
Algorithmic Improvements in Approximate Counting

for Probabilistic Inference: From Linear to Logarithmic SAT Calls

⇤

Supratik Chakraborty

Indian Institute of Technology,
Bombay

Kuldeep S. Meel

Rice University
Moshe Y. Vardi

Rice University

Abstract

Probabilistic inference via model counting has
emerged as a scalable technique with strong for-
mal guarantees, thanks to recent advances in
hashing-based approximate counting. State-of-
the-art hashing-based counting algorithms use an
NP oracle (SAT solver in practice), such that the
number of oracle invocations grows linearly in
the number of variables n in the input constraint.
We present a new approach to hashing-based ap-
proximate model counting in which the number
of oracle invocations grows logarithmically in n,
while still providing strong theoretical guarantees.
We use this technique to design an algorithm for
#CNF with strongly probably approximately cor-
rect (SPAC) guarantees, i.e. PAC guarantee plus
expected return value matching the exact model
count. Our experiments show that this algorithm
outperforms state-of-the-art techniques for approx-
imate counting by 1-2 orders of magnitude in run-
ning time. We also show that our algorithm can
be easily adapted to give a new fully polynomial
randomized approximation scheme (FPRAS) for
#DNF.

1 Introduction

Probabilistic inference is increasingly being used to reason
about large uncertain data sets arising from diverse applica-
tions including medical diagnostics, weather modeling, com-
puter vision and the like [Bacchus et al., 2003; Domshlak and
Hoffmann, 2007; Sang et al., 2004; Xue et al., 2012]. Given a
probabilistic model describing conditional dependencies be-
tween variables in a system, the problem of probabilistic in-
ference requires us to determine the probability of an event
of interest, given observed evidence. This problem has been
the subject of intense investigations by both theoreticians and
practitioners for more than three decades (see [Koller and
Friedman, 2009] for a nice survey).

Exact probabilistic inference is intractable due to the curse
of dimensionality [Cooper, 1990; Roth, 1996]. As a result,

⇤The author list has been sorted alphabetically by last name; this
should not be used to determine the extent of authors’ contributions.

researchers have studied approximate techniques to solve
real-world instances of this problem. Techniques based on
Markov Chain Monte Carlo (MCMC) methods [Brooks et
al., 2011], variational approximations [Wainwright and Jor-
dan, 2008], interval propagation [Tessem, 1992] and ran-
domized branching choices in combinatorial reasoning al-
gorithms [Gogate and Dechter, 2007] scale to large prob-
lem instances; however they fail to provide rigorous ap-
proximation guarantees in practice [Ermon et al., 2014;
Kitchen and Kuehlmann, 2007].

A promising alternative approach to probabilistic inference
is to reduce the problem to discrete integration or constrained
counting, in which we count the models of a given set of con-
straints [Roth, 1996; Chavira and Darwiche, 2008]. While
constrained counting is known to be computationally hard,
recent advances in hashing-based techniques for approximate
counting have revived a lot of interest in this approach. The
use of universal hash functions in counting problems was first
studied in [Sipser, 1983; Stockmeyer, 1983]. However, the re-
sulting algorithms do not scale well in practice [Meel, 2014].
This leaves open the question of whether it is possible to de-
sign algorithms that simultaneously scale to large problem
instances and provide strong theoretical guarantees for ap-
proximate counting. An important step towards resolving this
question was taken in [Chakraborty et al., 2013b], wherein
a scalable approximate counter with rigorous approxima-
tion guarantees, named ApproxMC, was reported. In subse-
quent work [Ermon et al., 2013a; Chakraborty et al., 2014a;
Belle et al., 2015], this approach has been extended to finite-
domain discrete integration, with applications to probabilistic
inference.

Given the promise of hashing-based counting techniques
in bridging the gap between scalability and providing rigor-
ous guarantees for probabilistic inference, there have been
several recent efforts to design efficient universal hash func-
tions [Ivrii et al., 2015; Chakraborty et al., 2016a]. While
these efforts certainly help push the scalability frontier of
hashing-based techniques for probabilistic inference, the
structure of the underlying algorithms has so far escaped crit-
ical examination. For example, all recent approaches to prob-
abilistic inference via hashing-based counting use a linear
search to identify the right values of parameters for the hash
functions. As a result, the number of calls to the NP oracle
(SAT solver in practice) increases linearly in the number of
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variables, n, in the input constraint. Since SAT solver calls
are by far the computationally most expensive steps in these
algorithms [Meel et al., 2016], this motivates us to ask: Can
we design a hashing-based approximate counting algorithm
that requires sub-linear (in n) calls to the SAT solver, while
providing strong theoretical guarantees?

The primary contribution of this paper is a positive answer
to the above question. We present a new hashing-based ap-
proximate counting algorithm, called ApproxMC2, for CNF
formulas, that reduces the number of SAT solver calls from
linear in n to logarithmic in n. Our algorithm provides SPAC,
strongly probably approximately correct, guarantees; i.e., it
computes a model count within a prescribed tolerance " of
the exact count, and with a prescribed confidence of at least
1 � �, while also ensuring that the expected value of the re-
turned count matches the exact model count. We also show
that for DNF formulas, ApproxMC2 gives a fully polynomial
randomized approximation scheme (FPRAS), which differs
fundamentally from earlier work [Karp et al., 1989].

