
Probably Approximately Correct Learning in
Stochastic Games with Temporal Logic Specifications

Min Wen
University of Pennsylvania

wenm@seas.upenn.edu

Ufuk Topcu
University of Texas at Austin

utopcu@utexas.edu

Abstract
We consider a controller synthesis problem in turn-
based stochastic games with both a qualitative lin-
ear temporal logic (LTL) constraint and a quan-
titative discounted-sum objective. For each case
in which the LTL specification is realizable and
can be equivalently transformed into a determin-
istic Buchi automaton, we show that there always
exists a memoryless almost-sure winning strategy
that is "-optimal with respect to the discounted-sum
objective for any arbitrary positive ". Building on
the idea of the R-MAX algorithm, we propose a
probably approximately correct (PAC) learning al-
gorithm that can learn such a strategy efficiently
in an online manner with a-priori unknown reward
functions and unknown transition distributions. To
the best of our knowledge, this is the first result on
PAC learning in stochastic games with independent
quantitative and qualitative objectives.

1 Introduction
An important goal of reinforcement learning (RL) is to make
an agent learn to behave as desired through its experience.
For problems modeled as stochastic games, the expectation
of the discounted sum of rewards is commonly used as a
performance criterion to encode the preference over strate-
gies. It is well known that with discounted-sum objectives,
pure memoryless strategies suffice for optimality [Filar and
Vrieze, 1996], which significantly simplifies the learning al-
gorithms. However, the discounted-sum objective suffers
from several noticeable drawbacks in the task of describing
the desired strategies. First, it is not applicable to strategies
that require memory. As memoryless strategies are sufficient
to achieve optimality, agents lack the incentive to learn the
more complicated finite-memory strategies. Second, it can-
not restrict behavior during the learning process. With re-
wards, the agent can only figure out the preferable actions
after it actually tries all transitions, even the fatal ones such
as crashing into some obstacle, which is obviously unaccept-
able. Third, there is usually a lack of theoretical proof that
any strategy solved with the given reward function is desir-
able, except in some simple scenarios. For example, multi-
dimensional reward functions are generally necessary to rep-

resent the conjunction of several requirements, in which case
a strategy usually cannot be simultaneously optimized with
every single reward. It is hard to know intuitively from the
reward function how different the learned strategy is from a
desired one.

In order to compensate for these problems, we propose
to use linear temporal logic (LTL) specifications to comple-
ment the encoding of the desired strategies. Practically, it is
relatively straightforward to extract LTL specifications from
high-level task requirements in robot planning and control
[Kress-Gazit et al., 2007; Smith et al., 2011; Guo et al., 2013;
Wolff et al., 2013]. Algorithmically, all LTL formulas can be
transformed to deterministic Rabin or parity automata (DRA
or DPA), which can be further used to construct product
stochastic Rabin or parity games. Strategies synthesized for
such product Rabin or parity games are guaranteed to sat-
isfy the corresponding LTL specifications with probability
one (i.e. almost surely), treating LTL specifications as ‘game
rules’ that should never be violated. Both the construction of
DRA or DPA from LTL formulas and the synthesis can be
performed using off-the-shelf tools [Gaiser et al., 2012; Tsai
et al., 2013; Klein, 2015; Blahoudek, 2015; Friedmann and
Lange, 2009]. Although it has been shown that pure memo-
ryless strategies suffice for almost-sure winning in the prod-
uct stochastic Rabin or parity games [Chatterjee et al., 2003;
2005a], these strategies use memory in the original stochas-
tic games. In this way, LTL specifications offer a systematic
way of designing the memory for the desired strategies. We
will show later that with the pre-computation of almost-sure
winning regions in the product games, we can keep the agent
safe even during the learning procedure.

In this paper we use both discounted rewards and LTL
specifications to encode task requirements. In particular, if
an LTL specification is realizable and can be transformed into
a deterministic Buchi automaton (DBA), we prove the ex-
istence of a memoryless strategy which is both almost-sure
winning with respect to the Buchi objective and "-optimal
with respect to the discounted-sum objective. We also pro-
pose a probably approximately correct (PAC) algorithm to
learn such a strategy online when the reward function and the
transition distributions are both unknown a priori [Strehl et
al., 2009; Fu and Topcu, 2014]. To the best of our knowledge,
this is the first PAC learning algorithm for stochastic games
with independent quantitative and qualitative objectives.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3630

Related work Strategy synthesis in which perfect knowl-
edge of the game is available and the task involves both qual-
itative and quantitative objectives has been extensively stud-
ied. Examples include mean-payoff parity games [Chatterjee
et al., 2005b], energy parity games [Chatterjee and Doyen,
2010], their multi-dimension version [Chatterjee et al., 2012]
and stochastic version [Chatterjee et al., 2014]. There are also
results on strategy synthesis in stochastic games with total re-
ward constraints and LTL specifications [Chen et al., 2013].
However, only limited work has been done when the transi-
tion distributions and the rewards are unknown a priori. This
paper is an extension of our previous work [Wen et al., 2015],
in which we considered a learning problem with both tem-
poral logic constraints and unknown discounted-sum objec-
tives in deterministic games. Our new algorithm here works
with general stochastic games and guarantees to learn a near-
optimal strategy with any specified optimality bound.

