
Adaptive Budget Allocation for Maximizing Influence of Advertisements

Daisuke Hatano, Takuro Fukunaga, Ken-ichi Kawarabayashi
National Institute of Informatics, Japan

JST, ERATO, Kawarabayashi Large Graph Project, Japan
{hatano, takuro, k keniti}@nii.ac.jp

Abstract
The budget allocation problem is an optimization
problem arising from advertising planning. In the
problem, an advertiser has limited budgets to allo-
cate across media, and seeks to optimize the alloca-
tion such that the largest fraction of customers can
be influenced. It is known that this problem admits
a (1� 1/e)-approximation algorithm. However, no
previous studies on this problem considered adjust-
ing the allocation adaptively based upon the effect
of the past campaigns, which is a usual strategy in
the real setting. Our main contribution in this pa-
per is to analyze adaptive strategies for the budget
allocation problem. We define a greedy strategy,
referred to as the insensitive policy, and then give
a provable performance guarantee. This result is
obtained by extending the adaptive submodularity,
which is a concept studied in the context of active
learning and stochastic optimization, to the func-
tions over an integer lattice.

1 Introduction
Suppose an advertiser wishes to maximize the influence on
customers, but has limited budgets to allocate across media
(e.g., webpages, television, or newspapers). The main ques-
tion, called the budget allocation problem, is how to select
media considering budget constraints such that the largest
fraction of customers can be influenced; that is, how can a
budget achieve the maximum reach?

The main difficulty behind the budget allocation problem
is the complex dynamic of influence from media to cus-
tomers. This dynamic has been investigated in the framework
of the influence maximization problem, which was first intro-
duced by Domingos and Richardson [2001; 2002]. A sem-
inal work by Kempe, Kleinberg, and Tardos [2003] formu-
lated the influence maximization problem in the framework
of submodularity. The submodularity concept represents a
certain diminishing marginal return property in discrete set-
tings. Kempe et al. showed that the expected number of cus-
tomers influenced by media is represented by a submodular
set function. On the basis of this observation, they proved an
approximation guarantee of a polynomial-time greedy algo-
rithm for the influence maximization problem.

These studies on the influence maximization problem mo-
tivated the work of Alon, Gamzu, and Tennenholtz [2012],
who formulated the budget allocation problem in the bipar-
tite influence model as another combinatorial optimization
problem and provided a provable approximation algorithm.
There was difficulty in expressing their problem setting using
submodular functions because submodularity is usually de-
fined for combinations of objects whereas budget allocations
are assignments of budgets to media. However, Soma et al.
[2014] showed that the problem setting of Alon et al. can also
be expressed in the framework of submodularity. They uti-
lized submodularity functions over an integer lattice, which
are more general than submodular set functions.

Despite these developments, the previous studies on the
budget allocation problem have a crucial limitation. In their
settings, advertisers have to assign their entire budget at once
at the beginning of the process. However, in reality, adver-
tisers routinely adjust their strategy when they see changes in
the dynamic or when something unexpected happens. For ex-
ample, in the US presidential campaign of 2012, both Obama
and Romney spent half a billion dollars for TV ads [The
Washington Post, 2012]. In particular, they invested huge
amounts of money in “swing” states. For these states, both
campaigns changed their strategy for TV ads every day, ac-
cording to their polls (i.e., either gaining momentum or not).
In this case, momentum changed frequently, and the dynamic
was a deciding factor in their strategy. Hence, both the cam-
paigns changed their strategy adaptively every day. In this pa-
per, we are motivated by this observation. We aim to consider
adaptive strategies to address the budget allocation problem.

Adaptivity has been already considered in the framework
of submodularity. Golovin and Krause [2011b] defined a con-
cept of adaptive submodularity, and showed that a greedy
adaptive algorithm has a theoretical approximation guaran-
tee if the objective function is adaptive monotone submodu-
lar. After their initial work, numerous studies further inves-
tigated algorithms for optimization problems with adaptive
submodular functions [Golovin and Krause, 2011a; Gabillon
et al., 2013; 2014; Gotovos et al., 2015], as well as their
applications [Golovin et al., 2010; Chen and Krause, 2013;
Chen et al., 2014; Deshpande et al., 2014; Krause et al., 2014;
Chen et al., 2015]. Because the model of Golovin and Krause
contains the adaptive setting of Kempe et al. [2003], adaptive
strategies have been already analyzed in the influence maxi-

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3600

mization problem. However, adaptive strategies for the bud-
get allocation problem have not been captured by their model.
Thus, we need to formulate a new concept of adaptive sub-
modularity that can model the budget allocation problem.

1.1 Contributions
In this paper, we consider adaptive strategies in the budget al-
location problem in the bipartite influence model introduced
by Alon et al. [2012]. To this end, we define adaptive sub-
modularity of functions over integer lattices, which is a new
concept that extends both the adaptive submodularity given
by Golovin and Krause [2011b] and submodularity over inte-
ger lattice used in Soma et al. [2014] (see Section 3.3). This
concept captures the objective function in the adaptive ver-
sion of the budget allocation problem. Hence we obtain a
good adaptive strategy for the budget allocation problem by
designing a strategy for maximizing an adaptive submodular
function over an integer lattice.

In many variants of the submodular maximization prob-
lems, the greedy algorithms achieve good performance both
in practice and in theory. Thus we analyze the performance of
greedy adaptive algorithms for maximizing adaptive mono-
tone submodular functions over integer lattices. For our prob-
lem, a greedy strategy repeats allocating a certain amount of
budget to a medium so that the increase of the influence per
allocated budget is maximized. In our setting, the strategy is
given a new feedback when it allocates a unit amount of bud-
get. It is natural to update the strategy each time a new feed-
back is given. We call such a strategy sensitive greedy strat-
egy. On the other hand, an insensitive greedy strategy ignores
feedbacks until a certain proportion of a budget has been al-
located to a media. Surprisingly, we can show both theo-
retically and empirically that several typical sensitive greedy
strategies are inferior even to the non-adaptive algorithms.
Our proposal algorithms are sort of insensitive greedy strate-
gies.

More specifically, we present the following two variations
of the insensitive greedy algorithms.