Since the design of recent probabilistic inference al-
gorithms via hashing-based approximate counting can be
broadly viewed as adaptations of ApproxMC [Chakraborty
et al., 2013b], we focus on ApproxMC as a paradigmatic
representative, and show how ApproxMC2 improves upon
it. Extensive experiments demonstrate that ApproxMC2 out-
performs ApproxMC by 1-2 orders of magnitude in running
time, when using the same family of hash functions. We also
discuss how the framework and analysis of ApproxMC2 can
be lifted to other hashing-based probabilistic inference algo-
rithms [Chakraborty et al., 2014a; Belle et al., 2015]. Sig-
nificantly, the algorithmic improvements of ApproxMC2 are
orthogonal to recent advances in the design of hash func-
tions [Ivrii et al., 2015], permitting the possibility of com-
bining ApproxMC2-style algorithms with efficient hash func-
tions to boost the performance of hashing-based probabilistic
inference even further.

The remainder of the paper is organized as follows. We de-
scribe notation and preliminaries in Section 2. We discuss re-
lated work in Section 3. In Section 4, we present ApproxMC2
and its analysis. We discuss our experimental methodology
and present experimental results in Section 5. Finally, we
conclude in Section 6.

2 Notation and Preliminaries

Let F be a Boolean formula in conjunctive normal form
(CNF), and let Vars(F ) be the set of variables appearing in
F . The set Vars(F ) is also called the support of F . An
assignment � of truth values to the variables in Vars(F ) is
called a satisfying assignment or witness of F if it makes F
evaluate to true. We denote the set of all witnesses of F by
R

F

. Given a set of variables S ✓ Vars(F ), we use R
F#S to

denote the projection of R
F

on S. Furthermore, given a func-
tion h : {0, 1}|Vars(F )| ! {0, 1}m and an ↵ 2 {0, 1}m, we
use RhF,h,↵i#S to denote the projection on S of the witnesses
of F that are mapped to ↵ by h, i.e. R

(F^(h(Y )=↵))#S , where
Y is a vector of support variables of F .

We write Pr [X : P] to denote the probability of outcome
X when sampling from a probability space P . For brevity, we

omit P when it is clear from the context. The expected value
of X is denoted E [X] and its variance is denoted V [X].

The constrained counting problem is to compute |R
F#S |

for a given CNF formula F and sampling set S ✓ Vars(F ).
A probably approximately correct (or PAC) counter is a prob-
abilistic algorithm ApproxCount(·, ·, ·, ·) that takes as inputs
a formula F , a sampling set S, a tolerance " > 0, and a
confidence 1 � � 2 (0, 1], and returns a count c such that
Pr
h
|R

F#S |/(1+")  c  (1+")|R
F#S |

i
� 1��. The prob-

abilistic guaranteee provided by a PAC counter is also called
an (", �) guarantee, for obvious reasons. A PAC counter
that additionally ensures that the expected value of the re-
turned count equals |R

F#S | is called strongly probably ap-
proximately correct (or SPAC). Intuitively, SPAC is a more
useful notion of approximation than PAC in the context of
counting, since the expectation of the returned count equals
|R

F#S | for a SPAC counter.
For positive integers n and m, a special family of 2-

universal hash functions mapping {0, 1}n to {0, 1}m, called
H

xor

(n,m), plays a crucial role in our work. Let y[i]
denote the ith component of a vector y. The family
H

xor

(n,m) can then be defined as {h | h(y)[i] = a
i,0

�
(

L
n

k=1

a
i,k

· y[k]), a
i,k

2 {0, 1}, 1  i  m, 0 
k  n}, where � denotes “xor” and · denotes “and”.
By choosing values of a

i,k

randomly and independently,
we can effectively choose a random hash function from
H

xor

(n,m). It was shown in [Gomes et al., 2007b] that
H

xor

(n,m) is 3-universal (and hence 2-universal too). We
use h

U � H
xor

(n,m) to denote the probability space ob-
tained by choosing a function h uniformly at random from
H

xor

(n,m). The property of 2-universality guarantees that
for all ↵

1

,↵
2

2 {0, 1}m and for all distinct y
1

, y
2

2 {0, 1}n,
Pr

hV
2

i=1

h(y
i

) = ↵
i

: h
U � H

xor

(n,m)

i
= 2

�2m. Note
that ApproxMC [Chakraborty et al., 2013b] also uses the
same family of hash functions.

3 Related Work

The deep connection between probabilistic inference and
propositional model counting was established in the semi-
nal work of [Cooper, 1990; Roth, 1996]. Subsequently, re-
searchers have proposed various encodings to solve infer-
encing problems using model counting [Sang et al., 2004;
Chavira and Darwiche, 2008; Chakraborty et al., 2014a;
Belle et al., 2015; Chakraborty et al., 2015b]. What distin-
guishes this line of work from other inferencing techniques,
like those based on Markov Chain Monte Carlo methods [Jer-
rum and Sinclair, 1996] or variational approximation tech-
niques [Wainwright and Jordan, 2008], is that strong guaran-
tees can be offered while scaling to large problem instances.
This has been made possible largely due to significant ad-
vances in model counting technology.

