
Solving M-Modes Using Heuristic Search

Cong Chen, Changhe Yuan, Chao Chen
CUNY Graduate Center and CUNY Queens College
{cong.chen,changhe.yuan,chao.chen}@qc.cuny.edu

Abstract
M-Modes for graphical models is the problem of
finding top M label configurations of highest prob-
ability in their local neighborhoods. The state-of-
the-art method for solving M-Modes is a dynamic
programming algorithm which computes global
modes by first computing local modes of each sub-
graph and then search through all their consistent
combinations. A drawback of the algorithm is
that most of its time is wasted on computing local
modes that are never used in global modes. This pa-
per introduces new algorithms that directly search
the space of consistent local modes in finding the
global modes, which is enabled by a novel search
operator designed to search a subgraph of variables
at each time. As a result, the search algorithms only
need to generate and verify a small number of local
modes and can hence lead to significant improve-
ment in efficiency and scalability.

1 Introduction
In many structured prediction applications, our model is far
from perfect. Therefore, it is difficult to trust the single
best prediction from the model. In recent years, new meth-
ods have been proposed to generate a set of predictions,
containing at least one solution that is close to the truth.
Such solution set can be fed to other more expensive mod-
els [Yadollahpour et al., 2013] or can be used as equally
valid hypotheses [Fromer and Yanover, 2009]. The clas-
sic M-Best methods [Dechter et al., 2012; Nilsson, 1998;
Yanover and Weiss, 2004; Fromer and Globerson, 2009] com-
pute the M most probable predictions, which tend to be very
similar to each other. These similar solutions are likely to
succeed or fail concurrently, and thus cannot serve the pur-
pose. Recent methods [Lampert, 2011; Batra et al., 2012;
Prasad et al., 2014] compute a solution set with not only high
probability but also high diversity.

Chen et al. [2013; 2014] proposed to compute top modes,
i.e., local maxima, of a graphical model as a high quality solu-
tion set. In a discrete domain, a mode is defined as an element
with higher probability than all its neighbors. The neighbor-
hood is defined as the ball centered at the element of interest
with a radius �. The top M probable modes provide a global

description of the probability landscape, and is a principled
solution for generating multiple diverse predictions.

Solving M-Modes is much more challenging than M-Best.
To solve the latter problem, we only need to globally com-
pare the probability of different label configurations. For
M-Modes, however, a solution should not only have a high
probability but also be the mode in its local neighborhood. It
is shown that a label configuration is a global mode if and
only if it is a local mode in every connected subgraph of size
�

[Chen et al., 2013; 2014]. Based on this local-global prop-
erty, a dynamic programming algorithm has been developed
to solve M-Modes by first computing all local models of each
subgraph and then searching through all their consistent com-
binations. The drawback of the DP algorithm, however, is
that most of its time is wasted on computing local modes that
are never used in the global modes.

In this work, we propose to apply heuristic search to solve
M-Modes. Our search algorithms also build on the local-
global property, but directly search for global modes by in-
crementally piecing together consistent local modes. Such
search is enabled by a novel search operator designed to
search the local modes of a subgraph of variables at each step.
The local modes are not computed a priori, but are generated
and verified on the fly. A global mode is found once a con-
sistent combination of local modes of all subgraphs has been
identified. Our design of the search steps is quite different
from existing search methods for solving various inference
problems in graphical models such as MPE [Marinescu and
Dechter, 2009; Kwisthout, 2008], MAP [Park and Darwiche,
2003; Yuan and Hansen, 2009], and MRE [Yuan et al., 2011;
Yuan and Lu, 2007]. All those algorithms use variables as the
basic search units, i.e., they search one variable at a time. In
comparison to the DP algorithm, our search algorithm only
needs to verify a small number of local modes and can hence
lead to significant improvement in efficiency. Empirical re-
sults show that the search algorithm indeed is much more ef-
ficient and scalable.