• An algorithm outputs a budget allocation that achieves
(1� 1/e)-approximation. That is, its expected objective
value is at least (1 � 1/e) times that achieved by arbi-
trary adaptive algorithms. The allocation may violate the
budget constraints by a factor of at most two; however,
its expected cost is at most the given budget upper limit.
(see Theorem 3)

• Another algorithm outputs a budget allocation of an ap-
proximation ratio (e � 1)/(2e). The allocation is guar-
anteed to satisfy the budget constraints. (see Theorem 4)

Alon et al. [2012] showed that a non-adaptive greedy al-
gorithm achieves (1� 1/e)-approximation for the budget al-
location problem. We note that our guarantee on the first in-
sensitive policy is superior to the one obtained by Alon et al.
although their approximation ratios match. This is because
our algorithm is compared with adaptive algorithms whereas
Alon et al. compared only non-adaptive algorithms. So if
the optimal adaptive algorithm is strictly better than the non-
adaptive one (which is quite often the case), then our guaran-
tee is better. Indeed, there is an instance in which our algo-

rithms are better than any non-adaptive algorithms by more
than 58%; see at the end of Section 4.

Let us explain why the former variation of our insensitive
greedy algorithm violates the budget constraints. Our bud-
get constraint corresponds to knapsack constraints in the sub-
modular function maximization. For the non-adaptive setting
of maximizing submodular functions subject to the knapsack
constraints, the (1 � 1/e)-approximation is achieved only
by combining a greedy algorithm with a partial enumera-
tion of solutions in the initial step. However, in the adap-
tive setting, this partial enumeration is not permitted; hence,
it is difficult to achieve (1� 1/e)-approximation. Therefore,
we propose violating the budget constraints by a factor of at
most two. The similar approach was adopted in Golovin and
Krause [2011b] for the adaptive maximization of submodular
set functions.

1.2 Organization
The rest of this paper is organized as follows. Section 2 intro-
duces the budget allocation problem in the bipartite influence
model and the submodular functions over an integer lattice.
Section 3 formulates our problem setting and defines adap-
tive submodularity over an integer lattice. Section 4 analyzes
the adaptive greedy algorithms. Section 5 compares perfor-
mance of the algorithms through computational experiments.
Section 6 concludes the paper.

2 Budget allocation problem and submodular
functions

In this section, we introduce the budget allocation problem
proposed by Alon et al. [2012], and slightly extended by
Some et al. [2014]. We also explain a relationship with the
submodular functions over an integer lattice.

2.1 Bipartite influence model of the budget
allocation problem

Let Z+ and R+ be the sets of non-negative integers and real
numbers, respectively. For a finite set V , let ZV

+ denote the
set of non-negative integer vectors, where each component is
indexed by an element in V . For vectors x, y 2 ZV

+ , we write
x  y if x(v)  y(v) for all v 2 V . For an integer i 2 Z+,
let [i] denote {0, 1, . . . , i}.

We consider a bipartite graph (V, U ;E), where V is the
set of media, U is the set of customers, and E is the set of
edges between V and U . We are given a budget k 2 R+, a
cost function c : V ⇥ Z+ ! R+, and a vector b 2 ZV

+ rep-
resenting the numbers of slots of each media. In addition,
for each edge vu 2 E that joins nodes v 2 V and u 2 U ,
we are given a probability function q

vu

: [b(v)] ! [0, 1].
We assume that a media v has b(v) slots in total. It costsP

j2[i] c(v, j) to buy i slots of v. We allocate a total budget
of k to the media. For notational convenience, we let c(x)
denote

P
v2V

P
j2[x(v)] c(v, j) for x 2 ZV

+ . The allocation
can be represented by a vector x 2 ZV

+ such that x  b and
c(x)  k; if x(v) = i, it represents that we buy i slots of
media v.

3601

Let N(v) denote the set of neighbors of a node v in the
bipartite graph. If x(v) slots of media v are bought, v at-
tempts to influence each customer u 2 N(v) x(v) times. For
i 2 [b(v)] and u 2 N(v), q

vu

(i) represents the probability
that the i-th trial of media v to influence customer u succeeds.
Here, we assume that each trial is independent. g(x) is de-
fined as the expected number of influenced customers when
the budget allocation is x. That is,

g(x) :=
X

u2U

0

@
1�

Y

v2N(u)

x(v)Y

i=1

(1� q
vu

(i))

1

A . (1)

The budget allocation problem in the bipartite influence
model seeks an allocation x 2 ZV

+ that maximizes g(x) sub-
ject to x  b and c(x)  k.
Remark 1. In [Alon et al., 2012], Alon et al. called this
model by the source-side influence model to distinguish from
another model they called the target-side influence model.
Since we consider only the source-side influence model, we
simply call it by the bipartite influence model. In the original
definition, the costs for buying slots are not considered, i.e.,
c(v, i) = 1 for all v 2 V and i 2 [b(v)]. Thus our definition
is more general than the original one.

2.2 Submodular functions over an integer lattice
For two vectors x, y 2 ZV

+ , let x _ y denote the vector in
ZV

+ defined by (x _ y)(v) = max{x(v), y(v)} for v 2 V ,
and x ^ y denote the vector in ZV

+ defined by (x ^ y)(v) =

min{x(v), y(v)} for v 2 V . Let f : ZV

+ ! R+ be a function
defined on the integer lattice where each component corre-
sponds to an element in V . The function f is submodular
(over an integer lattice) if

f(x) + f(y) � f(x ^ y) + f(x _ y) for all x, y 2 ZV

+. (2)

f is considered monotone if f(x)  f(y) for any x, y 2 ZV

+
with x  y.

For a finite set V , a set function h : 2V ! R+ is called
submodular if

h(X) + h(Y) � h(X \ Y) + h(X [Y) for all X,Y 2 2

V .
(3)

When x and y are restricted to vectors over a Boolean lattice
(i.e., 2V), the condition (2) is equivalent to (3) . Hence the
submodularity over an integer lattice includes the concept of
the submodularity for set functions.

Soma et al. [2014] showed that the budget allocation prob-
lem in the bipartite influence model can be captured by the
submodular functions over an integer lattice. More con-
cretely, they proved the following theorem.
Theorem 1 ([Soma et al., 2014]). The function g defined by
(1) is monotone submodular over an integer lattice.

For the set functions, it is known that h satisfies condition
(3) if and only if h(X [{v})� h(X) � h(Y [{v})� h(Y)

for any X,Y 2 2

V with X ✓ Y and v 2 V \ Y . This
property is known as the decreasing marginal gain property of
submodular set functions. Soma et al. also showed that this
property is extended to the monotone submodular functions

over an integer lattice, which is summarized in the theorem
below. For v 2 V , let �

v

denote the vector in ZV

+ such that
�
v

(v) = 1 and �
v

(u) = 0 for each u 2 V \ {v}.
Theorem 2 ([Soma et al., 2014]). If f : ZV

+ ! R+ is mono-
tone submodular, then it satisfies f(x _ k�

v

) � f(x) �
f(y _ k�

v

) � f(y) for any k 2 Z+, v 2 V , and x, y 2 ZV

+
with x  y.