Complexity theoretic studies of propositional model count-
ing were initiated by Valiant, who showed that the prob-
lem is #P-complete [Valiant, 1979]. Despite advances in
exact model counting over the years [Sang et al., 2004;
Thurley, 2006], the inherent complexity of the problem poses
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significant hurdles to scaling exact counting to large prob-
lem instances. The study of approximate model counting
has therefore been an important topic of research for several
decades. Approximate counting was shown to lie in the third
level of the polynomial hierarchy in [Stockmeyer, 1983]. For
DNF formulas, Karp, Luby and Madras gave a fully polyno-
mial randomized approximation scheme for counting mod-
els [Karp et al., 1989]. For the general case, one can build
on [Stockmeyer, 1983] and design a hashing-based probably
approximately correct counting algorithm that makes polyno-
mially many calls to an NP oracle [Goldreich, 1999]. Unfor-
tunately, this does not lend itself to a scalable implementation
because every invocation of the NP oracle (a SAT solver in
practice) must reason about a formula with significantly large,
viz. O(n/"), support.

In [Chakraborty et al., 2013b], a new hashing-based
strongly probably approximately correct counting algorithm,
called ApproxMC, was shown to scale to formulas with hun-
dreds of thousands of variables, while providing rigorous
PAC-style (", �) guarantees. The core idea of ApproxMC is
to use 2-universal hash functions to randomly partition the
solution space of the original formula into “small” enough
cells. The sizes of sufficiently many randomly chosen cells
are then determined using calls to a specialized SAT solver
(CryptoMiniSAT [Soos et al., 2009]), and a scaled median
of these sizes is used to estimate the desired model count.
Finding the right parameters for the hash functions is cru-
cial to the success of this technique. ApproxMC uses a lin-
ear search for this purpose, where each search step invokes
the specialized SAT solver, viz. CryptoMiniSAT, O(1/"2)

times. Overall, ApproxMC makes a total of O(

n log(1/�)

"

2 )

calls to CryptoMiniSAT. Significantly, and unlike the algo-
rithm in [Goldreich, 1999], each call of CryptoMiniSAT rea-
sons about a formula with only n variables.

The works of [Ermon et al., 2013b; Chakraborty et al.,
2014a; 2015a; Belle et al., 2015] have subsequently ex-
tended the ApproxMC approach to finite domain discrete
integration. Furthermore, approaches based on ApproxMC
form the core of various sampling algorithms proposed re-
cently [Ermon et al., 2013a; Chakraborty et al., 2014b;
2014a; 2015a]. Therefore, any improvement in the core algo-
rithmic structure of ApproxMC can potentially benefit several
other algorithms.

Prior work on improving the scalability of hashing-based
approximate counting algorithms has largely focused on im-
proving the efficiency of 2-universal linear (xor-based) hash
functions. It is well-known that long xor-based constraints
make SAT solving significantly hard in practice [Gomes et
al., 2007a]. Researchers have therefore investigated theo-
retical and practical aspects of using short xors [Gomes et
al., 2007a; Chakraborty et al., 2014b; Ermon et al., 2014;
Zhao et al., 2016].

Recently, Ermon et al. [Ermon et al., 2014] and Zhao
et al. [Zhao et al., 2016] have shown how short xor con-
straints (even logarithmic in the number of variables) can
be used for approximate counting with certain theoretical
guarantees. The resulting algorithms, however, do not pro-
vide PAC-style (", �) guarantees. In other work with (", �)

Algorithm 1 ApproxMC2(F, S, ", �)

1: thresh 1 + 9.84
⇣
1 +

"

1+"

⌘ �
1 +

1

"

�
2;

2: Y  BSAT(F, thresh, S);
3: if (|Y | < thresh) then return |Y |;
4: t d17 log

2

(3/�)e;
5: nCells 2; C  emptyList; iter 0;
6: repeat

7: iter iter + 1;
8: (nCells, nSols) ApproxMC2Core(F, S, thresh, nCells);
9: if (nCells 6= ?) then AddToList(C, nSols⇥ nCells);

10: until (iter < t);
11: finalEstimate FindMedian(C);
12: return finalEstimate

guarantees, techniques for identifying small independent sup-
ports have been developed [Ivrii et al., 2015], and word-level
hash functions have been used to count in the theory of bit-
vectors [Chakraborty et al., 2016a]. A common aspect of all
of these approaches is that a linear search is used to find the
right parameters of the hash functions, where each search step
involves multiple SAT solver calls. We target this weak link
in this paper, and drastically cut down the number of steps
required to identify the right parameters of hash functions.
This, in turn, reduces the SAT solver calls, yielding a scal-
able counting algorithm.

4 From Linear to Logarithmic SAT Calls

We now present ApproxMC2, a hashing-based approximate
counting algorithm, that is motivated by ApproxMC, but also
differs from it in crucial ways.