2 Background
We focus on undirected graphical models (Markov random
fields), although the definitions and algorithms can be eas-
ily extended to directed models (Bayesian networks [Pearl,
1988]). A Markov random field (MRF) [Wainwright and Jor-
dan, 2008; Nowozin and Lampert, 2010] models a joint dis-

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3584

crete distribution using a graph G = (V , E) and a potential
function f . The set of vertices/nodes V corresponds to the set
of discrete variables i 2 {1, . . . , d}, where d = |V|. A node
i can be assigned a label x

i

2 L. A label configuration of
all variables x = (x1, . . . , xd

) is called a labeling. We de-
note by X = Ld the domain of all labelings. The potential
function f : X ! R assigns to each labeling a real value,
which is inversely proportional to the logarithm of the prob-
ability distribution, p(x) = exp(�f(x) � A), where A =

log

P
x2X exp(�f(x)) is the log-partition function. Assum-

ing these variables satisfy the Markov properties, the poten-
tial function can be written as f(x) =

P
(i,j)2E fi,j(xi

, x

j

),
where f

i,j

: L⇥ L! R is the potential function for edge
(i, j)

1. For convenience, we assume any two different label-
ings have different potential function values.

We define the following notations for convenience. A ver-
tex subset, V 0 ✓ V , induces a subgraph consisting of V 0 and
all edges whose both ends are within V 0. In this paper, all
subgraphs are vertex-induced. Therefore, we abuse the nota-
tion and denote both the subgraph and the vertex subset by
the same symbol. We call a labeling of a subgraph B a par-
tial labeling. For a given labeling x, we may denote by x

B

its
label configurations of vertices of B. We denote by f

B

(x

B

)

the potential of the partial labeling, which is only evaluated
over edges within B. When the context is clear, we drop the
subscript B and write f(x

B

).

3 M-Modes
In this section, we introduce the problem of M -Modes and
review previous solutions. Denote by ⇢(·, ·) : X⇥X ! R the
Hamming distance metric on the space of labelings, i.e., the
number of variables at which two labelings disagree. Given a
scale parameter �, we define the �-modes as follows.
Definition 1 (�-modes). The �-neighborhood of a point x,
N

�

(x), is the ball centered at x with radius �, formally, {y |
⇢(x, y)  �}. A point is a �-mode if and only if its probability
density value is higher than all other elements in N

�

(x).
Modes of different scales provide a multiscale description

of the underlying probability landscape. As � increases, the �-
neighborhood of each x grows, and the set of �-modes mono-
tonically shrink until only the global optimum (MAP) is left.
We address the main computational problem.
Problem 1 (M-Modes). For a given �, compute the M �-
modes with the highest probability (lowest potential).

Modes are closely related to modes of subgraphs, i.e., lo-
cal modes conditioned on the labels of surrounding vertices.
Given a subgraph B, denote by @B its boundary, i.e., the set
of vertices that are adjacent to vertices of B. Denote by ¯

B the
closure of B, i.e., the disjoint union of B and its boundary.
Definition 2 (local modes). A partial labeling, x

B̄

, is a lo-
cal mode if and only if there is no other partial labeling y

B̄

with the same labeling on the boundary (y
@B

= x

@B

), has a
smaller potential (f(y

B̄

) < f(x

B̄

)), and is within � distance
from x

B̄

(⇢(y
B̄

, x

B̄

)  �).
1For convenience, we drop unary potentials fi, as they can be

absorbed into binary potentials. That is, any potential function with
unary potentials can be rewritten as one without them.

Given a graph G and a collection of its subgraphs
B = {B1, B2, . . .}, it was shown that under certain condition,
there is a close connection between the modes of G and the
local modes of closures of these subgraphs, ¯

B

i

’s. In partic-
ular, any consistent combinations of these local modes is a
global mode, and vice versa [Chen et al., 2014].
Theorem 1 (local-global). Suppose any connected subgraph
G

0 ✓ G of size � is contained within some B

i

2 B. A label-
ing x of G is a global mode if and only if for every ¯

B

i

, the
corresponding partial labeling x

B̄i
is a local mode.

We say partial labelings of two different subgraphs are con-
sistent if they agree at all common vertices. Theorem 1 shows
that there is a bijection between the set of global modes and
the set of consistent combinations of local modes. This leads
to efficient methods for modes computation. It will also be
the basis of the search algorithm proposed in this paper.