We note that the monotone submodular function f over
an integer lattice does not always satisfy the component-wise
convexity represented by f(x+ �

v

)� f(x) � f(x+ 2�
v

)�
f(x + �

v

) for x 2 ZV

+ and v 2 V . Therefore, in contrast
with submodular set functions, submodular functions over an
integer lattice are not considered convex in the direction of
�
v

.
By Theorem 1, the maximization problem of f extends the

budget allocation problem in the bipartite influence model. In
the submodular maximization problem, we are given a mono-
tone submodular function f : ZV

+ ! R+, and seek to find
a solution x 2 ZV

+ that maximizes f(x). When the prob-
lem demands a knapsack constraint, b 2 ZV

+ , k 2 Z+, and
c : V ⇥Z+ ! R+ are given as inputs, and a solution x 2 ZV

+
must satisfy x  b and c(x)  k. The constraint is called a
cardinality constraint if c(v, i) = 1 for all v 2 V and i 2 Z+.

Soma et al. proposed a (1� 1/e)-approximation algorithm
for the submodular maximization problem with the knapsack
constraints. If f is the function g defined by (1), the problem
coincides with the budget allocation problem in the bipartite
influence model. Hence the result of Soma et al. extends the
algorithm given by Alon et al. [2012].

3 Adaptive submodularity over an integer
lattice

Our main contribution in this paper is to analyze the adaptive
strategies in the budget allocation problem. In this section,
we first define the adaptive setting of the budget allocation
problem in the bipartite influence model. Then, we extend it
to the submodular maximization problem.

3.1 Adaptive setting of the bipartite influence
model

In the adaptive setting, the inputs of the problem are same
as the non-adaptive setting of the bipartite influence model;
namely, a bipartite graph (V, U ;E), b 2 ZV

+ , k 2 R+, c : V ⇥
Z+ ! R+, and q

vu

: [b(v)]! [0, 1] for each vu 2 E.
A budget allocation x 2 ZV

+ is initialized to the all-zero
vector. Then, we allocate the total budget k to the media
sequentially. If we buy one slot of a media v 2 V when
x(v) = i, x(v) is increased to i+1, and the media v activates
each customer u 2 N(v) in probability q

vu

(i + 1). In the
adaptive setting, we can observe which customers in N(v)
got influenced by this trial immediately after increasing x(v)
from i to i + 1, and we can change the behavior in the sub-
sequent steps based on the observation. Thus, our aim is to
find a good policy, which describes how we behave for each
observation.

This setting is natural in the marketing. When an advertis-
ing campaign is committed, the advertiser can observe how

3602

many customers are influenced (e.g., buy a product, subscribe
to a service), and profile of the influenced customers can be
easily obtained in most cases. The advertiser changes the
strategies based on the observation. Particularly, this applies
well to the internet advertising, wherein real-time marketing
is widely used.

3.2 Adaptive setting of the maximization problem
over an integer lattice

For the sake of generality, we discuss the adaptive policies in
the budget allocation problem in the framework of the sub-
modular functions. We extend the budget allocation problem
to a maximization problem of a stochastic objective func-
tion over an integer lattice subject to a knapsack constraint.
We then define the adaptive monotonicity and the adaptive
submodularity of a stochastic objective function, and prove
that the objective function defined from the budget allocation
problem satisfies these properties.

First, let us introduce the problem setting in the general
framework. Let R be a set of random variables. The range
of variables in R is denoted by S. We call the value of a
variable r 2 R by the state of r. For r 2 R and s 2 S, let
p
r

(s) denote the probability that the variable r is in the state
s. In the problem, the states of the random variables are not
observed in advance. Initially, the available information is the
probabilities p

r

(s) for all r 2 R and s 2 S.
We represent the states of all random variables in R by a

function � : R ! S, which we refer to as full realization.
The objective function depends on the full realization. Let
f
�

: ZV

+ ! R+ denote the objective function when the real-
ization is � : R ! S. Our goal is to find a policy that adap-
tively computes a solution x 2 ZV

+ maximizing f
�

(x) under
given constraints.

If a policy sets a solution to x 2 ZV

+ , it observes the state
of random variables in a subset O

�,x

of S. Note that O
�,x

depends on the full realization � and the solution x. O
�,x

is monotone with respect to x; namely, if x, y 2 ZV

+ satisfy
x  y, then O

�,x

✓ O
�,y

for any � : R ! S. The value of
f
�

(x) depends only on the states of variables in O
�,x

.
In the problem, the solution x is initialized by x(v) := 0 for

all v 2 V , and the policy repeats increasing a component of x
by one while satisfying the constraints; i.e., it is prohibited to
decrease x, and x must always satisfy c(x)  k and x  b for
a given cost function c : V ⇥ Z+ ! R+, a budget k 2 R+,
and the numbers of slots b 2 ZV

+ . When x(v) is increased
from i� 1 to i, the policy observes the states of the variables
in O

�,x

\ O
�,x

0 , where x (resp., x0) denotes the vector after
(resp., before) the increase. The behavior of the policy in the
subsequent steps depends on the observation.

Here, let ⇡ be a policy. We denote by x
�,⇡

the vector output
by the policy ⇡ when the states of the random variables in R
are represented by � : R ! S. Let favg(⇡) = E[f

�

(x
�,⇡

)],
where the expectation depends on the randomness of the vari-
ables in R. Hence favg(⇡) denotes the expected value of the
objective function obtained by running the policy ⇡. We may
consider a randomized policy as ⇡, and, in this case, the ex-
pectation also depends on the randomness of ⇡. We measure
the performance of ⇡ by favg(⇡).

In the budget allocation problem with the bipartite influ-
ence model, there is a random variable for each pair of vu 2
E and i 2 {1, . . . , b(v)}. Hence let R denote {(vu, i) : vu 2
E, i 2 {1, . . . , b(v)}} by abusing the notation. The state of
each pair (vu, i) 2 R represents that the i-th trial of v to in-
fluence u succeeds or not. Let S := {>,?}, where > and
? respectively denote “success” and “failure.” Recall that we
are given a probability function q

vu

: Z+ ! [0, 1] for each
vu 2 E in the budget allocation problem. The state of (vu, i)
is> in probability q

vu

(i). Let � : R! S be a full realization.
The probability that � occurs is

p(�) :=
Y

(vu,i)2R

�(vu,i)=>

q
vu

(i)
Y

(v0
u

0
,i

0)2R

�(v0
u

0
,i

0)=?

