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Abstract

The rapid growth of open data on the Web pro-
motes the development of data portals that facili-
tate finding useful datasets. To help users quickly
inspect a dataset found in a portal, we propose to
summarize its contents and generate a hierarchical
grouping of entities connected by relations. Our
generic approach, called HIEDS, considers cover-
age of dataset, height of hierarchy, cohesion within
groups, overlap between groups, and homogeneity
of groups, and integrates these configurable factors
into a combinatorial optimization problem to solve.
We present an efficient solution, to serve users with
dynamically configured summaries with acceptable
latency. We systematically experiment with our ap-
proach on real-world RDF datasets.

1 Introduction
Increasingly many datasets have been made available as open
data on the Web. To cope with their explosive growth, open
data portals are established, to collect datasets from the Web
and provide users with a single point access. Users, when
browsing a dataset found in a portal, are usually fed with its
metadata but lack for an insight into its contents, thereby hav-
ing difficulty in determining its relevance to the needs.

To solve it, methods have been proposed to automatically
generate small-sized, high-level abstraction of data, to sum-
marize the contents of a dataset for quick inspection. Given
data modeled as entity-property-value triples such as Re-
source Description Framework (RDF), schema-based meth-
ods [Benedetti et al., 2014] group entities by their classes
(i.e., values of the Type property) and connect groups by rela-
tions (i.e., properties with entity values). Such methods, lim-
ited by their expressivity, may unfortunately generate identi-
cal summaries for datasets in the same domain that share an
ontological schema. More expressive methods are partition-
based [Tian et al., 2008], which partition entities into disjoint
groups based on all properties beyond Type. However, they
may fail to obtain many natural but overlapping groups, e.g.,
actors and directors.
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In this paper, a generic approach called HIEDS is proposed
to summarize a dataset. Compared with existing schema-
based methods that focus on the Type property, HIEDS ex-
ploits all the properties to divide entities into groups, and can
also be configured to use a single property. Compared with
partition-based methods that aim at disjoint groups, HIEDS
allows groups to overlap to configurable degrees. More im-
portantly, HIEDS organizes groups into a hierarchy, to pro-
vide abstraction at different granularities that can be incre-
mentally explored. Our technical contribution is twofold.

• We propose to generate hierarchical dataset summaries.
Our generic approach configures coverage of dataset,
height of hierarchy, cohesion within groups, overlap be-
tween groups, and homogeneity of groups, all of which
are formulated in a combinatorial optimization problem.

• We present an efficient solution to the problem. Our
implementation allows approximate results depending
on the computational resources available, and thus can
serve users with dynamically configured summaries
with acceptable latency even for large datasets.

2 Constitution of Summary
We expect the constitution of a dataset summary to exhibit
three features. Firstly, a summary should provide multi-
granular abstraction of data to be incrementally explored,
since a single granularity could be either too coarse to offer
adequate information or too fine to manage information over-
load. Secondly, a summary should preserve the structural
nature of a dataset, i.e., to consist of not only its divisions but
also connections between them. Thirdly, a summary should
be comprehensible, i.e., to precisely and concisely character-
ize divisions and connections by human-readable labels.

To achieve these goals, we propose to iteratively divide the
entities in a dataset into subgroups, forming a hierarchical
grouping of entities to realize multiple granularities to be in-
crementally explored, as illustrated in Fig. 1(a). Each group
is precisely characterized by a set of property-value pairs that
are shared by all the entities in the group. Specifically, the
root of the hierarchy (i.e., the only group at the 0-th level)
contains all the entities in the dataset. Each group at the l-
th level is characterized by a set of l property-value pairs,
l � 1 of which are inherited from its ancestors in the hier-
archy (i.e., groups on the path to the root of the hierarchy)

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3705



Figure 1: An example dataset summary.

and are omitted from presentation; it is distinguished from
its siblings by the remaining property-value pair as its label,
and sibling groups are allowed to overlap (i.e., containing
common entities) when some entity has all of these property-
value pairs (e.g., a person who is both an actor and a direc-
tor). The contents of a group are presented as a graph, in
which its subgroups are connected by relations, as illustrated
in Fig. 1(b); such a relation indicates that some entities in one
subgroup have this relation to some entities in the other sub-
group. In this way, both entity groups and the connections be-
tween them are labeled with concise terms that exactly come
from the dataset, ensuring their comprehensibility.

3 Generation of High-quality Summary
Entities in a dataset can be grouped into different hierarchies;
different relations can be selected from the dataset to con-
nect groups. These lead to many and various summaries. In
this section, we define a high-quality summary from five as-
pects, and obtain it by building a hierarchy of groups in a
top-down manner via iterative subdivisions. Our solution, to
be invoked iteratively, deals with a group of entities, and fo-
cuses on which subgroups the input group should be divided
into, connected by which relations. We formulate a subdivi-
sion as a combinatorial optimization problem, and present an
efficient solution to find the desired subgroups and relations.

3.1 Quality of Summary
To avoid overloading users with information, an input group
should be divided into a limited number of subgroups, con-
nected by selected relations. Their quality is fivefold.

Coverage of Data. The subgroups altogether should cover
as many entities in the input group as possible, and thus each
subgroup should cover a considerable portion. Analogously,
selected relations should connect many pairs of entities.

Height of Hierarchy. Steadily dividing groups into large
and overlapping subgroups to strive for coverage may gener-
ate a deep hierarchy of groups, leading to low efficiency of
users’ incremental exploration. To achieve a trade-off, sub-
groups should be not too large but moderate-sized.