Chen et al. [2013; 2014] proposed to compute global
modes for tree models by first computing all local modes and
then searching through all their consistent combinations to
find the top M ones. The subgraphs they considered are the
set of geodesic balls of radius b�/2c centered at all vertices. A
junction tree model was constructed whose nodes correspond
to these subgraphs. Finding the top M combinations of lo-
cal modes is equivalent to finding the top M labelings of this
junction tree, and can be solved efficiently using dynamic-
programming-based algorithm [Nilsson, 1998]. The compu-
tational bottleneck, however, is the computation of the local
modes for all geodesic balls. The number of local modes can
be very large for each subgraph.

4 Heuristic Search for Solving M-Modes
In this section, we apply heuristic search to solve the M-
Modes problem. The goal is to utilize the local-global prop-
erty of modes in Theorem 1 to directly search in the space of
consistent local modes in finding global modes. Each step of
our algorithm is designed to search a subgraph of variables.
We first define the concept of �-subgraph.
Definition 3 (�-subgraph). A �-subgraph of a graphical
model is a connected subgraph with size �. The variables B
contained in the subgraph are called interior variables. The
adjacent variables @B of B are called boundary variables.

From the definition, we can conclude the following.
Theorem 2. Given a labeling of the boundary variables @B,
the local mode over B is also a �-mode. In fact, the local
mode must be the MAP solution over B conditioned on the
labeling of @B.

For any �-subgraph B, different labelings of the boundary
variables @B lead to different probability landscapes over B.
By definition, the MAP solution over B must be the local
mode. A �-mode must consist of consistent local modes of all
possible �-subgraphs according to the local-global property.

With the key concepts defined, we now introduce two
heuristic search algorithms to solve M-Modes. The outline of
both algorithms is as follows. First, we create an ordering of
all possible �-subgraphs of a graphical model. Then, we ap-
ply depth-first branch and bound (DFBnB) and A* to search

3585

for consistent local modes of the �-subgraphs using the order-
ing. The local modes are generated and verified when they are
needed. An admissible heuristic function is used to evaluate
the promisingness of a search node. The algorithms terminate
when either the whole search space is explored (DFBnB) or
top M solutions have been found (A*). The following sub-
sections explain the details.

4.1 Compiling Ordering of Subgraphs
Our search algorithms need to explore all �-subgraphs of a
graphical model during the search. Depending on the struc-
ture of the graphical model, a �-subgraph may have a chain,
tree, or graph structure. We use a preprocessing step to cre-
ate an ordering of all �-subgraphs. First, a complete ordering
of the variables is created using a topological traversal of the
model. Then, for each variable X in the list, we recursively
find all �-subgraphs that are rooted at X . Algorithm 1 pro-
vides a pseudo code for this preprocessing step.

Algorithm 1 Compiling Ordering of �-subgraphs
Input: G – a graphical model; � – subgraph size
Output: SubGraphs – an ordered list of �-subgraphs

1: function COMPILESUBGRAPHS(G, �)
2: SubGraphs ;
3: topo-order TopoOrder(G)
4: for all vertex 2 topo-order do
5: Stack {vertex}
6: if vertex.degree > 1 then
7: RECURSION(SubGraphs, Stack, �-1)
8: return SubGraphs

9: function RECURSION(SubGraphs, Stack, budget)
10: if budget > 1 then
11: for all vertex 2 Stack do
12: for all child 2 vertex.Children do
13: if child.topo-order > {8 vertex 2 Stack}.
14: topo-order & child.degree>1 then
15: Stack.push(child)
16: RECURSION(SubGraphs,Stack,
17: budget-1)
18: Stack.pop()
19: else
20: Stack.add(Boundary(Stack))
21: SubGraphs.push(Stack)

Figure 1 shows an example graphical model. Suppose the
topological traversal order of the variables is {1, 2, 3, 4, 5, 6}.
If � is set to be 3, an ordering of all �-subgraphs is {1, 2, 3},
{1, 2, 4}, {1, 2, 6}, {2, 3, 4}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}. It
is easy to identify the boundary variables for each �-subgraph.
For example, the shaded variables {4, 6} in Figure 1 are the
boundary variables of {1, 2, 3}.

4.2 Search Algorithms
Now we introduce the algorithms for solving M-Modes,
depth-first branch and bound (DFBnB) and A*. We first ex-
plain the DFBnB algorithm in detail. Then we will briefly
explain how A* works differently.

1 2

3

4

6

5

Figure 1: A small graphical model. {1, 2, 3} is an example 3-
subgraph, and {4, 6} are its boundary variables.