(1� q
v

0
u

0
(i0)).

When the budget allocation is x 2 ZV

+ , we can observe the
states of (vu, i) for all vu 2 E and i 2 {1, . . . , x(v)}; i.e.,
O
�,x

= {(vu, i) : vu 2 E, i 2 {1, . . . , x(v)}}. Notice that
O
�,x

is monotone with respect to x. The number of influ-
enced customers when the budget allocation is x 2 ZV

+ is
represented by

g
�

(x) = |{u 2 U : 9(vu, i) 2 O
�,x

,�(vu, i) = >}| . (4)

Maximizing the number of influenced customers adaptively
is equivalent to maximizing g

�

.

3.3 Adaptive monotonicity and adaptive
submodularity over an integer lattice

In this subsection, we define the adaptive monotonicity and
the adaptive submodularity over an integer lattice.

When the full realization is � : R ! S and a policy sets
the solution to x 2 ZV

+ , it observes the states of all random
variables in O

�,x

. Let ⇤ represent the fact that the state of a
random variable is not yet observed, and define S⇤

:= S [
{⇤}. We represent the observation available to the policy by
a function : R ! S⇤ such that for each ⇢ 2 R, (⇢) is
the state of ⇢ if it is already observed, and (⇢) = ⇤ if it is
not yet observed. We refer to such a function as (partial)
realization. The domain of a partial realization , denoted
by dom(), indicates {⇢ 2 R : (⇢) 6= ⇤}. In other words,
if represents the observation when the full realization is
� : R! S and the solution is x 2 ZV

+ , then dom() = O
�,x

.
Let �⇤ and � denote the set of all partial realizations and

the set of all full realizations, respectively. We say that a re-
alization extends another realization 0 if 0

(⇢) = (⇢)
for each ⇢ 2 dom(0

). If extends 0, we use the notation
 ⇠ 0. Recall that a full realization � happens in probability
p(�). If a realization 2 �

⇤ is not full, we assume that
happens in probability

P
{p(�) : � 2 �,� ⇠ }. We denote

this probability by p().
For a vector x 2 ZV

+ , let �⇤
x

denote { 2 �

⇤
: 9� 2

�, dom() = O
�,x

}. For x 2 ZV

+ , 2 �

⇤
x

, v 2 V , and
i 2 [b(v)], define

�(v, i | x,) := E [f
�

(x _ i�
v

)� f
�

(x) | � 2 �,� ⇠] .

In other words, �(v, i | x,) is the expected gain we obtain
by increasing x(v) to i, conditioned that the current realiza-
tion is and the current solution is x.

3603

Definition 1 (adaptive monotonicity). f := {f
�

: � 2 �} is
adaptive monotone (with respect to distribution p(�), � 2 �)
if �(v, i | x,) � 0 holds for any v 2 V , i 2 [b(v)], x 2 ZV

+ ,
and 2 �

⇤
x

with p() > 0.

Definition 2 (adaptive submodularity). f := {f
�

: � 2 �} is
adaptive submodular (with respect to distribution p(�), � 2
�) if �(v, i | x,�)  �(v, i | y,) holds for any v 2 V ,
i 2 [b(v)], x, y 2 ZV

+ with x � y, and � 2 �

⇤
x

and 2 �

⇤
y

such that � ⇠ and p(�) > 0.

It is not hard to observe that the objective function g :=

{g
�

: � 2 �} defined by (4) in the bipartite influence model
is adaptive monotone submodular.

4 Adaptive greedy policies

As mentioned in Section 1, integer lattice setting introduces
two types of greedy policies: sensitive and insensitive poli-
cies. In this section, we present two variations of insensitive
policies. One achieves approximation factor (1�1/e), which
matches the best ratio for the non-adaptive setting. How-
ever, it may violate the knapsack constraint c(x)  k. We
show that the vector x output by the policy always satisfies
c(x)  2k, and E[c(x)]  k. The other policy always out-
puts a feasible solution. However, its approximation factor is
(e� 1)/(2e).

First, let us prove several preparatory lemmas. For two
policies ⇡ and ⇡0, their concatenate ⇡@⇡0 is defined as fol-
lows. First, we run ⇡ to obtain x

⇡

2 ZV

+ . Then, we run ⇡0

from a fresh start to obtain x
⇡

0 2 ZV

+ , ignoring the informa-
tion from the observation during the run of ⇡. ⇡@⇡0 outputs
x
⇡

_ x
⇡

0 .

Lemma 1. Function f := {f
�

| � 2 �} is adaptive mono-
tone if and only if favg(⇡)  favg(⇡

0
@⇡) for all policies ⇡

and ⇡0.

Proof. Note that ⇡@⇡0 always outputs the same solutions
as ⇡0

@⇡ for any full realizations. Thus, favg(⇡@⇡
0
) =

favg(⇡
0
@⇡).

Suppose that f is adaptive monotone. Assume that a vector
x 2 ZV

+ and a realization 2 �

⇤
x

appears in probability
w(x,) as a solution and a realization kept by the ⇡0-portion
of ⇡@⇡0 in a certain moment. If ⇡@⇡0 increases x(v) to i
for , then the increase of the objective function is expected
to be �(v, i | x,). Therefore, favg(⇡@⇡0

) � favg(⇡) is
expressed by

P
x2ZV

+

P
 2�⇤

x

w(x,)�(v, i | x,). Since f
is adaptive monotone, �(v, i | x,) � 0 holds for any x and
 with w(x,) > 0. Hence favg(⇡@⇡

0
) � favg(⇡).

Suppose that �(v, i | x,) < 0 for some (v, i) 2 V ⇥Z+,
x 2 ZV

+ , and 2 �

⇤
x

with p() > 0. We define policies ⇡
and ⇡0 as follows. Let y denote the vector kept by the policies.
Both policies first increase y(u) from 0 to x(u) for each u 2
V . If the observed state of some random variable ⇢ 2 R
differs from (⇢), both policies terminate. If they succeed
to increase all u 2 V , ⇡ terminates, and ⇡0 terminates after

increasing y(v) to i. Then, we have

favg(⇡@⇡
0
)�favg(⇡)

=

X

�2�
�⇠

E[f
�

(⇡@⇡0
)� f

�

(⇡)]p(�)

= p()
X

�2�
�⇠

E[f
�

(x_i�
v

)�f
�

(x)]p(� |)

= p()�(v, i | x,) < 0.