2 Preliminaries
For any countable set M , let |M | be its cardinality, M! be
the set of infinite sequences composed of elements in M , and
D(M) be the set of all probability distributions over M .

We first formulate the decision-making problem as a turn-
based labeled stochastic game. A turn-based labeled stochas-
tic game between the controlled agent (the ‘system’) and the
uncontrolled agent (the ‘environment’) is defined as a tuple
G = (SG , Ss,G , Se,G , IG , AG , TG ,RG , AP, LG), where SG is
a finite state space; S

s,G ✓ SG is the set of states at which the
system chooses actions, and S

e,G = SG\Ss,G is a set of states
at which the environment chooses actions; IG ✓ SG is a set
of initial states; AG is a finite action space; TG : SG ⇥ AG !
D(SG) is a transition function; RG : SG⇥AG⇥SG ! R�0 is
a non-negative reward function; AP is a set of atomic propo-
sitions (Boolean variables); LG : SG ! 2

AP is a labeling
function.

LTL specifications put restrictions on the label sequences
corresponding to the infinite state sequences of G. Inter-
ested readers may refer to [Baier et al., 2008] for the de-
tailed syntax and semantics of LTL. Instead of treating LTL
specifications directly as formulas, we translate them into
!-regular automata, or deterministic Buchi automata, to be
precise. A deterministic Buchi automaton (DBA) is a tuple
A = (QA,⌃A, �A, Q0,A, FA) where QA is a finite set of
states; ⌃A is a finite input alphabet; �A : QA⇥⌃A ! QA is
a transition function; Q

0,A ✓ QA is a set of initial states;
FA ✓ QA is a set of accepting states. A run of A over
an input sequence (p

t

)

t2N 2 ⌃

!

A is an infinite sequence
(q

t

)

t2N 2 Q

!

A, where q

0

2 Q

0,A and q

t+1

= �A(qt, pt) for
all t 2 N. A run (q

t

)

t2N is accepted by A if |{t 2 N : q

t

2
FA}| = 1. Only a subclass of LTL formulas can be trans-
formed into equivalent DBAs, but this subclass of specifica-
tions covers a wide range of requirements in robot planning
tasks. For example, ⇤safe region (always stay in states la-
beled as ‘safe region’), }goal (eventually reach a state la-
beled as ’goal’), ⇤(request ! }response) (if a ‘request’
state is observed, a ‘response’ state should be visited later),
⇤}charging (always get to the ‘charging’ state sometime
later), ⇤((¬charging) U battery low) (never charge your-

self before the battery gets low), just to name a few.
If ⌃A = 2

AP , we can compose a turn-based stochastic
Buchi game G = (S, S

s

, S

e

, I, A, T,R, F) of G and A with
the standard product automata construction:

• S = SG ⇥QA is a finite state space;
• S

s

= S

s,G ⇥ QA is the set of system states, and S

e

:=

S\S
s

is the set of environment states;
• I = IG ⇥Q

0,A is a set of initial states;
• A = AG is a finite action space;
• T : S ⇥ A ! D(S) is the transition function such that
T ((s, q), a)(s

0
, �A(q, LG(s))) = TG(s, a)(s

0
);

• R : S⇥A⇥S ! R�0 is a non-negative reward function
such that R((s, q), a, (s

0
, q

0
)) = RG(s, a, s

0
);

• F = SG ⇥ FA is a set of accepting states.
The product game G inherits the reward from G and the

winning condition from A. On the reward side, the system
is to maximize its future discounted reward, while the envi-
ronment is to minimize it. On the winning condition side, the
system is to win with probability one, regardless of the be-
havior of the environment. We define the system strategies
and then formulate the almost-sure winning objective as well
as the discounted-sum objective.

A (randomized) system strategy is defined as a tuple �

s

=

(�

m

s

, ⇢

m

s

,M

s

,m

0

s

), where M

s

is a (possibly countably infi-
nite) set of memory states; m0

s

2 M

s

is the initial memory
state; �m

s

: S

s

⇥M

s

! D(A), and ⇢

m

s

: S⇥M

s

!M

s

is the
memory update function. If M

s

is a singleton, �
s

is a mem-
oryless strategy; if M

s

is a finite set, �
s

is a finite-memory
strategy. With a slight abuse of notation, we use �

s

(s, a) to
represent �m

s

(s,m

0

s

)(a) for s 2 S

s

, a 2 A

G

(s) when �

s

is
memoryless. If |{s0 2 S : �

s

(s,m)(s

0
) > 0}| = 1 for all

s 2 S

s

and m 2 M

s

, �
s

is a pure strategy. An environment
strategy �

e

= (�

m

e

, ⇢

m

e

,M

e

,m

0

e

) can be defined analogously.