The DFBnB algorithm uses a top list to keep track of the
best solutions, and a stack to keep track of search nodes in the
current search path. The top list is initialized with M random
modes found by a simple hill climbing search. The stack is
initialized with search nodes corresponding to different local
modes of the first �-subgraph. Consider the example model,
the first �-subgraph is {1, 2, 3}. We first enumerate all label-
ings of its boundary variables {4, 6}. Conditioned on each
labeling, we calculate the local mode for {1, 2, 3}, which can
be solved using any MAP algorithm. A search node is created
for each such local mode plus its boundary labeling. These
nodes are pushed to the stack in an increasing order of qual-
ity estimated by a heuristic function. The function INITIAL-
EXPAND in Algorithm 2 explains this step.

Then at each iteration, the search algorithm pops out the
top node in the stack. Let x stands for the (partial) label-
ing of all interior and boundary variables of the �-subgraphs
that have been searched so far. If the last �-subgraph in the
ordering has been searched, x must be a global mode. It is
added to the top list if the potential of x is higher than that
of the worst incumbent solution; the worst solution is then
discarded. Otherwise, the top node is discarded.

If the top node is not yet a mode, it is compared to the worst
incumbent solution in the top list. If its heuristic estimate
is worse than the incumbent, the node is discarded immedi-
ately because it will not lead to any better solutions. Other-
wise, we generate its successor nodes by searching the next
�-subgraph. Adjacent �-subgraphs typically have overlaps.
Again consider the example, {1, 2, 4} is the next �-subgraph.
All variables in {1, 2, 4} are either interior or boundary vari-
ables of {1, 2, 3}. So are its boundary variables {3, 6} except
one new variable 5. The way we generate the �-subgraphs
makes sure that all interior variables of the current �-subgraph
B must have appeared in earlier �-subgraphs or their bound-
aries, so x

B

is known. But there are two possibilities for
the boundary variables @B: (1) there are one or more new
boundary variables, denoted as N , or (2) no new variable. In
the first case, conditioned on each partial labeling of N and
x

@B\N , we need to verify whether x
B

is a local mode. In the
example, all of {1, 2, 4} inherit values from x; so are bound-
ary variables {1, 6}. We only need to verify, conditioned on
each possible value of 5 and x{1,6}, whether x{1,2,4} is a lo-
cal mode. If yes, a successor search node is generated. Other-
wise, the search path is discarded because it cannot lead to a
consistent global mode. All successors are added to the stack
in increasing order of quality.

In the second case with no new boundary variables, the cur-

3586

rent �-subgraph B and its boundary variables @B must have
appeared in earlier subgraphs. We do not have to perform any
search here, but just need to verify whether x

B

is a local mode
conditioned on x

@B

. This is necessary due to the local-global
property of modes. If yes, the current node is put back into
the stack and will be selected in the next iteration for search-
ing the next �-subgraph. If not, the node is discarded. The
depth first search algorithm repeats the above search step un-
til the whole search space is explored. Algorithm 2 shows a
pseudo code of the DFBnB algorithm.

The A* algorithm works a bit differently. It uses an open
list to keep track of unexpanded search nodes. The open list
is initialized in a similar way as the stack in DFBnB. At each
step, the A* algorithm pops out the best search node in the
open list. If the node is a mode, a new solution is found. If
not, the successors of the node are generated similarly as in
DFBnB and put in the open list. A* repeats the search step
until the first M solutions are found, which are guaranteed to
be the top M modes. Note that the search space is a tree due to
the way we search the �-graphs. The A* algorithm thus does
not need a closed list to store expanded nodes and reduces to
a frontier A* algorithm [Korf et al., 2005].

4.3 Heuristic Function
This section answers the question on how to estimate the
quality of a search node. A search node is evaluated in two
parts: the potential of the partial labeling of the �-subgraphs
that have been instantiated, and an estimated potential for the
remaining �-subgraphs. The second part is calculated by a
heuristic function. The sum of these two provides a global
estimate on the quality of solutions that can be found via the
current search path. If the heuristic function provides upper
bound estimations, the function is called admissible, which
guarantees the optimality of the search algorithms.