Recall that x
�,⇡

denotes the vector output by a policy ⇡ for
a full realization �. For x 2 ZV

+ , 2 �

⇤
x

and a policy ⇡, let

�(⇡ | x,) := E [f
�

(x _ x
�,⇡

)� f
�

(x) | � 2 �,� ⇠] .

In other words, �(⇡ | x,) is the expected gain we obtain
when, after selecting vector x and observing , we run pol-
icy ⇡ ignoring the information given from . Note that the
expectation depends on the randomness of realizations, and
is conditioned on being observed after selecting x. When
⇡ is a randomized policy, the expectation also depends on the
randomness of ⇡.
Lemma 2. Let f be an adaptive monotone submodular func-
tion. Let x 2 ZV

+ , and 2 �

⇤
x

be a realization with
p() > 0, and let ⇡? be an arbitrary policy. Then,

�(⇡? |x,)E[c(x
�,⇡

?

) |� ⇠] max

(v,i)2V⇥Z+

�(v, i | x,)P
j2[i] c(v, j)

.

Proof. We define a policy ⇡ as follows. Let x0 be a solution
vector kept by ⇡. Starting from x0 ⌘ 0, ⇡ increases x0

(v)
from 0 to x(v) for all v 2 V , and terminates if the observed
state of a random variable ⇢ differs from (⇢). If it does
not terminate after observing all random variables, it proceeds
to run ⇡?, while ignoring all information obtained up to this
point. Note that ⇡ proceeds to run ⇡? in probability p().

For each (v, i) 2 V ⇥ Z+, let w(v, i) be the probability
that ⇡ terminates with x0

(v) = i under the condition that the
full realization extends . Note that if this event happens,
the ⇡?-portion of ⇡ increases x0

(v) to i. The contribution
of this operation to �(⇡? | x,) is at most �(v, i | x,)
by the adaptive submodularity. Therefore, �(⇡? | x,) P

(v,i)2V⇥Z+
w(v, i)�(v, i | x,). Note that w(v, i) 2 [0, 1]

for each (v, i) 2 V ⇥ Z+, and E[c(x
�,⇡

?

) | � ⇠] =P
(v,i)2V⇥Z+

w(v, i)
P

j2[i] c(v, j). Therefore,

�(⇡? | x,)


X

(v,i)2V⇥Z+

w(v, i)�(v, i | x,)

=

X

(v,i)2V⇥Z+

w(v, i)(
X

j2[i]

c(v, j))
�(v, i | x,)P

j2[i] c(v, j)

 E[c(x
�,⇡

?

) | � ⇠] max

(v0
,i

0)2V⇥Z+

�(v0, i0 | x,)P
j2[i0] c(v

0, j)
.

3604

For a deterministic policy ⇡ and i 2 [k], let ⇡
i

denote the
truncation of ⇡ defined as follows. Fixing a full realization
�, we define how ⇡

i

behaves for �. Let x be the temporal
solution kept by ⇡ during its run for �. Consider the mo-
ment ✓ when c(x) exceeds i. Suppose that ⇡ is increasing
x(v) at moment ✓. Let ✓0 be the latest moment before ✓ at
which ⇡ increases a component of x other than x(v). If there
is no such moment, ✓0 denotes the moment at which ⇡ be-
gins to run. Similarly, let ✓1 be the earliest moment after ✓
at which ⇡ increases a component of x other than x(v). If
there is no such moment, ✓1 denotes the moment at which ⇡
terminates. Suppose that c(x) = i0 at ✓0, and x(v) = j1
and c(x) = i1 at ✓1. Until ✓0, ⇡

i

behaves as ⇡. Then, in
probability (i� i0)/(i1� i0), ⇡i increases x(v) to j1 and ter-
minates. Otherwise, ⇡

i

terminates without increasing x(v).
Note that the truncation ⇡

i

outputs x such that E[c(x)]  i
for any full realization �, where the expectation is over only
the randomness of ⇡

i

.
We now define a policy ⇡ as follows. We assume with-

out loss of generality that c(b(v)�
v

)  k holds for all
v 2 V in the rest of this section. Starting from x ⌘
0, ⇡ chooses (v, i) 2 V ⇥ Z+ that maximizes �(v, i |
x,)/(

P
j2[i] c(v, j)) and increases x(v) to i, where is the

current realization. ⇡ repeats this procedure and terminates
when c(x) � k holds. Our first proposal algorithm is its trun-
cation ⇡

k

. We describe the details of ⇡
k

in Policy 1. Notice
that the behavior of ⇡

k

depends on the observation in Step 8,
and hence it is an adaptive policy.

Policy 1 Bicriteria (1� 1/e)-Approximation Policy
Input: a finite set V , an adaptive monotone submodular

function {f
�

: ZV

+ ! R+}�2�, k 2 R+, b 2 ZV

+ , and
c : V ⇥ Z+ ! R+

Output: x 2 ZV

+ such that c(x)  2k and x  b
1: x(v) � 0 for each v 2 V
2: (⇢) � ⇤ for each ⇢ 2 R
3: while c(x) < k do
4: (v, i) � argmax�(v, i | x,)/

P
j2[i] c(v, j)

where the maximization is over all (v, i) 2 V ⇥ Z+

with i  b(v)

5: C �
P

i

j=x(v)+1 c(v, j)

6: If c(x) +C > k, output x and terminate in probability
1� (k � c(x))/C

7: x(v) � max{x(v), i}
8: (⇢) � the state of ⇢ for each observed random vari-

able ⇢ 2 R
9: end while

10: output x

We consider a policy feasible if it outputs a vector x with
E[c(x)]  k for any full realization, where the expectation
is over the inner randomness of the policy. The following
theorem presents the (1 � 1/e)-approximation guarantee of
Policy 1.
Theorem 3. Let ⇡

k

be the policy presented in Policy 1. If
f is adaptive monotone submodular, then favg(⇡k) � (1 �
1/e)favg(⇡

?

) holds for any feasible policy ⇡?. Moreover, ⇡
k

is feasible, and it always outputs a vector x such that c(x) 
2k.