4.1 The Algorithm

Algorithm 1 shows the pseudocode for ApproxMC2. It takes
as inputs a formula F , a sampling set S, a tolerance " (> 0),
and a confidence 1 � � 2 (0, 1]. It returns an estimate of
|R

F#S | within tolerance ", with confidence at least 1 � �.
Note that although ApproxMC2 draws on several ideas from
ApproxMC, the original algorithm in [Chakraborty et al.,
2013b] computed an estimate of |R

F

| (and not of |R
F#S |).

Nevertheless, the idea of using sampling sets, as described
in [Chakraborty et al., 2014b], can be trivially extended to
ApproxMC. Therefore, whenever we refer to ApproxMC in
this paper, we mean the algorithm in [Chakraborty et al.,
2013b] extended in the above manner.

There are several high-level similarities between
ApproxMC2 and ApproxMC. Both algorithms start by
checking if |R

F#S | is smaller than a suitable threshold (called
pivot in ApproxMC and thresh in ApproxMC2). This check
is done using subroutine BSAT, that takes as inputs a formula
F , a threshold thresh, and a sampling set S, and returns a
subset Y of R

F#S , such that |Y | = min(thresh, |R
F#S |).

The thresholds used in invocations of BSAT lie in O(1/"2) in
both ApproxMC and ApproxMC2, although the exact values
used are different. If |Y | is found to be less than thresh, both
algorithms return |Y | for the size of |R

F#S |. Otherwise, a
core subroutine, called ApproxMCCore in ApproxMC and
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ApproxMC2Core in ApproxMC2, is invoked. This subroutine
tries to randomly partition R

F#S into “small” cells using
hash functions from H

xor

(|S|,m), for suitable values of m.
There is a small probability that this subroutine fails and
returns (?,?). Otherwise, it returns the number of cells,
nCells, into which R

F#S is partitioned, and the count of
solutions, nSols, in a randomly chosen small cell. The value
of |R

F#S | is then estimated as nCells ⇥ nSols. In order to
achieve the desired confidence of (1 � �), both ApproxMC2
and ApproxMC invoke their core subroutine repeatedly,
collecting the resulting estimates in a list C. The number of
such invocations lies in O(log(1/�)) in both cases. Finally,
both algorithms compute the median of the estimates in C to
obtain the desired estimate of |R

F#S |.
Despite these high-level similarities, there are key dif-

ferences in the ways ApproxMC and ApproxMC2 work.
These differences stem from: (i) the use of dependent hash
functions when searching for the “right” way of partition-
ing R

F#S within an invocation of ApproxMC2Core, and
(ii) the lack of independence between successive invocations
of ApproxMC2Core. We discuss these differences in detail
below.

Subroutine ApproxMC2Core lies at the heart of
ApproxMC2. Functionally, ApproxMC2Core serves the
same purpose as ApproxMCCore; however, it works dif-
ferently. To understand this difference, we briefly review
the working of ApproxMCCore. Given a formula F and a
sampling set S, ApproxMCCore finds a triple (m,h

m

,↵
m

),
where m is an integer in {1, . . . |S| � 1}, h

m

is a hash
function chosen randomly from H

xor

(|S|,m), and ↵
m

is a vector chosen randomly from {0, 1}m, such that
|RhF,hm,↵mi#S | < thresh and |RhF,hm�1,↵m�1i#S | � thresh.
In order to find such a triple, ApproxMCCore uses a linear
search: it starts from m = 1, chooses h

m

and ↵
m

ran-
domly and independently from H

xor

(|S|,m) and {0, 1}m
respectively, and checks if |RhF,hm,↵mi#S | � thresh. If so,
the partitioning is considered too coarse, h

m

and ↵
m

are
discarded, and the process repeated with the next value of m;
otherwise, the search stops. Let m⇤, h

m

⇤ and ↵
m

⇤ denote the
values of m, h

m

and ↵
m

, respectively, when the search stops.
Then ApproxMCCore returns |RhF,hm⇤ ,↵m⇤ i#S |⇥ 2

m

⇤
as the

estimate of |R
F#S |. If the search fails to find m, h

m

and ↵
m

with the desired properties, we say that ApproxMCCore fails.
Every iteration of the linear search above invokes BSAT

once to check if |RhF,hm,↵mi#S | � thresh. A straightfor-
ward implementation of BSAT makes up to thresh calls to a
SAT solver to answer this question. Therefore, an invocation
of ApproxMCCore makes O(thresh.|S|) SAT solver calls. A
key contribution of this paper is a new approach for choosing
hash functions that allows ApproxMC2Core to make at most
O(thresh. log

2

|S|) calls to a SAT solver. Significantly, the
sizes of formulas fed to the solver remain the same as those
used in ApproxMCCore; hence, the reduction in number of
calls comes without adding complexity to the individual calls.