For M-Modes, we are searching for the top M labelings
with highest potential. All extensions of a search node can
be bounded by the potential of the MAP solution over the re-
maining variables conditioned on the current path represented
by the node. We therefore use MAP as the heuristic function.
We do not have to do MAP inference for each search node,
however. In fact, we only need to perform once the max-
product MAP algorithm [Wainwright and Jordan, 2008] in the
direction opposite to the search order. This backward mes-
sage propagation is able to provide a probability table for all
MAP solutions conditioned on various forward search states.
During the search, we only need to look up the table for the
heuristic estimate for a search node. This ensures the effi-
ciency of the search algorithm.

5 Empirical Results
We evaluated our method by comparing to the algorithm by
Chen et al. [2014] (called DP) on both synthetic and real
datasets. Although our search algorithms are applicable to
general graphical models, the DP algorithm is limited to tree-
structured models. To make comparisons possible, we first
focused on tree models. We compared the running time of the
methods on tree-models with different sizes (d) and tree de-
grees (t). We also compared the methods with different scales

Algorithm 2 Depth-First Branch and Bound Algorithm for
Solving M-Modes
Input: G – a graphical model; � – neighborhood size; M –

number of top Labelings
Output: TopList – top M Labelings

1: function DFBNB(G, �, M)
2: Stack ;
3: TopList HCSearch(M)
4: SubGraphs CompileSubGraphs(G, �)
5: INITIAL-EXPAND(Stack, SubGraphs)
6: while !Stack.isEmpty() do
7: current Stack.pop()
8: if current.g>TopList.last.g then
9: if current.index==SubGraphs.size then

10: TopList.push(current)
11: TopList.removelast()
12: else
13: EXPAND(Stack,current,SubGraphs)
14: return TopList

15: function INITIAL-EXPAND(Stack,SubGraphs)
16: Boundaries Boundary(SubGraphs.first)
17: LocalList ;
18: for all labeling of Boundaries do
19: newstate ;
20: newstate.g �-Mode(labeling)
21: newstate.path labeling
22: newstate.h MAP(newstate.path)
23: newstate.f newstate.g + newstate.h
24: newstate.index 1
25: LocalList.push(newstate)
26: LocalList.sort()
27: Stack.push(LocalList)

28: function EXPAND(Stack,current,SubGraphs)
29: newIndex current.index + 1
30: newBoundary NewBoundary(SubGraphs.
31: Next(current), current.path)
32: if IsEmpty(newBoundary) then
33: newstate current
34: if IsLocalMode(newstate) then
35: newstate.index newIndex
36: Stack.push(newstate)
37: return
38: LocalList ;
39: for all labeling of newBoundary do
40: newstate current
41: newstate.path.push(labeling)
42: if IsLocalMode(newstate) then
43: newstate.g current.g+
44:

P
vertex2newBoundary

vertex.potential

45: newstate.h MAP(newstate.path)
46: newstate.f newstate.g + newstate.h
47: newstate.index newIndex
48: LocalList.push(newstate)
49: LocalList.sort()
50: Stack.push(LocalList)

3587

Figure 2: Synthetic experiments testing the effect of various parameters.

Figure 3: Running time and peak number of memory units on the mushroom dataset. Left and left-middle: M = 8 and � varies.
Right-middle and right: � = 4 and M varies.

(�) and number of modes to produce (M). The performance
on loopy models is reported in the end.

Synthetic Data
We randomly generated tree models with different parame-
ter settings. For each setting, we generated ten tree models
and computed the average running time. The label size L

was fixed to be three. This experiment is designed to sys-
tematically test the influence of each parameter on the search
and DP algorithms. However, testing all four parameters at
the same time is difficult. Instead, each time we fixed three
parameters and varied the remaining parameter. The base set-
ting is d = 60, t = 6, � = 3, and M = 4. The results are
reported in Figure 2.

The two left figures show that A* and DFBnB were not af-
fected much by dimension and tree degree, while DP slowed
down as the parameters increased. It may seem surprising
that A* and DFBnB are not affected much by the parameters.
The explanation is that the size of the search space is mostly
decided by the number of subgraphs. Dimension and tree
degrees do not directly affect the number of subgraphs. DP
slowed down when the dimension and tree degree increased
because the algorithm computes all local modes before run-
ning dynamic programming. The expense for computing lo-
cal modes is high, especially near variables with high degrees.