The Almost-Sure Winning Objective The winning con-
dition for G is defined on its runs. Let AG

: S ! 2

A\;
be a mapping from each state to its available actions in G.
For each s 2 S, a 2 A

G

(s), let EG

(s, a) ✓ S be the set
of possible successors by taking a at s in G. A run ⇡ =

(s

t�1

⇡

, a

t

⇡

)

t2N+ of G is an infinite sequence of state-action
pairs such that for all t 2 N+, st�1

⇡

2 S, at
⇡

2 A

G

(s

t

⇡

), and
s

t

⇡

2 E

G

(s

t�1

⇡

, a

t

⇡

). ⇡ is winning for the system with respect
to the Buchi condition if and only if F is visited for infinitely
many times in ⇡, i.e. |{t 2 N : s

i

⇡

2 F}| = 1. A system
strategy �

s

is almost-sure winning at s 2 S if a run ⇡ with
s

0

⇡

= s is winning for the system with probability one when
the system takes �

s

, regardless of the environment strategy.
The almost-sure winning region for the system, denoted by
W

as

(or WG

as

to explicitly indicate G), is the set of states at
which the system has almost-sure winning strategies. By def-
inition, there are no outgoing transitions from S

e

T
W

as

that
leaves W

as

.
The almost-sure winning objective for the system is to al-

ways take an almost-sure winning strategy. In other words,
the system strategy is supposed to be almost-sure winning at
any time in the process of learning.

3631

The Discounted-Sum Objective As common in the RL lit-
erature, we use state value functions and action value func-
tions to evaluate system strategies. The state value function
V

�

s

: S ! R�0 specifies the worst-case expected discounted
reward from each state when the system the strategy �

s

. The
action value function Q

�

s

: S ⇥ A ! R�0 shows the worst-
case expected discounted reward if the system takes a given
action at the current step and follows the strategy �

s

there-
after. A system strategy �

s

is optimal if it maximizes the
state value functions over all system strategies. When �

s

is
an optimal strategy, its state value function and action value
function are called the optimal state value function and the
optimal action value function, denoted by V

⇤ and Q

⇤ respec-
tively. V ⇤ and Q

⇤ satisfy the following optimality conditions
[Littman, 2001]:

V

⇤
(s) =

⇢
max

a2A

G

(s)

Q

⇤
(s, a), if s 2 S

s

min

a2A

G

(s)

Q

⇤
(s, a), if s 2 S

e

Q

⇤
(s, a) =

X

s

02E

G

(s,a)

T (s, a)(s

0
)

�
R(s, a, s

0
) + �V

⇤
(s

0
)

�
,

where � 2 (0, 1) is a discount factor. For any " > 0,
a system strategy �

s

is "-optimal at s 2 S if V

�

s

(s) �
V

⇤
(s) � ". Given ⌃

s

as a set of system strategies, a sys-
tem strategy �

s

2 ⌃

s

is optimal over ⌃

s

at s 2 S if
V

�

s

(s) � max

�

0
s

2⌃

s

V

�

0
s

(s), or "-optimal over ⌃

s

at s if
V

�

s

(s) � max

�

0
s

2⌃

s

V

�

0
s

(s)� ".
The discounted-sum objective for the system is to be "-

optimal over all almost-sure winning system strategies at all
states that are visited infinitely often. In other words, eventu-
ally the worst-case expected reward at any state that will be
visited in future is "-optimal.

3 Problem Formulation
We make the following assumptions in our formulation.

Assumption 1. Both the environment and the system are
aware of their current states, and can observe the reward af-
ter a transition is taken. In other words, the game is fully
observable for both sides.

Assumption 2. The system knows the correct list of all pos-
sible successors for all state-action pairs, but does not know
the exact transition distributions a priori.

The knowledge of all existing transitions is critical in order
to achieve the almost-sure winning objective. It may seem
demanding at the first glance, but it is possible that an almost-
sure winning strategy can never be learned from experience
without the previous knowledge. For example, even if s0 2 S

is never witnessed as a successor of a state-action pair (s, a),
we cannot confirm that T (s, a)(s0) = 0. Also, without reset-
ting, there can be a positive probability that the system leaves
its almost-sure winning region during the exploration period
and cannot guarantee almost-sure winning thereafter.

The third assumption is on the unknown reward. The upper
bound R

max

can be set easily as it is not required to be tight.

Assumption 3. The reward function is unknown a priori, but
is upper bounded by the specified positive number R

max

.

With the above assumptions, we formulate our learning
problem as follows.
Problem 1. Given a turn-based stochastic Buchi game
G

in

= (S

in

, S

in

s

, S

in

e

, I

in

, A

in

, T

in

,Rin

, F

in

) satisfying
Assumptions 1 - 3, a discount factor � 2 (0, 1) and subop-
timality bound " > 0, learn a memoryless system strategy
�

s,"

that satisfies both the almost-sure winning objective and
the discounted-sum objective.