A salient feature of ApproxMCCore is that it randomly
and independently chooses (h

m

,↵
m

) pairs for different val-
ues of m, as it searches for the right partitioning of R

F#S .
In contrast, in ApproxMC2Core, we randomly choose one
function h from H

xor

(|S|, |S| � 1), and one vector ↵ from

Algorithm 2 ApproxMC2Core(F, S, thresh, prevNCells)

1: Choose h at random from H
xor

(|S|, |S|� 1);
2: Choose ↵ at random from {0, 1}|S|�1;
3: Y  BSAT(F ^ h(S) = ↵, thresh, S);
4: if (|Y | � thresh) then return (?,?);
5: mPrev log

2

prevNCells;
6: m LogSATSearch(F, S, h,↵, thresh,mPrev);
7: nSols |BSAT(F ^ h(m)

(S) = ↵(m), thresh, S)|;
8: return (2

m, nSols);

{0, 1}|S|�1. Thereafter, we use “prefix-slices” of h and ↵
to obtain h

m

and ↵
m

for all other values of m. Formally,
for every m 2 {1, . . . |S| � 1}, the mth prefix-slice of
h, denoted h(m), is a map from {0, 1}|S| to {0, 1}m, such
that h(m)

(y)[i] = h(y)[i], for all y 2 {0, 1}|S| and for all
i 2 {1, . . .m}. Similarly, the mth prefix-slice of ↵, denoted
↵(m), is an element of {0, 1}m such that ↵(m)

[i] = ↵[i]
for all i 2 {1, . . .m}. Once h and ↵ are chosen randomly,
ApproxMC2Core uses h(m) and ↵(m) as choices of h

m

and
↵
m

, respectively. The randomness in the choices of h and
↵ induces randomness in the choices of h

m

and ↵
m

. How-
ever, the (h

m

,↵
m

) pairs chosen for different values of m are
no longer independent. Specifically, h

j

(y)[i] = h
k

(y)[i] and
↵
j

[i] = ↵
k

[i] for 1  j < k < |S| and for all i 2 {1, . . . j}.
This lack of independence is a fundamental departure from
ApproxMCCore.

Algorithm 2 shows the pseudo-code for ApproxMC2Core.
After choosing h and ↵ randomly, ApproxMC2Core checks
if |RhF,h,↵i#S | < thresh. If not, ApproxMC2Core fails
and returns (?,?). Otherwise, it invokes sub-routine
LogSATSearch to find a value of m (and hence, of
h(m) and ↵(m)) such that |RhF,h

(m)
,↵

(m)i#S | < thresh
and |RhF,h

(m�1)
,↵

(m�1)i#S | � thresh. This ensures that
nSols computed in line 7 is |RhF,h

(m)
,↵

(m)i#S |. Finally,
ApproxMC2Core returns (2

m, nSols), where 2

m gives the
number of cells into which R

F#S is partitioned by h(m).
An easy consequence of the definition of prefix-slices is

that for all m 2 {1, . . . |S|� 1}, we have RhF,h

(m)
,↵

(m)i#S ✓
RhF,h

(m�1)
,↵

(m�1)i#S . This linear ordering is exploited by
sub-routine LogSATSearch (see Algorithm 3), which uses a
galloping search to zoom down to the right value of m, h(m)

and ↵(m). LogSATSearch uses an array, BigCell, to remem-
ber values of m for which the cell ↵(m) obtained after par-
titioning R

F#S with h(m) is large, i.e. |RhF,h

(m)
,↵

(m)i#S | �
thresh. As boundary conditions, we set BigCell[0] to 1 and
BigCell[|S| � 1] to 0. These are justified because (i) if
R

F#S is partitioned into 2

0 (i.e. 1) cell, line 3 of Algo-
rithm 1 ensures that the size of the cell (i.e. |R

F#S |) is
at least thresh, and (ii) line 4 of Algorithm 2 ensures that
|RhF,h

|S|�1
,↵

|S|�1i#S | < thresh. For every other i, BigCell[i]
is initialized to ? (unknown value). Subsequently, we set
BigCell[i] to 1 (0) whenever we find that |RhF,h

(i)
,↵

(i)i#S | is
at least as large as (smaller than) thresh.

In the context of probabilistic hashing-based counting al-
gorithms like ApproxMC, it has been observed [Meel, 2014]
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Algorithm 3 LogSATSearch(F, S, h,↵, thresh,mPrev)

1: loIndex 0; hiIndex |S|� 1; m mPrev;
2: BigCell[0] 1; BigCell[|S|� 1] 0;
3: BigCell[i] ? for all i other than 0 and |S|� 1;
4: while true do

5: Y  BSAT(F ^ (h(m)

(S) = ↵(m)

), thresh, S);
6: if (|Y | � thresh) then

7: if (BigCell[m+ 1] = 0) then return m+ 1;
8: BigCell[i] 1 for all i 2 {1, . . .m};
9: loIndex m;

10: if (|m�mPrev| < 3) then m m+ 1;
11: else if (2.m < |S|) then m 2.m;
12: else m (hiIndex+m)/2;
13: else

14: if (BigCell[m� 1] = 1) then return m;
15: BigCell[i] 0 for all i 2 {m, . . . |S|};
16: hiIndex m;
17: if (|m�mPrev| < 3) then m m� 1;
18: else m (m+ loIndex)/2;

that the “right” values of m, h
m

and ↵
m

for partitioning
R

F#S are often such that m is closer to 0 than to |S|. In ad-
dition, repeated invocations of a hashing-based probabilistic
counting algorithm with the same input formula F often ter-
minate with similar values of m. To optimize LogSATSearch
using these observations, we provide mPrev, the value of m
found in the last invocation of ApproxMC2Core, as an input
to LogSATSearch. This is then used in LogSATSearch to lin-
early search a small neighborhood of mPrev, viz. when |m�
mPrev| < 3, before embarking on a galloping search. Specif-
ically, if LogSATSearch finds that |RhF,h