The two right figures show that A* and DFBnB were sig-
nificantly affected by � and M, but DP were not. As � or M
increased to larger values, the running time of A* and DF-
BnB both increased dramatically. However, the running time
started decreasing when � was around 8. The reason is when
� was relatively small, larger � increased the number of sub-
graphs, which in turns made the search space larger. How-
ever, as � kept increasing, the number of subgraphs decreased
due to fewer combinations. DFBnB was affected by the in-

crease in M more than A* in this experiment. The speed of
DP was invariant to M as the bottleneck is the computation of
all local modes. Once these local modes are computed, using
DP to compute top M solutions is very efficient and is not
slowing down much as we increases M . In the first step, the
algorithm computes local modes in an inductive manner; lo-
cal models of scale � are computed using local modes of scale
� � 1. Most of the time is spent on � = 1 case, in which the
local modes are computed using enumeration. Therefore, the
algorithm does not slow down much as we increase �. That
is also why both A* and DFBnB became slower than DP in
face of large � and M. However, small to medium � and M
are more reasonable choices in real applications. When � is
large, the modes are very sparse. When M is large, we may
include many weak modes.

Real Data
We applied our method to tree modes estimated from real
world data. We selected data of different dimensions from
UCI repository [Lichman, 2013]. These data are categori-
cal, i.e., have discrete values are each dimension. We also
used the ADHD-200 dataset [Biswal et al., 2010]. The
fMRI data is preprocessed and reduced to 264 dimensions
following [Eloyan et al., 2012]. We discretized the contin-
uous feature values into three labels, corresponding to low,
normal and high response. We estimated a tree-structured
graphical model for each data, using the algorithm by Chow
and Liu [1968]. The tree size is equal to the number of
dimensions of the feature space. The tree structure is re-
constructed by computing a maximum spanning tree of a
complete graph in which each edge weight is the empirical
mutual information between the corresponding pair of vari-
ables. Once the tree structure is determined. The pairwise
potentials of each edge are determined using the empirical

3588

congress mushroom soybean M.P. M.S.J. ADHD
DFBnB 0.0230 0.3167 0.0719 0.5888 0.0011 0.2194

A* 0.0304 0.8886 0.0619 2.4667 0.0011 0.0145
DP 0.1122 1.1734 1.6723 5.0968 0.2005 6.6018
d 16 22 35 57 60 264
t 6 5 8 6 3 6

Figure 4: Running time on real data (seconds). � = 4. M = 8. The dataset
named M.P. and M.S.J. are the molecular biology (promoter gene sequences) and
the molecular biology (splice-junction gene sequences) respectively. For complete-
ness, we also provide the dimension (tree-size) and the tree degree. Figure 5: Performance on loopy models.

unary and binary marginals p̂ (see [Bach and Jordan, 2003;
Liu et al., 2011] for more details).

Figure 4 shows that DFBnB and A* were both significantly
faster than DP. The speedup ranged from several times to sev-
eral hundred times faster. However, we did not see a clear
winner between DFBnB and A*; DFBnB was faster than A*
on four datasets, while A* was faster on the remaining three.
To gain more insight, we did two more experiments using
the mushroom dataset studying the effect of the parameters:
(1) fix M = 8 and vary �, and (2) fix � = 4 and vary M.
The two left figures in Figure 3 show running time (seconds)
and peak number of memory units (nodes) for experiment (1),
and the two right figures for experiment (2). The left-most
figure shows that the running time of DFBnB and A* both
increased when � was relatively small, but decreased when
� was greater than 4. The reason has been explained in the
analysis of synthetic datasets. In this case, A* seemed to
have some advantage over DFBnB in face of small �s, but
became inferior for medium �s. Finally they were indistin-
guishable for large �s. The second to the left figure clearly
shows DFBnB had a huge advantage in memory usage, be-
cause the peak number of memory units show the maximum
number of nodes stored in memory by the algorithms.

The two right figures show that the parameter M had a clear
effect on the algorithms too. The running time and peak mem-
ory usage of A* both increased much faster than DFBnB. The
reason is the number of nodes that A* needed to search in-
creased almost exponentially in M, but the increase was more
mild for DFBnB because DFBnB needs to finish the whole
search space regardless of M. The curves leveled out in this
particular case because the dataset has only 8 modes. The
observations for DP were the same as before.