4 Main Approach
We now develop the main algorithm to solve Problem 1.
The first step is to compute the almost-sure winning re-
gion W

in

as

for the system. By definition of almost-sure win-
ning regions, the system can only win almost-surely if it al-
ways stays within W

in

as

. The definition guarantees that for
any s 2 S

in

s

T
W

in

as

, there exists an action a 2 A

G

in

(s)

such that E

G

in

(s, a) ✓ W

in

as

; for any s 2 S

in

e

T
W

in

as

,
E

G

in

(s, a) ✓ W

in

as

for all a 2 A

G

in

(s). In other words,
the system has a strategy to force the environment to stay
within W

in

as

once it is entered. Therefore we can construct
a new game G from G

in as follows to ensure that the visited
states are always restricted to W

in

as

in G. G = G

in � W in

as

=

(S, S

s

, S

e

, I, A, T,R, F) such that:

Algorithm 1 HatGame and RecoverHatStrategy
1: function HatGame(G, Q⇤, "

1

, p
"1)

2: For i 2 {1, 2}, Si

s

 {si|s 2 S

s

}.
3: Define B : S

1

s

S
S

2

s

! S

s

such that for all si 2 S

i

s

and i 2 {1, 2}, B(s

i

) = s holds.
4: ˆ

S

s

 S

s

S
S

1

s

S
S

2

s

, ˆS ˆ

S

s

S
S

e

.
5: Define A

⇤
"1

: S

s

! 2

A\; such that for all s 2
S

s

, A

⇤
"1
(s) = {a 2 A

G

(s)|max

a

02A

G

(s)

Q(s, a

0
) �

Q(s, a)  "

1

}.
6: ˆ

A A

S
{â}.

7: Define the set of available actions for all s 2 ˆ

S:

A

ˆ

G

(s) =

8
>><

>>:

A

G

(s) if s 2 S

e

,

{â} if s 2 S

s

,

A

G

(B(s)) if s 2 S

1

s

,

A

⇤
"1
(B(s)) if s 2 S

2

s

.

8: Define the transition function for all
s, s

0 2 ˆ

S and a 2 A

ˆ

G

(s): ˆ

T (s, a)(s

0
) =8

>><

>>:

p

"1 if s 2 S

s

, s

0
= s

1

,

1� p

"1 if s 2 S

s

, s

0
= s

2

,

T (s, a)(s

0
) if s 2 S

e

, s

0 2 S,

T (B(s), a)(s

0
) if s 2 S

1

s

S
S

2

s

, s

0 2 S.

9: return ˆ

G = (

ˆ

S,

ˆ

S

s

,

ˆ

S

e

, I,

ˆ

T ,R, F).
10: end function
11: function RecoverHatStrategy(ˆG, �̂

s

)
12: For all s 2 S

s

and a 2 A

¯

G

(s), �̄

s

(s, a)
ˆ

T (s, â)(s

1

)�̂

s

(s

1

, a) +

ˆ

T (s, â)(s

2

)�̂

s

(s

2

, a), where ˆ

T is
the transition function of ˆ

G.
13: return �̄

s

.
14: end function

3632

• S = W

in

as

, S
s

= S

in

s

T
W

in

as

, S
e

= S

in

e

T
W

in

as

, I =

I

in

T
W

in

as

, and F = F

in

T
W

in

as

.

• For all s 2 S

s

, AG

(s) = {a 2 A

G

in

(s) : E

G

in

(s, a) ✓
W

in

as

}; for all s 2 S

e

, AG

(s) = A

G

in

(s).
• For all transition (s, a, s

0
) in G, T (s, a)(s

0
) =

T

G

in

(s, a)(s

0
), R(s, a, s

0
) = Rin

(s, a, s

0
).

The set of almost-sure winning system strategies in G

in is
a subset of the system strategies in G. Therefore if a system
strategy �

s

is "-optimal at s 2 S, it is also "-optimal over all
almost-sure winning strategies at s in G

in. So we transform
Problem 1 into learning a memoryless almost-sure winning
system strategy that is "-optimal in G.

We first consider the two objectives in Problem 1 when
the reward functions and transition distributions are known.
Without the Buchi objective, the discounted-sum objective
degenerates to learning a system strategy that is "-optimal at
the infinitely-often-visited states, which can be solved with
some slight modification of the R-max algorithm [Brafman
and Tennenholtz, 2003]. However, R-max is not applicable to
the normal discounted-sum objective, as the Buchi condition
is given independently from the reward function, and there is
no standard parameterization of the space of all almost-sure
winning strategies. This difficulty is common for all RL al-
gorithms that were designed to optimize a reward function.

