The first and more prominent cause is the trade-off between
mixing speed and sampling time. Because all symmetry-
based algorithms run an expensive product replacement al-
gorithm [Pak, 2000] to sample from an orbit, next samples
for CON-MCMC (and Orbital MCMC) are generated much
slower than Gibbs. In domains where symmetries are preva-
lent, this slower sampling is mitigated by rapid mixing, but
in other domains, it could result in a worse performance. An
intelligent wrapper that guesses whether to exploit symme-
tries or not in a given domain will be crucial for developing
a robust inference algorithm. The second reason for lower
performance is subtle. CON-MCMC(«) is able to exploit
contextual symmetries (even single-sided) in a wide variety
of settings, but in one situation it can lose to other algo-
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rithms. This happens when the context variable has a huge
Markov blanket, so much so that one Gibbs move that flips
the context variable becomes overbearingly costly. Since
CON-MCMC(«) upsamples flips of context variables, this
can cause significant loss to overall performance, even though
the mixing is much faster with respect to number of samples.

Another observation relates to the effect of evidence in a
domain. Evidence can both help and hurt symmetries in an
inference problem. In some cases, evidence can break ex-
isting symmetries and reduce the relative gain of symmetry-
based algorithms. In other cases, evidence can break edges
and create new symmetries and help them. While in our
experiments, we didn’t find CON-MCMC(0.01) to be ever
worse than Gibbs due to additional evidence, such pathologi-
cal cases can be constructed.

It would be interesting to see how algorithms other than
MCMC can benefit from our contextual symmetry frame-
work. In the future, we would also like to explore approxi-
mate contextual symmetries that could make our contribution
applicable to several other domains, where exact contextual
symmetries cannot be found. We would also like to theoreti-
cally analyze the mixing time of CON-MCMC.

7 Related Work

Some papers have discussed methods for computing symme-
tries under a given evidence [Van den Broeck and Darwiche,
2013; Venugopal and Gogate, 2014; Kopp et al., 2015]. As
discussed in Section 3.2, the algorithm for computing con-
textual symmetries is closely related to computing evidence-
based symmetries. The main difference is in the way we use
these symmetries for downstream inference.

While our general notion of contextual symmetries is novel
it has connections to a few recent works. The Rocklt sys-
tem [Noessner et al., 2013] identifies contextual symmetries
in a very special case in which the domain theory has a set
of disjunctive clauses of a specific kind g; V ¢ where each
g; 1s a single literal (or its negation). For this setting, c is a
natural context and symmetries among g;s can be exploited.
Rocklt does not provide any general notion beyond this spe-
cial case. It constructs a reduced ILP for MAP inference in-
stead of marginal inference, as in our case.

There is recent work on exploring connections between
the concept of exchangeablility of random variables and
tractability of probabilistic inference [Niepert and Van den
Broeck, 2014]. Our contextual symmetries can be seen as
a generalization of their conditional decomposability to con-
ditional partial decomposability where the sufficient statis-
tics are precisely the contextual orbits. Whereas Niepert
and Broeck [2014] primarily focus on developing the theory
for conditional decomposability, we propose and additionally
connect this with the symmetries present in the structure of
a graphical model. Further, unlike them we develop an algo-
rithm to compute these conditional decompositions (contex-
tual symmetries in our case) and show how they can be used
in practice for efficient probabilistic inference.

As discussed in Section 1, our work builds upon the recent
literature on lifted inference that pre-computes explicit do-
main symmetries using automorphism groups [Niepert, 2012;
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Bui et al., 2013; Van den Broeck and Niepert, 2015] and ex-
ploits them for efficient inference. Our work is most closely
related to Orbital MCMC [Niepert, 2012]. Our experimental
results shows the value of CON-MCMC over Orbital MCMC
that does not incorporate contextual symmetries.

Our contextual symmetries are also analogous to condi-
tional symmetries in constraint satisfaction problems (CSPs)
[Gent et al., 2005; Walsh, 2006; Gent et al., 2007]. CSP
symmetries are called conditional if symmetry groups exist
only in a sub-problem of the original CSP, i.e., in a CSP with
one or more additional constraints. The CSP problem setting
and their actual manifestation in algorithms are quite differ-
ent from lifted inference, but their definition and use of con-
ditional symmetries is in the same spirit as ours.

8 Conclusions

We present a novel framework for contextual symmetries
in probabilistic graphical models. Contextual symmetries
generalize and extend previous notions of orbital symmetry.
Given any context, we can efficiently compute these sym-
metries by reducing it to the problem of colored graph iso-
morphism. While our framework is independent of any in-
ference algorithm, we illustrate its applicability by propos-
ing CON-MCMC, an MCMC approach that exploits contex-
tual symmetries. Our experiments on several domains vali-
date the efficacy of CON-MCMC, where it outperforms ex-
isting state-of-the-art techniques for symmetry-based MCMC
by wide margins. Finally, we have released a reference im-
plementation of CON-MCMC for wider use by the research
community.
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