(m)
,↵

(m)i#S | �
thresh after the linear search, it keeps doubling the value of
m until either |RhF,h

(m)
,↵

(m)i#S | becomes less than thresh,
or m overshoots |S|. Subsequently, binary search is done by
iteratively bisecting the interval between loIndex and hiIndex.
This ensures that the search requires O(log

2

m⇤
) calls (in-

stead of O(log

2

|S|) calls) to BSAT, where m⇤ (usually
⌧ |S|) is the value of m when the search stops. Note also
that a galloping search inspects much smaller values of m
compared to a naive binary search, if m⇤ ⌧ |S|. Therefore,
the formulas fed to the SAT solver have fewer xor clauses (or
number of components of h(m)) conjoined with F than if a
naive binary search was used. This plays an important role in
improving the performance of ApproxMC2.

In order to provide the right value of mPrev to
LogSATSearch, ApproxMC2 passes the value of nCells re-
turned by one invocation of ApproxMC2Core to the next
invocation (line 8 of Algorithm 1), and ApproxMC2Core
passes on the relevant information to LogSATSearch (lines
5–6 of Algorithm 2). Thus, successive invocations of
ApproxMC2Core in ApproxMC2 are no longer independent
of each other. Note that the independence of randomly
chosen (h

m

,↵
m

) pairs for different values of m, and the
independence of successive invocations of ApproxMCCore,
are features of ApproxMC that are exploited in its analy-
sis [Chakraborty et al., 2013b]. Since these independence

no longer hold in ApproxMC2, we must analyze ApproxMC2
afresh.

4.2 Analysis

For lack of space, we state only some key results and provide
sketches of proofs here. The complete proofs are deferred to
a detailed technical report [Chakraborty et al., 2016b].
Lemma 1. For 1  i < |S|, let µ

i

= R
F#S/2i. For every

� > 0 and 0 < " < 1, we have the following:

1. Pr
h
|RhF,h

(i)
,↵

(i)i#S |� µ
i

| � "

1+"

µ
i

i
 (1+")

2

"

2
µi

2. Pr
⇥|RhF,h

(i)
,↵

(i)i#S |  �µ
i

⇤  1

1+(1��)

2
µi

Proof sketch. For every y 2 {0, 1}|S| and for every ↵ 2
{0, 1}i, define an indicator variable �

y,↵,i

which is 1 iff
h(i)

(y) = ↵. Let �
↵,i

=

P
y2RF#S

(�
y,↵,i

), µ
↵,i

= E [�

↵,i

]

and �2

↵,i

= V [�

↵,i

]. Clearly, �

↵,i

= |RhF,h

(i)
,↵i#S | and

µ
↵,i

= 2

�i|R
F#S |. Note that µ

↵,i

is independent of ↵ and
equals µ

i

, as defined in the statement of the Lemma. From
the pairwise independence of h(i)

(y) (which, effectively, is a
randomly chosen function from H

xor

(|S|, i)), we also have
�2

↵,i

 µ
↵,i

= µ
i

. Statements 1 and 2 of the lemma then
follow from Chebhyshev inequality and Paley-Zygmund in-
equality, respectively.

Let B denote the event that ApproxMC2Core either re-
turns (?,?) or returns a pair (2

m, nSols) such that 2m ⇥
nSols does not lie in the interval

h
|RF#S |
1+"

, |R
F#S |(1 + ")|

i
.

We wish to bound Pr [B] from above. Towards this end,
let T

i

denote the event
�|RhF,h

(i)
,↵

(i)i#S | < thresh
�
, and let

L
i

and U
i

denote the events
⇣
|RhF,h

(i)
,↵

(i)i#S | < |RF#S |
(1+")2

i

⌘

and
⇣
|RhF,h

(i)
,↵

(i)i#S | > |RF#S |
2

i (1 +

"

1+"

)

⌘
, respectively.

Furthermore, let m⇤ denote the integer blog
2

|R
F#S | �

log

2

⇣
4.92

�
1 +

1

"

�
2

⌘
c.

Lemma 2. The following bounds hold:
1. Pr[T

m

⇤�3

]  1

62.5

2. Pr[L
m

⇤�2

]  1

20.68

3. Pr[L
m

⇤�1

]  1

10.84

4. Pr[L
m

⇤ [ U
m

⇤
]  1

4.92

The proofs follow from the definitions of m⇤, thresh, µ
i

, and
from applications of Lemma 1 with appropriate values of �.
Lemma 3. Pr [B]  0.36

Proof sketch. For any event E, let E denote its com-
plement. For notational convenience, we use T

0

and
U|S| to denote the empty (or impossible) event, and T|S|
and L|S| to denote the universal (or certain) event. It
then follows from the definition of B that Pr [B] 
Pr

hS
i2{1,...|S|}

�
T
i�1

\ T
i

\ (L
i

[ U
i

)

�i
.