To avoid this difficulty, we consider the discounted-sum
objective first. For discounted rewards, a memoryless system
strategy �

s

is optimal if and only if Q
�

s

(s, a) = V

⇤
(s) holds

for all s 2 S

s

and a 2 {a0 2 A

G

(s) : �

s

(s, a

0
) > 0} [Filar

and Vrieze, 1996]. In other words, �
s

is optimal when it only
takes the optimal actions. We construct a game G

0 from G

such that the two games are identical except that all actions
available to the system states in G

0 are optimal actions in G.
Thus any system strategy in G

0 is optimal in G. If WG

0

as

coin-
cides with W

G

as

, there exists a memoryless almost-sure win-
ning strategy �

s

in G

0, which is also almost-sure winning in
G as there are no restrictions to the environment in G

0. Then
�

s

is an optimal almost-sure winning system strategy in G.
However, WG

0

as

may be a proper subset of WG

as

, as the sys-
tem has fewer actions available in G

0. If such is the case,
we would have to allow the system to take some suboptimal
actions in G in order to preserve the almost-sure winning re-
gion. Intuitively, if a system strategy �

0
s

specifies only a small
probability to the suboptimal actions, V

�

s

can still be near-
optimal. The following lemma shows that there exists such a
�

0
s

that is almost-sure winning in G.
Lemma 1. Let G

in

= (S

in

, S

in

s

, S

in

e

, I

in

, A

in

, T

in

, F

in

)

be a turn-based Buchi game, and W

in

as

be the almost-
sure winning region of G

in. Let G = G

in � W

in

as

=

(S, S

s

, S

e

, I, A, T, F). Then a memoryless system strategy
�

s

such that �
s

(s, a) > 0 for all s 2 S

s

, a 2 A

G

(s) is
almost-sure winning in G.

To bound the probability of taking suboptimal actions,
we construct a game ˆ

G = HatGame(G,Q

⇤
, "

1

, p

"1) as in
Algorithm 1. For each system state s, we have an addi-
tional action â and two additional system states s

1 and s

2

in ˆ

G such that â is the unique available action at s and

Algorithm 2 Overall algorithm for Problem 1
Input: A turn-based Buchi game G

in

=

(S

in

, S

in

s

, S

in

e

, I

in

, A

in

, T

in

,Rin

, F

in

) satisfying
Assumptions 1 - 3, reward upper bound R

max

> 0, a
discount factor � 2 (0, 1), a suboptimality bound " > 0,
a confidence bound �

c

2 (0, 1).
1: Compute the almost-sure winning region W

in

as

and a
memoryless almost-sure winning strategy �

s

for the sys-
tem in G

in.
2: G := G

in � W in

as

= (S, S

s

, S

e

, I, A, T,R, F).
3: Initialize the game model ¯

G
(S, S

s

, S

e

, I, A,

¯

T ,

¯R, F) such that ¯

G shares the
same set of transitions with G and all transition distri-
butions in ¯

T are uniform; ¯R(s, a, s

0
) R

max

1��

for all
transition (s, a, s

0
).

4: �

s,"

 �

s

.
5: For all existing transition (s, a, s

0
) in ¯

G, k(s, a, s0) 0,
L(s, a) 0, ¯

Q

⇤
(s, a) R

max

(1��)

2 .

6: � "(1��)

2
log(�)

6R

max

|S| log("(1��)

2
/6R

max

)

, K 1

2�

2 log
4|A||S|2

�

c

.

7: "

1

 "

12

, p
"1

"(1��)

2

12R

max

�"(1��)

2 .
8: while TRUE do
9: if s 2 S

s

then
10: Take �

s,"

for one step.
11: else
12: Environment takes a transition.
13: end if
14: Observe the transition (s, a, s

0
) and the reward r.

15: if L(s, a) = 0 then
16: k(s, a, s

0
) k(s, a, s

0
) + 1, ¯R(s, a, s

0
) r.

17: if
P

s

02S

k(s, a, s

0
) � K or |E ¯

G

(s, a)| = 1 then
18: L(s, a) 1.
19: For all s0 2 S, ¯

T (s, a)(s

0
) k(s,a,s

0
)P

s

02S

k(s,a,s

0
)

.
20: Update the optimal action value function ¯

Q

⇤.
21: Construct ˆ

G HatGame(¯G,

¯

Q

⇤
, "

1

, p

"1).
22: Compute a memoryless almost-sure winning

strategy �̂

s

for the system in ˆ

G.
23: �

s,"

 RecoverHatStrategy(ˆG, �̂

s

).
24: end if
25: end if
26: end while

E

ˆ

G

(s, â) = {s1, s2}. At s

1 the system can take all ac-
tions in A

G

(s); at s2 the system can only take the optimal
actions. The transition probability from s to s

1 is confined
to be a small number p

"

. For each memoryless system strat-
egy �̂

s

in ˆ

G, we can construct a memoryless system strategy
�

s

= RecoverHatStrategy(ˆG, �̂

s

) in G. As expected, such
�

s

is near-optimal in G, as shown in Lemma 2.