Proof. Let j 2 {1, . . . , k}. We give an lower bound on
favg(⇡j) � favg(⇡j�1). Suppose that ⇡

j

has a solution x
j

2
Z+ and a realization

j

2 �

⇤
x

j

when its last iteration is be-
ginning, and (v

j

, i
j

) is chosen in Step 4 of the last iteration.
Let j0 := c(x

j

) and C := c(x
j

_ i
j

�
v

j

) � j0. The expected
increase of the objective function in the last iteration of ⇡

j

is
�(v

j

, i
j

| x
j

,
j

)(j � j0)/C. If j � 1 > j0, then ⇡
j�1 be-

haves in the same way as ⇡
j

until it enters the last iteration,
which updates a solution x

j

to x
j

_ i
j

�
v

j

with probability
(j � 1� j0)/C. Hence the expected increase of the objective
function in the last iteration is �(v

j

, i
j

| x
j

,
j

)(j�1�j0)/C
in this case. If j � 1 = j0, ⇡

j�1 is the policy that does not
execute the last iteration of ⇡

j

. In either case, the difference
of the expected objective values achieved by ⇡

j

and ⇡
j�1 is

�(v
j

, i
j

| x
j

,
j

)

C
� �(v

j

, i
j

| x
j

,
j

)P
i2[i

j

] c(vj , i)
. (5)

Notice that we are fixing x
j

and �
j

in this discussion, whereas
x
j

and �
j

depends on the randomness of the variables in R.
Taking the expectation of (5) over all full realizations, we
have

favg(⇡j)� favg(⇡j�1) � E

"
�(v

j

, i
j

| x
j

,
j

)P
i2[i

j

] c(vj , i)

#
. (6)

Next, we give an upper bound on favg(⇡j�1@⇡
?

) �
favg(⇡j�1). We again discuss with fixing x

j

and �
j

. Sup-
pose that ⇡

j�1 terminates with the realization 0 and outputs
a solution y. The ⇡?-portion of ⇡

j�1@⇡
? increases the ob-

jective value by �(⇡? | y, 0
) in expectation. Notice that 0

and y satisfy 0 ⇠
j

and y � x
j

. Hence, the adaptive sub-
modularity of f indicates �(⇡? | y, 0

)  �(⇡? | x
j

,
j

).
By taking the expectation over all full realizations, we have

favg(⇡j�1@⇡
?

)� favg(⇡j�1)  E[�(⇡? | x
j

,
j

)]. (7)

By Lemma 2, we have

�(⇡? | x
j

,
j

)

 E[c(x
�,⇡

?

) | � ⇠
j

] max

(v,i)2V⇥Z+

�(v, i | x
j

,
j

)P
i

02[i] c(v, i
0
)

.

(8)

The maximum in the right-hand side of (8) is attained by
(v

j

, i
j

) by the definition. E[c(x
�,⇡

?

)]  k for any full re-
alization � because ⇡? is feasible. Hence, from (7) and (8),
we have

favg(⇡j�1@⇡
?

)� favg(⇡j�1)  k ·E
"
�(v

j

, i
j

| x
j

,
j

)P
i

02[i
j

] c(vj , i
0
)

#
.

(9)
Define ⌫

j

:= favg(⇡
?

) � favg(⇡j). Note that ⌫
j�1 �

⌫
j

= favg(⇡j) � favg(⇡j�1). Since f is adaptive mono-
tone, Lemma 1 implies that favg(⇡

?

)  favg(⇡j�1@⇡
?

).
Hence, favg(⇡j�1@⇡

?

) � favg(⇡j�1) � ⌫
j�1. Therefore,

(6) and (9) indicate that ⌫
j�1 � ⌫

j

� ⌫
j�1/k holds for all

3605

j = 1, . . . , k. This implies ⌫
k

 ⌫0/e, which is equivalent to
(1� 1/e)favg(⇡

?

)  favg(⇡k).
By its construction, ⇡

k

satisfies E[c(x
�,⇡

k

)]  k for any
full realization �, and hence ⇡

k

is feasible. Let x be the vector
when the last iteration is beginning, and suppose that the last
iteration increases x(v). Then c(x

�,⇡

k

)  c(x) + c(b(v)�
v

)

holds. c(x) < k holds since otherwise ⇡
k

terminates before
the last iteration, and we are assuming c(b(v)�

v

)  k. There-
fore, c(x

�,⇡

k

)  2k holds for any full realization �.

Remark 2. Each iteration of Policy 1 chooses a pair (v, i)
that maximizes �(v, i | x,)/

P
j2[i] c(v, j). Since increas-

ing x(v) to i costs
P

i

j=x(v)+1 c(v, j), one may feel that

(v, i) should maximize �(v, i | x,)/
P

i

j=x(v)+1 c(v, j).
In fact, we can prove the same guarantee even if (v, i)

maximizes �(v, i | x,)/
P

i

j=x(v)+1 c(v, j) because
Lemma 2 still holds even after

P
j2[i] c(v, j) is replaced by

P
i

j=x(v)+1 c(v, j).

Policy 1 can be modified so that it always outputs a vec-
tor x with x  b and c(x)  k whereas the approximation
guarantee is reduced to (e� 1)/(2e). See Algorithm 2 for its
detail.

Policy 2 (e� 1)/(2e)-Approximation Policy
Input: a finite set V , an adaptive monotone submodular

function {f
�

: ZV

+ ! R+}�2�, k 2 R+, b 2 ZV

+ , and
c : V ⇥ Z+ ! R+

Output: x 2 ZV

+ such that c(x)  k, and x  b
1: x(v) � 0 for each v 2 V
2: (⇢) � ⇤ for each ⇢ 2 R
3: v0 � argmax

v2V

favg(b(v)�v

)

4: In probability 1/2, set x(v0) � b(v0), and (⇢) � the
state of ⇢ for each observed random variable ⇢ 2 R

5: while 9(v, i) 2 V ⇥Z+ such that �(v, i | x,) > 0 and
x _ i�

v

is feasible do
6: (v, i) � argmax�(v, i | x,)/

P
j2[i] c(v, j)

where the maximization is over (v, i) 2 V ⇥ Z+ such
that x _ i�

v

is feasible
7: x(v) � i
8: (⇢) � the state of ⇢ for each observed random vari-

able ⇢ 2 R
9: end while

10: output x

Theorem 4. Let ⇡0 denote Policy 2. If f := {f
�

| � 2 �}
is adaptive monotone submodular, ⇡0 always outputs a vector
x with x  b and c(x)  k, and it achieves favg(⇡

0
) �

(e� 1)/(2e) · favg(⇡?) for any feasible policy ⇡?.

Proof. Define ⇡ as described in the paragraph before Pol-
icy 1. Since favg(⇡) � favg(⇡k), Theorem 3 indicates that
favg(⇡) � (1 � 1/e)favg(⇡

?