Loopy Models
Finally we tested the scalability of our search algorithms on
loopy graphical models. We generated synthetic models of
different sizes. In particular, we generated regular k ⇥ k grid
models, where k ranged from 5 to 26. We chose binary label
(L = 2) and generated potentials randomly. Figure 5 shows
the results when � = 3 and M = 4. The performance of
DFBnB and A* did not differ much in the comparison. When
the model size was modest, they were both quite efficient.
However, as the size further increased, their running times
increased exponentially. Nevertheless, the results show that
the search algorithms were scalable enough to handle models

with almost 700 variables. In the future we plan to apply the
methods to loopy models estimated from real world data.

6 Concluding Remarks
In this work, we developed two search algorithms to solve
the M-Modes problem. M-Modes is a challenging problem
due to its need to find solutions that not only have high prob-
abilities but also need to be better than their local neighbor-
hoods. The proposed search algorithms find global modes by
directly searching the space of consistent local modes of all
subgraphs. Such search is made possible using a new search
operator designed to search a subgraph of variables at a time.
The local modes of the subgraphs are generated and verified
on the fly during the search. As a result, only a small number
of local modes is explored by the search algorithms. Empiri-
cal evaluations against the state-of-the-art dynamic program-
ming algorithm show that our search algorithms are much
more efficient and scalable.

DFBnB and A* each has its own advantages and disadvan-
tages. The depth-first search only needs to store search nodes
on a single path at anytime. Given that only new boundary
variables lead to new search nodes to be generated, the size
of the stack can be bounded once the ordering of �-subgraphs
has been created. In practice, we found that the size of the
stack is rather manageable. A*, however, has to store an open
list of all frontier search nodes and may consume too much
memory. On the other hand, due the best-first search nature,
A* is guaranteed to expand fewer nodes than DFBnB; some-
times the difference can be huge. But due to the need to main-
tain a priority queue, each step of A* is more expensive than
DFBnB. The practical performance of the two algorithms can
thus only be determined empirically.

Our proposed search algorithms do not fully utilize the
conditional independence structures of graphical models yet.
As a future work, we plan to investigate how to formulate a
search space that is more concise and efficient to search.

Acknowledgement
This research was supported by the NSF grants IIS-0953723,
IIS-1219114, and a PSC-CUNY enhancement award.

References
[Bach and Jordan, 2003] Francis R Bach and Michael I Jor-

dan. Beyond independent components: trees and clusters.
JMLR, 4:1205–1233, 2003.

3589

[Batra et al., 2012] Dhruv Batra, Payman Yadollahpour, Ab-
ner Guzman-Rivera, and Gregory Shakhnarovich. Di-
verse M-best solutions in markov random fields. Computer
Vision–ECCV 2012, pages 1–16, 2012.

[Biswal et al., 2010] Bharat B Biswal, Maarten Mennes, Xi-
Nian Zuo, Suril Gohel, Clare Kelly, Steve M Smith, Chris-
tian F Beckmann, Jonathan S Adelstein, Randy L Buckner,
Stan Colcombe, et al. Toward discovery science of human
brain function. Proceedings of the National Academy of
Sciences, 107(10):4734–4739, 2010.

[Chen et al., 2013] Chao Chen, Vladimir Kolmogorov, Yan
Zhu, Dimitris Metaxas, and Christoph H Lampert. Com-
puting the M most probable modes of a graphical model.
In International Conf. on Artificial Intelligence and Statis-
tics (AISTATS), 2013.

[Chen et al., 2014] Chao Chen, Han Liu, Dimitris Metaxas,
and Tianqi Zhao. Mode estimation for high dimensional
discrete tree graphical models. In Advances in neural in-
formation processing systems, pages 1323–1331, 2014.

[Chow and Liu, 1968] C Chow and C Liu. Approximating
discrete probability distributions with dependence trees.
Information Theory, IEEE Transactions on, 14(3):462–
467, 1968.

[Dechter et al., 2012] Rina Dechter, Natalia Flerova, and
Radu Marinescu. Search algorithms for m best solutions
for graphical models. In Jrg Hoffmann and Bart Selman,
editors, AAAI. AAAI Press, 2012.