Lemma 2. Let G and ˆ

G be two turn-based Buchi games such
that ˆ

G = HatGame(G,Q

⇤
, "

1

, p

"1), where Q

⇤ is the optimal
action value function of G, and "

1

> 0, p

"1 2 (0, 1) are
constants. The reward function R in G is bounded by R

max

1��

,
where � 2 (0, 1) is the discount factor. If �̂

s

is a strategy

3633

for the system in ˆ

G, then �

s

= RecoverHatStrategy(ˆG, �̂

s

)

is
�
"

1

(1� p

"1) + p

"1
R

max

(1��)

2

�
-optimal in G.

The following lemma guarantees that the strategies �
s

and
�̂

s

can only be almost-sure winning simultaneously.

Lemma 3. The games G, ˆ

G and the strategies �

s

, �̂
s

are
defined as in Lemma 2. Then �̂

s

is almost-sure winning for
the system in ˆ

G if and only if the constructed �

s

is almost-sure
winning for the system in G.

Therefore, given the optimal action value function Q

⇤, we
can solve a memoryless "-optimal almost-sure winning strat-
egy in G as follows: first properly construct a game ˆ

G, then
synthesize a memoryless almost-sure winning strategy �̂

s

in
ˆ

G (whose existence is shown in Lemma 1), and eventually
recover a memoryless strategy �

s

in G from �̂

s

. The con-
structed game ˆ

G changes when the optimal actions identi-
fied by Q

⇤ changes. But the recovered strategy �

s

is always
almost-sure winning in G, no matter what Q⇤ is.

Now we return to Problem 1, where both the reward func-
tion and the transition distributions are unknown. As in the R-
max algorithm, we refine an optimistically-initialized game
model ¯

G in an online manner. With the help of Algorithm 1,
we can update the system strategy �

s,"

every time a new tran-
sition is learned, and always keep �

s,"

to be both almost-sure
winning and "-optimal with respect to its current model ¯

G.
The overall algorithm is shown in Algorithm 2, and Theo-
rem 1 follows from an argument similar to the correctness
proof of the R-max algorithm. A complete proof can be
found in the technical version at https://www.ae.utexas.edu/
facultysites/topcu/archive/ijcai16.html.

Theorem 1. Let Gin be a turn-based Buchi game, R
max

be a
positive upper bound of the reward, � 2 (0, 1) be a discount
factor, " > 0 be a suboptimality bound and 1 � �

c

2 (0, 1)

be a confidence lower bound, as given in the input of Algo-
rithm 2. The system strategy �

s,"

in Algorithm 2 is always
memoryless and almost-sure winning. With probability no
less than 1� �

c

, by taking �

s,"

, the future discounted reward
from the current state s is at least V ⇤

(s)� ", except for some
number of steps polynomial in |S|, |A|, 1

"

and 1

�

c

.

q

1start

q

2

q

3

q

4

p

1

p

2

¬p
1

V
¬p

2

p

2

¬p
2

p

1

¬p
1

p

1

p

2

¬p
1

V
¬p

2

Figure 1: A DBA constructed for the example. p
1

stands for
the lower left block, and p

2

stands for the upper right block.

5 Example
We show the usage of our algorithm with a robot motion plan-
ning problem which involves simultaneous resource collec-
tion and surveillance. This example was run on a laptop with
an 8 Intel(R) Core(TM) 2.40GHz CPU and 8 GB memory.

We first introduce the turn-based game and task require-
ments. The system moves in a 3-by-3 grid world, and it has
to move to an adjacent block if the current state is a system
state. The environment is a signal light that indicates the dan-
gerous area in the world at the current step which needs to be
monitored closely. If the environment light is on, the upper
left four blocks are dangerous; otherwise, the lower right four
blocks are dangerous. The environment can arbitrarily decide
the status of the light in the next step if the current state is
an environment state. Furthermore, the lower left block and
the upper right block are labeled as post offices. For ease of
demonstration, we assume that all transitions are determinis-
tic, i.e. |EG

(s, a)| = 1 for all state-action pair (s, a).
We want to learn a strategy for the system to both patrol

the dangerous areas and persistently visit the two post offices.
We first interpret the task requirements as a almost-sure win-
ning objective and a discounted-sum objective, encode them
as inputs to our algorithm, and then show the results.

Almost-Sure Winning Objective The task of visiting the
two post offices can be expressed by the four-state DBA in
Figure 1. The initial state is q

1

, and the set of accepting states
is {q

4

}. The upper right block is labeled by ‘p
1

’ (‘post office
#1’) and the lower left block is labeled by ‘p

2

’ (‘post office
#2’). We show that the Buchi condition is satisfied if and
only if both p

1

and p

2

are visited infinitely often. Starting
from the initial state, the system transits to q

2

if it visits p
1

, or
transits to q

3

if it visits p
2

. If it visits neither of them, it stays
at q

1

. From q

2

and q

3

, the system should visit the other post
office (p

2

for q
2

and p

1

for q
3

) in order to enter q
4

. q

4

has
the same outgoing transitions as q

1

. The transitions show that
one new visit to q

4

requires at least one new visit to p

1

and
one new visit to p

2

. Therefore to satisfy the Buchi condition,
i.e. to visit q

4

infinitely often, the system has to visit p
1

and
p

2

infinitely often. All initial states are with DBA state q

1

.