) holds. Let x0 be the vector
kept by the policy ⇡ when the last iteration begins, and sup-
pose that ⇡ increases x0

(v) to i in the last iteration. Note that
favg(⇡) = E[f

�

(x0 _ i�
v

)].

Let ⇡1 denote the policy that behaves as ⇡ with the excep-
tion that ⇡1 does not execute the last iteration of ⇡. In addi-
tion, let ⇡2 be the policy that always outputs b(v0)�

v

0 , where
v0 maximizes favg(b(v

0
)�

v

0
). We first prove favg(⇡) 

favg(⇡1) + favg(⇡2). Clearly, favg(⇡1) = E[f
�

(x0
)]. Let

y 2 ZV

+ denote the zero-vector, and denote the realization
such that (⇢) = ⇤ for all ⇢ 2 R. The adaptive submodularity
of f indicates E[f

�

(x0 _ i�
v

)]�E[f
�

(x0
)]  �(v, i | y,).

Since favg(⇡2) = favg(b(v
0
)�

v

0
) � �(v, i | y,), we obtain

the inequality.
For each full realization, the objective value of a vector

output by ⇡0 is at least f(⇡1) in probability 1/2; otherwise,
this is at least f(⇡2). Therefore, favg(⇡0

) � (favg(⇡1) +
favg(⇡2))/2 � favg(⇡)/2 � (e� 1)/(2e) · favg(⇡?).

Let us briefly discuss the running time of Policies 1 and 2.
Suppose that �(v, i | x,�) can be computed in O(T) time
for any v 2 V , i 2 [b(v)], x 2 ZV

+ , and � 2 �

⇤
x

. Then, both
policies decide the next behavior in O(T

P
v2V

b(v)) time in
each iteration. In the budget allocation problem with the bi-
partite influence model, we have T = O(|U |max

v2V

b(v)).
Note that this does not consider the time for observing the
states of random variables, which corresponds to checking
whether each customer is influenced or not in the budget al-
location problem.

Remark 3. Asadpour and Nazerzadeh [2009] showed that
an adaptive algorithm is better than any non-adaptive algo-
rithm by a factor e/(e�1) > 1.58 for the stochastic maximum
k-cover problem, which is a special case of the budget allo-
cation problem in the bipartite influence model. Their proof
gave an instance of the stochastic maximum k-cover problem
for which an adaptive policy achieves an objective value L
and any non-adaptive solution does not achieve an objective
value better than (1 � 1/e)L. In fact, the adaptive policy in
their proof coincides with Policy 1. This indicates that our
adaptive policies improve the objective value by at least 58%
than arbitrary non-adaptive algorithms for those instances.

5 Experiments
We implemented three adaptive policies: Policies 1 and 2, and
a sensitive greedy policy defined as follows. Suppose that the
policy maintains a vector x 2 ZV

+ and a realization � 2 �

⇤
x

when a certain iteration begins. In this iteration, the policy
computes (v, i) := argmax�(v, i | x,�)/(

P
j2[i] c(v, j))

and increases x(v) by one, where the maximization is taken
over all (v, i) 2 V ⇥ Z+ such that x _ i�

v

is feasible.
In addition to the adaptive policies, we implemented a non-
adaptive greedy (1� 1/e)-approximation algorithm [Soma et
al., 2014].

5.1 Bipartite influence model
We run the algorithms for instances of the bipartite influ-
ence model. As a bipartite graph, we prepared a synthetic
graph (V, U ;E) over a media set V and a customer set U .
The degree distribution on V follows the power law, and
|V | = 100 and |U | = 10, 000. We randomly chose b(v)
from {20, 21, · · · , 30} for each v 2 V . We prepared two

3606

0 50 100 150 200

0

2,000

4,000

6,000

8,000

Budget k

A
ve

ra
ge

ob
je

ct
iv

e
va

lu
e

(a) Normal distribution

0 50 100 150 200

0

2,000

4,000

6,000

Budget k

A
ve

ra
ge

ob
je

ct
iv

e
va

lu
e

(b) Power law distribution

Policy 1 Policy 2 Sensitive Non-Adaptive

Figure 1: Experimental results on the bipartite influence
model

types of the probabilities q
vu

, vu 2 E: In the normal dis-
tribution, q

vu

(i) is given by exp(�(i � 15)

2/50)/
p
50⇡ for

each i 2 {1, . . . , 30} and vu 2 E; In the power law dis-
tribution, q

vu

(i) is given by exp(0.2(i � 30))/10 for each
i 2 {1, . . . , 30} and vu 2 E.

We compute budget allocations over 500 instances by the
policies, and compare their objective values by favg(⇡) for
a policy ⇡. By preliminary experiments, we verified that 500
instances are enough to compare the average objective values.

Figure 1 indicates the average objective values when the
budget k is set to a value in {20, 40, . . . , 200}. For setting the
probabilities q

vu

of each edge vu, the normal distribution is
used in (a), and the power law distribution is used in (b).

Although the theoretical performance guarantee of Policy 2
(in Theorem 4) is inferior to Policy 1 (in Theorem 3), we ob-
serve from the experimental results that performances of Poli-
cies 1 and 2 are almost same in all instances. Recall that Pol-
icy 2 always outputs a feasible allocation whereas Policies 1
does not. Moreover, they are clearly superior to the other
two algorithms. In the normal distribution instances, the non-
adaptive algorithm is sometimes worse even than the sensitive
algorithm. In the power law distribution instances, the non-
adaptive algorithm outperforms the sensitive algorithm, but it
is clearly worse than Policies 1 and 2.

5.2 General influence model
Adaptive submodularity over an integer lattice is a useful no-
tion, and it has numerous applications other than the budget
allocation in the bipartite influence model. Taking advantage
of this feature, we extend the budget allocation problem from
the bipartite influence model to another influence model de-
fined over general directed graphs. This general influence
model can be captured by an adaptive monotone submodu-
lar function over an integer lattice, and hence all algorithmic
results proposed in this paper can be applied to it. Here, we
report empirical performance of the adaptive strategies and
the non-adaptive (1 � 1/e)-approximation algorithm in this
general influence model.

We do not describe the detail of the model due to the space
limitation. The non-adaptive setting of this model is ob-
tained by introducing multiple influence levels into the inde-
pendence cascade model studied by Kempe et al. [2003] in a
context of influence maximization. We note that a similar at-

tempt can be found in Demaine et al. [2014], but our model is
different from theirs. Alon et al. [2012] also mentioned that
their bipartite influence model can be naturally extended to
general graphs, but they do not seem to consider the multiple
influence levels on all nodes.