[Eloyan et al., 2012] Ani Eloyan, John Muschelli,
Mary Beth Nebel, Han Liu, Fang Han, Tuo Zhao,
Anita D Barber, Suresh Joel, James J Pekar, Stewart H
Mostofsky, et al. Automated diagnoses of attention deficit
hyperactive disorder using magnetic resonance imaging.
Frontiers in systems neuroscience, 6, 2012.

[Fromer and Globerson, 2009] Menachem Fromer and Amir
Globerson. An LP view of the M-best MAP prob-
lem. Advances in Neural Information Processing Systems,
22:567–575, 2009.

[Fromer and Yanover, 2009] M. Fromer and C. Yanover. Ac-
curate prediction for atomic-level protein design and
its application in diversifying the near-optimal sequence
space. Proteins: Structure, Function, and Bioinformatics,
75(3):682–705, 2009.

[Korf et al., 2005] Richard E. Korf, Weixiong Zhang, Igna-
cio Thayer, and Heath Hohwald. Frontier search. J. ACM,
52(5):715–748, 2005.

[Kwisthout, 2008] Johan Kwisthout. Complexity results for
enumerating mpe and partial map. In European Workshop
on Probabilistic Graphical Models, 2008.

[Lampert, 2011] C.H. Lampert. Maximum margin multi-
label structured prediction. NIPS, 2011.

[Lichman, 2013] M. Lichman. UCI machine learning repos-
itory, 2013.

[Liu et al., 2011] Han Liu, Min Xu, Haijie Gu, Anupam
Gupta, John Lafferty, and Larry Wasserman. Forest den-

sity estimation. Journal of Machine Learning Research,
12:907–951, 2011.

[Marinescu and Dechter, 2009] Radu Marinescu and Rina
Dechter. AND/OR branch-and-bound search for combi-
natorial optimization in graphical models. Artif. Intell.,
173(16-17):1457–1491, 2009.

[Nilsson, 1998] D. Nilsson. An efficient algorithm for find-
ing the m most probable configurationsin probabilistic ex-
pert systems. Statistics and Computing, 8(2):159–173,
1998.

[Nowozin and Lampert, 2010] S. Nowozin and C.H. Lam-
pert. Structured learning and prediction in computer vi-
sion. Foundations and Trends in Computer Graphics and
Vision, 6(3-4):185–365, 2010.

[Park and Darwiche, 2003] James D. Park and Adnan Dar-
wiche. Solving map exactly using systematic search. In
Proceedings of the 19th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-03), pages 459–468,
2003.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan Kauf-
mann Publishers, Inc., San Mateo, CA, 1988.

[Prasad et al., 2014] Adarsh Prasad, Stefanie Jegelka, and
Dhruv Batra. Submodular meets structured: Finding di-
verse subsets in exponentially-large structured item sets.
In Advances in Neural Information Processing Systems,
pages 2645–2653, 2014.

[Wainwright and Jordan, 2008] Martin J Wainwright and
Michael I Jordan. Graphical models, exponential fami-
lies, and variational inference. Foundations and Trends in
Machine Learning, 1(1-2):1–305, 2008.

[Yadollahpour et al., 2013] Payman Yadollahpour, Dhruv
Batra, and Gregory Shakhnarovich. Discriminative re-
ranking of diverse segmentations. Proc. of IEEE Confer-
ence on CVPR, 2013.

[Yanover and Weiss, 2004] C. Yanover and Y. Weiss. Find-
ing the M most probable configurations using loopy belief
propagation. In Advances in Neural Information Process-
ing Systems, 2004.

[Yuan and Hansen, 2009] Changhe Yuan and Eric A.
Hansen. Efficient computation of jointree bounds for sys-
tematic MAP search. In Proceedings of 21st International
Joint Conference on Artificial Intelligence (IJCAI-09),
pages 1982–1989, Pasadena, CA, 2009.

[Yuan and Lu, 2007] Changhe Yuan and Tsai-Ching Lu.
Finding explanations in Bayesian networks. In Proceed-
ings of the 18th International Workshop on Principles of
Diagnosis (DX-07), pages 414–419, 2007.

[Yuan et al., 2011] Changhe Yuan, Heejin Lim, and Tsai-
Ching Lu. Most relevant explanation in Bayesian net-
works. J. Artif. Intell. Res., 42:309–352, 2011.

3590