The Discounted-Sum Objective The task of monitoring
the dangerous area is interpreted as a discounted-sum objec-
tive. A reward function is designed to encourage the system
to patrol the dangerous area. The system will be rewarded
by 1 in the following cases: (1) when the system transits into
the dangerous area; (2) when the light is on and the system
moves counterclockwise in the dangerous area; (3) when the
light is off and the system moves clockwise in the danger-
ous area. For all other system transitions and all environment
transitions, there is no reward. Throughout this example, the
discount factor � is 0.6, and R

max

= 1.
The system does not know this reward function ahead of

time, but eventually manages to learn a strategy with opti-
mal worst-case discounted reward. As shown in Figure 2, the
system learns to approach the area specified by the environ-
ment as soon as possible and then move in the corresponding
direction to maximize the reward.

3634

Figure 2: The optimal strategy for the system with only the
discounted reward. The pink and blue squares represent the
dangerous areas when the light is on and off. The triangles
show the optimal transition directions from each block (pink
ones for light on, blue ones for light off).

We get the product of the original turn-based game and the
DBA, which results in a turn-based Buchi game G

in. The
almost-sure winning region W

in

as

and a memoryless almost-
sure winning strategy �

s

are computed with the off-the-shelf
tool PGSolver [Friedmann and Lange, 2015]. It turns out that
W

in

as

is the whole state space, and �

s

is illustrated in Figure 3.
The suboptimality bound " is set to be 0.0001. To output the
learned strategy in a timely manner, we added a terminating
condition to the while loop in Algorithm 2 such that the algo-
rithm stops if there are no updates in the last 10,000 steps.

Upon termination, the learned strategy for the system is
shown in Figure 4. The strategy is randomized and allows two
actions at each system state, one with probability (1 � p

"1)

and the other with probability p

"1 , represented by the big tri-
angles and small triangles respectively. The worst-case value
functions for the learned strategy, the initial almost-sure win-
ning strategy, and an optimal strategy are shown in Figure 5.
These value functions are evaluated with the true reward func-
tion, and thus are not accessible to the system. It can be found
that the value of the learned strategy is much better than that
of the initial strategy, although it is not at all close to the op-
timal strategy. In Figure 4, we marked all states where the
learned strategy is "-optimal with yellow background. It turns
out that all system states are marked with yellow, i.e. are "-
optimal, except those that are not reachable from the initial
states. The product Buchi game has 144 states, 72 system
states and 192 transitions. On average of ten repetitive ex-
periments, the algorithm terminates at 58.05 seconds with the

Figure 3: The initial almost-sure winning strategy �

s

. From
left to right, the four figures show the system strategy with
DBA state q

1

to q

4

. In each figure, the pink and blue triangles
point to the transition directions at each block when the light
is on and off respectively.

Figure 4: The learned almost-sure winning strategy �

s,"

upon
the algorithm termination as no updates occurred in the past
10,000 steps. From left to right, the four figures show the sys-
tem strategy with DBA state q

1

to q

4

. In each figure, the pink
and blue triangles point to the transition directions at each
block when the light is on and off respectively. Big triangles
represent actions with probability (1 � p

"1), and small tri-
angles represent actions with probability p

"1 . Triangles with
yellow background are "-optimal over all almost-sure win-
ning system strategies.

0 10 20 30 40 50 60 70

0

0.5

1

1.5

2

2.5

3

States

V
a
lu

e

optimal
learned
initial

Figure 5: Comparison of the value function of the initial
almost-sure winning strategy, the learned strategy and an op-
timal strategy (which may not be almost-sure winning) for
all system states. The red crosses mark all the strongly con-
nected components in which there is at least one state whose
value is learned to be "-optimal.

last update occurs at 29.77 seconds.

6 Conclusion
We studied the strategy synthesis in turn-based stochastic
games with both qualitative Buchi objectives and quantitative
discounted-sum objectives. A PAC learning algorithm is pro-
posed to learn a memoryless "-optimal almost-sure winning
strategy when the reward function and transition distributions
are unknown a priori. We also demonstrated the algorithm
on an example involving resource-collection and surveillance
tasks.

Acknowledgments
This work was partially supported by awards AFRL FA8650-
15-C-2546, ONR N000141310778, ARO W911NF-15-1-
0592, NSF 1550212 and DARPA W911NF-16-1-0001.

References
[Baier et al., 2008] Christel Baier, Joost-Pieter Katoen, et al.

Principles of model checking, volume 26202649. MIT
press Cambridge, 2008.

3635

[Blahoudek, 2015] Fanda Blahoudek. Ltl3dra - ltl to deter-
ministic rabin automata translator based on ltl3ba, 2015.

[Brafman and Tennenholtz, 2003] Ronen I Brafman and
Moshe Tennenholtz. R-max-a general polynomial time
algorithm for near-optimal reinforcement learning. The
Journal of Machine Learning Research, 3:213–231, 2003.