We now wish to simplify the upper bound of Pr [B] ob-
tained above. In order to do this, we use three observations,

3573



labeled O1, O2 and O3 below, which follow from the defini-
tions of m⇤, thresh and µ

i

, and from the linear ordering of
RhF,h

(m)
,↵

(m)i#S .

O1: 8i  m⇤ � 3, T
i

\ (L
i

[ U
i

) = T
i

and T
i

✓ T
m

⇤�3

,

O2: Pr[
S

i2{m⇤
,...|S|} Ti�1

\ T
i

\ (L
i

[ U
i

)] 
Pr[T

m

⇤�1

\ (L
m

⇤ [ U
m

⇤
)]  Pr[L

m

⇤ [ U
m

⇤
],

O3: For i 2 {m⇤� 2,m⇤� 1}, since thresh  µ
i

(1+

"

1+"

),
we have T

i

\ U
i

= ;.
Using O1, O2 and O3, we get Pr[B]  Pr[T

m

⇤�3

] +

Pr[L
m

⇤�2

]+Pr[L
m

⇤�1

]+Pr[L
m

⇤[U
m

⇤
]. Using the bounds

from Lemma 2, we finally obtain Pr [B]  0.36.

Note that Lemma 3 holds regardless of the order in which
the search in LogSATSearch proceeds. Our main theorem
now follows from Lemma 3 and from the count t of invoca-
tions of ApproxMC2Core in ApproxMC2 (see lines 4-10 of
Algorithm 1).
Theorem 4. Suppose ApproxMC2(F, S, ", �) returns c after
making k calls to a SAT solver. Then Pr[|R

F#S |/(1 + ") 
c  (1 + ")|R

F#S |] � 1 � �, and k 2 O(

log(|S|) log(1/�)
"

2 ).
Furthermore, E[c] = |R

F#S |. Hence ApproxMC2 is a SPAC
counter.
Note that the number of SAT solver calls in
ApproxMC [Chakraborty et al., 2013b] lies in O(

|S| log(1/�)
"

2 ),
which is exponentially worse than the number of calls in
ApproxMC2, for the same " and �. Furthermore, if the for-
mula F fed as input to ApproxMC2 is in DNF, the subroutine
BSAT can be implemented in PTIME, since satisfiability
checking of DNF + XOR is in PTIME. This gives us the
following result.
Theorem 5. ApproxMC2 is a fully polynomial randomized
approximation scheme (FPRAS) for #DNF.

Note that this is fundamentally different from FPRAS for
#DNF described in earlier work, viz. [Karp et al., 1989].

4.3 Generalizing beyond ApproxMC

So far, we have shown how ApproxMC2 significantly reduces
the number of SAT solver calls vis-a-vis ApproxMC, without
sacrificing theoretical guarantees, by relaxing independence
requirements. Since ApproxMC serves as a paradigmatic rep-
resentative of several hashing-based counting and probabilis-
tic inference algorithms, the key ideas of ApproxMC2 can be
used to improve these other algorithms too. We discuss two
such cases below.

PAWS [Ermon et al., 2013a] is a hashing-based sampling
algorithm for high dimensional probability spaces. Similar
to ApproxMC, the key idea of PAWS is to find the “right”
number and set of constraints that divides the solution space
into appropriately sized cells. To do this, PAWS iteratively
adds independently chosen constraints, using a linear search.
An analysis of the algorithm in [Ermon et al., 2013a] shows
that this requires O(n log n) calls to an NP oracle, where n
denotes the size of the support of the input constraint. Our ap-
proach based on dependent constraints can be used in PAWS
to search out-of-order, and reduce the number of NP oracle

calls from O(n log n) to O(log n), while retaining the same
theoretical guarantees.

Building on ApproxMC, a weighted model counter called
WeightMC was proposed in [Chakraborty et al., 2014a].
WeightMC has also been used in other work, viz. [Belle et al.,
2015], for approximate probabilistic inference. The core pro-
cedure of WeightMC, called WeightMCCore, is a reworking
of ApproxMCCore that replaces |R

F#S | with the total weight
of assignments in R

F#S . It is easy to see that the same re-
placement can also be used to extend ApproxMC2Core, so
that it serves as the core procedure for WeightMC.

5 Evaluation

To evaluate the runtime performance and quality of approxi-
mations computed by ApproxMC2, we implemented a proto-
type in C++ and conducted experiments on a wide variety
of publicly available benchmarks. Specifically, we sought
answers to the following questions: (a) How does runtime
performance and number of SAT invocations of ApproxMC2
compare with that of ApproxMC ? (b) How far are the counts
computed by ApproxMC2 from the exact counts?

Our benchmark suite consisted of problems arising from
probabilistic inference in grid networks, synthetic grid-
structured random interaction Ising models, plan recognition,
DQMR networks, bit-blasted versions of SMTLIB bench-
marks, ISCAS89 combinational circuits, and program syn-
thesis examples. For lack of space, we discuss results for
only a subset of these benchmarks here. The complete set
of experimental results and a detailed analysis can be found
in [Chakraborty et al., 2016b].

We used a high-performance cluster to conduct experi-
ments in parallel. Each node of the cluster had a 12-core 2.83
GHz Intel Xeon processor, with 4GB of main memory, and
each experiment was run on a single core. For all our experi-
ments, we used " = 0.8 and � = 0.2, unless stated otherwise.
To further optimize the running time, we used improved es-
timates of the iteration count t required in ApproxMC2 by
following an analysis similar to that in [Chakraborty et al.,
2013a].