For the experiments, we prepared a graph that represents
user-user following information in Twitter [KONECT, 2014].
Each node represents a user, and an arc from a node i to an-
other node j represents that the user corresponding to i is
followed by the user corresponding to j. The graph consists
of 23370 nodes and 33101 arcs. In this graph, we choose 500
nodes that have largest out-degrees, and consider allocating
budgets to these nodes. The parameters in the instances are
set as follows: b(v) = 15 for all chosen nodes v, and the ob-
jective of the problem is defined as the maximization of the
number of nodes influenced at least once. Budget k is set
to a value in {20, 40, . . . , 200}, and the objective values are
averaged over 500 instances for each k.

Figure 2 shows the results. Performance of Policies 1 and 2
are nearly equal, the non-adaptive policy is behind them, and
the sensitive policy is clearly worse than the others.

0 50 100 150 200

0

100

200

300

400

Budget k

A
ve

ra
ge

ob
je

ct
iv

e
va

lu
e Policy 1

Policy 2
Sensitive

Non-adaptive

Figure 2: Experimental results on the general influence model
with a Twitter graph

6 Conclusion
In this paper, we analyzed adaptive greedy policies for the
budget allocation problem. Our contributions are based on
the new concept of the adaptive submodularity; we extended
the adaptive submodularity defined for the set functions to the
functions over integer lattices. We believe that this new con-
cept has other applications than the budget allocation prob-
lem. Indeed, we have already studied its applications to data
summarization and sensor management. We will report them
in the full version of the present paper.

References
[Alon et al., 2012] Noga Alon, Iftah. Gamzu, and Moshe

Tennenholtz. Optimizing budget allocation among chan-
nels and influencers. In 21st International Conference on
World Wide Web (WWW), pages 381–388, 2012.

[Asadpour and Nazerzadeh, 2009] Arash Asadpour and
Hamid Nazerzadeh. Maximizing Stochastic Monotone
Submodular Functions. ArXiv e-prints, August 2009.

3607

[Chen and Krause, 2013] Yuxin Chen and Andreas Krause.
Near-optimal batch mode active learning and adaptive sub-
modular optimization. In 30th International Conference
on Machine Learning (ICML), pages 160–168, 2013.

[Chen et al., 2014] Yuxin Chen, Hiroaki Shioi, Ce-
sar Fuentes Montesinos, Lian Pin Koh, Serge Wich,
and Andreas Krause. Active detection via adaptive sub-
modularity. In 31th International Conference on Machine
Learning (ICML), pages 55–63, 2014.

[Chen et al., 2015] Yuxin Chen, Shervin Javdani, Amin Kar-
basi, J. Andrew (Drew) Bagnell, Siddhartha Srinivasa, and
Andreas Krause. Submodular surrogates for value of in-
formation. In The Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence (AAAI-15), pages 3511–3518, 2015.

[Demaine et al., 2014] Erik D. Demaine, MohammadTaghi
Hajiaghayi, Hamid Mahini, David L. Malec, S. Raghavan,
Anshul Sawant, and Morteza Zadimoghaddam. How to
influence people with partial incentives. In 23rd Interna-
tional World Wide Web Conference (WWW), pages 937–
948, 2014.

[Deshpande et al., 2014] Amol Deshpande, Lisa Hellerstein,
and Devorah Kletenik. Approximation algorithms for
stochastic boolean function evaluation and stochastic sub-
modular set cover. In Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1453–
1466, 2014.

[Domingos and Richardson, 2001] Pedro M. Domingos and
Matthew Richardson. Mining the network value of cus-
tomers. In Seventh ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD),
pages 57–66, 2001.

[Gabillon et al., 2013] Victor Gabillon, Branislav Kveton,
Zheng Wen, Brian Eriksson, and S. Muthukrishnan. Adap-
tive submodular maximization in bandit setting. In Ad-
vances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Sys-
tems (NIPS), pages 2697–2705, 2013.

[Gabillon et al., 2014] Victor Gabillon, Branislav Kveton,
Zheng Wen, Brian Eriksson, and S. Muthukrishnan.
Large-scale optimistic adaptive submodularity. In Twenty-
Eighth AAAI Conference on Artificial Intelligence (AAAI-
14), pages 1816–1823, 2014.

[Golovin and Krause, 2011a] Daniel Golovin and Andreas
Krause. Adaptive submodular optimization under matroid
constraints. CoRR, abs/1101.4450, 2011.

[Golovin and Krause, 2011b] Daniel Golovin and Andreas
Krause. Adaptive submodularity: Theory and applications
in active learning and stochastic optimization. J. Artif. In-
tell. Res. (JAIR), 42:427–486, 2011.

[Golovin et al., 2010] Daniel Golovin, Andreas Krause, and
Debajyoti Ray. Near-optimal bayesian active learning with
noisy observations. In Advances in Neural Information
Processing Systems 23: 24th Annual Conference on Neu-
ral Information Processing Systems 2010 (NIPS), pages
766–774, 2010.

[Gotovos et al., 2015] Alkis Gotovos, Amin Karbasi, and
Andreas Krause. Non-monotone adaptive submodular
maximization. In Twenty-Fourth International Joint Con-
ference on Artificial Intelligence (IJCAI-15), pages 1996–
2003, 2015.

[Kempe et al., 2003] David Kempe, Jon M. Kleinberg, and
Éva Tardos. Maximizing the spread of influence through
a social network. In Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 137–146, 2003.

[KONECT, 2014] KONECT. Twitter lists network dataset,
2014. http://konect.uni-koblenz.de/networks/ego-twitter.

[Krause et al., 2014] Andreas Krause, Daniel Golovin, and
Sarah J. Converse. Sequential decision making in com-
putational sustainability via adaptive submodularity. AI
Magazine, 35(2):8–18, 2014.

[Richardson and Domingos, 2002] Matthew Richardson and
Pedro M. Domingos. Mining knowledge-sharing sites for
viral marketing. In 8th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD),
pages 61–70, 2002.

[Soma et al., 2014] Tasuku Soma, Naonori Kakimura,
Kazuhiro Inaba, and Ken-ichi Kawarabayashi. Optimal
budget allocation: Theoretical guarantee and efficient
algorithm. In 31th International Conference on Machine
Learning (ICML), pages 351–359, 2014.

[The Washington Post, 2012] The Washington Post, 2012.
http://www.washingtonpost.com/wp-srv/special/politics/
track-presidential-campaign-ads-2012/.

3608