[Chatterjee and Doyen, 2010] Krishnendu Chatterjee and
Laurent Doyen. Energy parity games. In Automata, Lan-
guages and Programming, pages 599–610. Springer, 2010.

[Chatterjee et al., 2003] Krishnendu Chatterjee, Marcin Jur-
dziński, and Thomas A Henzinger. Simple stochastic par-
ity games. In Computer Science Logic, pages 100–113.
Springer, 2003.

[Chatterjee et al., 2005a] Krishnendu Chatterjee, Luca
De Alfaro, and Thomas A Henzinger. The complexity of
stochastic Rabin and Streett games. Springer, 2005.

[Chatterjee et al., 2005b] Krishnendu Chatterjee, Thomas A
Henzinger, and Marcin Jurdzinski. Mean-payoff parity
games. In Logic in Computer Science, 2005. LICS 2005.
Proceedings. 20th Annual IEEE Symposium on, pages
178–187. IEEE, 2005.

[Chatterjee et al., 2012] Krishnendu Chatterjee, Mickael
Randour, and Jean-François Raskin. Strategy synthesis for
multi-dimensional quantitative objectives. In CONCUR
2012–Concurrency Theory, pages 115–131. Springer,
2012.

[Chatterjee et al., 2014] Krishnendu Chatterjee, Laurent
Doyen, Hugo Gimbert, and Youssouf Oualhadj. Perfect-
information stochastic mean-payoff parity games. In
Foundations of Software Science and Computation
Structures, pages 210–225. Springer, 2014.

[Chen et al., 2013] Taolue Chen, Marta Kwiatkowska, Ais-
tis Simaitis, and Clemens Wiltsche. Synthesis for multi-
objective stochastic games: An application to autonomous
urban driving. In Quantitative Evaluation of Systems,
pages 322–337. Springer, 2013.

[Filar and Vrieze, 1996] Jerzy Filar and Koos Vrieze. Com-
petitive Markov decision processes. Springer-Verlag New
York, Inc., 1996.

[Friedmann and Lange, 2009] Oliver Friedmann and Martin
Lange. The pgsolver collection of parity game solvers.
University of Munich, 2009.

[Friedmann and Lange, 2015] Oliver Friedmann and Martin
Lange. tcsprojects/pgsolver, 2015.

[Fu and Topcu, 2014] Jie Fu and Ufuk Topcu. Probably ap-
proximately correct mdp learning and control with tem-
poral logic constraints. arXiv preprint arXiv:1404.7073,
2014.

[Gaiser et al., 2012] Andreas Gaiser, Jan Křetı́nskỳ, and
Javier Esparza. Rabinizer: Small deterministic automata
for ltl (f, g). In Automated Technology for Verification and
Analysis, pages 72–76. Springer, 2012.

[Guo et al., 2013] Meng Guo, Karl H Johansson, and Di-
mos V Dimarogonas. Revising motion planning under

linear temporal logic specifications in partially known
workspaces. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 5025–5032.
IEEE, 2013.

[Klein, 2015] Joachim Klein. Ltl2dstar - ltl to deterministic
streett and rabin automata, 2015.

[Kress-Gazit et al., 2007] Hadas Kress-Gazit, Georgios E
Fainekos, and George J Pappas. Where’s waldo? sensor-
based temporal logic motion planning. In Robotics and
Automation, 2007 IEEE International Conference on,
pages 3116–3121. IEEE, 2007.

[Littman, 2001] Michael L Littman. Value-function rein-
forcement learning in markov games. Cognitive Systems
Research, 2(1):55–66, 2001.

[Smith et al., 2011] Stephen L Smith, Jana Tumova, Calin
Belta, and Daniela Rus. Optimal path planning for surveil-
lance with temporal logic constraints. The International
Journal of Robotics Research, page 0278364911417911,
2011.

[Strehl et al., 2009] Alexander L Strehl, Lihong Li, and
Michael L Littman. Reinforcement learning in finite mdps:
Pac analysis. The Journal of Machine Learning Research,
10:2413–2444, 2009.

[Tsai et al., 2013] Ming-Hsien Tsai, Yih-Kuen Tsay, and Yu-
Shiang Hwang. Goal for games, omega-automata, and
logics. In Computer Aided Verification, pages 883–889.
Springer, 2013.

[Wen et al., 2015] Min Wen, Rudiger Ehlers, and Ufuk
Topcu. Correct-by-synthesis reinforcement learning with
temporal logic constraints. In Intelligent Robots and Sys-
tems (IROS), 2015 IEEE/RSJ International Conference on,
pages 4983–4990. IEEE, 2015.

[Wolff et al., 2013] Eric M Wolff, Ufuk Topcu, and
Richard M Murray. Efficient reactive controller synthesis
for a fragment of linear temporal logic. In Robotics and
Automation (ICRA), 2013 IEEE International Conference
on, pages 5033–5040. IEEE, 2013.

3636