5.1 Results

Performance comparison: Table 1 presents the performance
of ApproxMC2 vis-a-vis ApproxMC over a subset of our
benchmarks. Column 1 of this table gives the benchmark
name, while columns 2 and 3 list the number of variables and
clauses, respectively. Columns 4 and 5 list the runtime (in
seconds) of ApproxMC2 and ApproxMC respectively, while
columns 6 and 7 list the number of SAT invocations for
ApproxMC2 and ApproxMC respectively. We use “–” to de-
note timeout after 8 hours. Table 1 clearly demonstrates that
ApproxMC2 outperforms ApproxMC by 1-2 orders of magni-
tude. Furthermore, ApproxMC2 is able to compute counts
for benchmarks that are beyond the scope of ApproxMC.
The runtime improvement of ApproxMC2 can be largely at-
tributed to the reduced (by almost an order of magnitude)
number of SAT solver calls vis-a-vis ApproxMC.

There are some large benchmarks in our suite for which
both ApproxMC and ApproxMC2 timed out; hence, we did
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Benchmark Vars Clauses ApproxMC2 Time ApproxMC Time ApproxMC2 SATCalls ApproxMC SATCalls
tutorial3 486193 2598178 12373.99 – 1744 –
case204 214 580 166.2 – 1808 –
case205 214 580 300.11 – 1793 –
case133 211 615 18502.44 – 2043 –

s953a 15 7 602 1657 161.41 – 1648 –
llreverse 63797 257657 1938.1 4482.94 1219 2801

lltraversal 39912 167842 151.33 450.57 1516 4258
karatsuba 19594 82417 23553.73 28817.79 1378 13360

enqueueSeqSK 16466 58515 192.96 2036.09 2207 23321
progsyn 20 15475 60994 1778.45 20557.24 2308 34815
progsyn 77 14535 27573 88.36 1529.34 2054 24764

sort 12125 49611 209.0 3610.4 1605 27731
LoginService2 11511 41411 26.04 110.77 1533 10653

progsyn 17 10090 27056 100.76 4874.39 1810 28407
progsyn 29 8866 31557 87.78 3569.25 1712 28630

LoginService 8200 26689 21.77 101.15 1498 12520
doublyLinkedList 6890 26918 17.05 75.45 1615 10647

Table 1: Performance comparison of ApproxMC2 vis-a-vis ApproxMC. The runtime is reported in seconds and “–” in a column
reports timeout after 8 hours.

not include these in Table 1. Importantly, for a signifi-
cant number of our experiments, whenever ApproxMC or
ApproxMC2 timed out, it was because the algorithm could ex-
ecute some, but not all required iterations of ApproxMCCore
or ApproxMC2Core, respectively, within the specified time
limit. In all such cases, we obtain a model count within the
specified tolerance, but with reduced confidence. This sug-
gests that it is possible to extend ApproxMC2 to obtain an
anytime algorithm. This is left for future work.
Approximation quality: To measure the quality of approx-
imation, we compared the approximate counts returned by
ApproxMC2 with the counts computed by an exact model
counter, viz. sharpSAT [Thurley, 2006]. Figure 1 shows
the model counts computed by ApproxMC2, and the bounds
obtained by scaling the exact counts with the tolerance fac-
tor (" = 0.8) for a small subset of benchmarks. The y-
axis represents model counts on log-scale while the x-axis
represents benchmarks ordered in ascending order of model
counts. We observe that for all the benchmarks, ApproxMC2
computed counts within the tolerance. Furthermore, for each
instance, the observed tolerance ("

obs

) was calculated as
max(AprxCount

|RF#S | � 1, 1 � |RF#S |
AprxCount

), where AprxCount is
the estimate computed by ApproxMC2. We observe that the
geometric mean of "

obs

across all benchmarks is 0.021 – far
better than the theoretical guarantee of 0.8. In comparison,
the geometric mean of the observed tolerance obtained from
ApproxMC running on the same set of benchmarks is 0.036.

6 Conclusion

The promise of scalability with rigorous guarantees has
renewed interest in hashing-based counting techniques for
probabilistic inference. In this paper, we presented a new
approach to hashing-based counting and inferencing, that al-
lows out-of-order-search with dependent hash functions, dra-
matically reducing the number of SAT solver calls from lin-
ear to logarithmic in the size of the support of interest. This
is achieved while retaining strong theoretical guarantees and

1.0e+03

1.0e+04

1.0e+05

1.0e+06

1.0e+07

1.0e+08

 5  10  15  20  25  30  35  40

So
lu

tio
n 

Co
un

t

Benchmarks

ApproxMC2
ExactCount*1.8
ExactCount/1.8

Figure 1: Quality of counts computed by ApproxMC2

without increasing the complexity of each SAT solver call.
Extensive experiments demonstrate the practical benefits of
our approach vis-a-vis state-of-the art techniques. Combin-
ing our approach with more efficient hash functions promises
to push the scalability horizon of approximate counting fur-
ther.
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