Cohesion within Groups. The cohesion of a subgroup
measures the extent to which the entities in it form a united
whole. It is embodied in the common property-value pairs of
the entities in the subgroup, which should not be generic ones
shared by a broad range of entities in the dataset.

Overlap between Groups. Sibling subgroups are allowed
to overlap, to help generating more natural subgroups. Never-
theless, their overlap should be controllable, to provide users
with diverse directions in exploration.

Homogeneity of Groups. To avoid subdivision from dif-
ferent dimensions and reduce cognition burden, users may
prefer homogeneous subgroups that are distinguished by dif-
ferent values of the same property. It should be configurable.

These five aspects are jointly formalized in the following.

3.2 Problem Formulation
Let E, P , and V be the sets of all entities, properties, and
values in a dataset, respectively. Let R ✓ P be the set of all
relations, i.e., properties having entities as values. A dataset is
a set of entity descriptions; the description of an entity e 2 E

is a set of property-value pairs D(e) ✓ (P ⇥ V ).
When building a hierarchy of entity groups in a top-down

manner, a group G ✓ E having been placed at the l-th level
of the hierarchy is characterized by a set of l property-value
pairs PV (G) ✓ (P ⇥ V ), which are shared and are only
shared by the entities in G:

G = {e 2 E : PV (G) ✓ D(e)} . (1)

E is the only group at the 0-th level, as the root of the hierar-
chy and characterized by an empty set of property-value pairs,
i.e., PV (E) = ;. When l > 0, among the l property-value
pairs in PV (G), l� 1 are inherited from G’s ancestors in the
hierarchy, and the remaining one that distinguishes G from
its siblings is called G’s label, denoted by lbl(G) 2 PV (G).
As illustrated in Fig. 1(a), the group labeled with Country:US
is characterized by {Type:Movie, Country:US}.

In a top-down building process, our solution takes a group
G ✓ E as input, and aims to divide it into not more than
k subgroups and obtain a high-quality summary as discussed
in Sect. 3.1. Since groups are characterized by property-
value pairs, generating k subgroups of G amounts to selecting
k property-value pairs (other than PV (G)) from descriptions
of the entities in G, each as the label of one subgroup.

We formulate it as a combinatorial optimization problem.
Specifically, k property-value pairs will be selected from

CPV (G) =

[

e2G

D(e) \ PV (G) . (2)

Prior to selection, from these candidates, those correspond-
ing to small subgroups containing smaller than a threshold
proportion of entities are filtered out, to ensure considerable
coverage of entities; the remaining candidates are

CPV

0
(G) = {pv 2 CPV (G) : ⌧E 

|lbl�(pv)|
|G| < 1} ,

(3)
where ⌧E 2 [0, 1) is a parameter to be tuned, and lbl

�
(pv)

returns the candidate subgroup labeled with pv:

lbl

�
(pv) = {e 2 E : (PV (G) [ {pv}) ✓ D(e)}

= {e 2 G : pv 2 D(e)} .
(4)

Given n = |CPV

0
(G)|, we number the property-value

pairs in CPV

0
(G) from pv1 to pvn, and introduce a series

of binary variables xi for i = 1..n to indicate whether pvi is
selected into a solution to the following combinatorial opti-
mization problem:

3706



maximize
nX

i=1

xi · (↵ ·modsize(pvi) + � · coh(pvi))

subject to 1� xi 2 {0, 1}, for i = 1..n,

2�
nX

i=1

xi  k, and

3� xi + xj  1, for i, j = 1..n subject to
i < j and ovlp(pvi, pvj) � � .

(5)

In the objective function, modsize(pvi) 2 [0, 1] is larger
when the proportion of entities in G contained in lbl

�
(pvi) is

closer to 1
k , to achieve a trade-off between coverage of enti-

ties (which favors large subgroups) and height of hierarchical
grouping (which favors small subgroups):

modsize(pvi) = exp(�
| |lbl

�(pvi)|
|G| � 1

k |

min(

|lbl�(pvi)|
|G| ,

1
k )

) , (6)

and coh(pvi) 2 [0, 1] is larger when pvi is shared by fewer
entities in E, indicating a higher cohesion of lbl�(pvi):

coh(pvi) =
� log

freq(pvi)
|E|

log |E| , where

freq(pv) = |{e 2 E : pv 2 D(e)}| .
(7)

According to information theory, coh(pvi) actually measures
the normalized information content associated with the prob-
abilistic event that pvi describes an entity in E. Since one
single solution can rarely simultaneously maximize modsize

and coh, a linear scalarization quantifying a trade-off between
them is maximized, with weights ↵,� 2 [0, 1] to be tuned.

In the constraints, 1� and 2� require that a solution se-
lects at most k property-value pairs; 3� requires that any two
generated subgroups lbl�(pvi) and lbl

�
(pvj) cannot have an

overlap larger than a threshold � 2 [�1, 1] to be tuned:

ovlp(pvi, pvj) =

log

|lbl�(pvi)\lbl�(pvj)|/|G|
(|lbl�(pvi)|/|G|)·(|lbl�(pvj)|/|G|)

� log(|lbl�(pvi) \ lbl

�
(pvj)|/|G|) , (8)

which is in [�1, 1] and, according to information theory, ac-
tually measures the normalized pointwise mutual informa-
tion (which is a kind of association) between the probabilistic
event that pvi describes an entity in G and the probabilistic
event that pvj describes an entity in G.

If homogeneous subgroups labeled with the same property
are required, we extend Eq. (5) by adding a new constraint:

4� xi+xj  1, for i, j = 1..n subject to i < j and pi 6= pj ,

(9)
where pi, pj 2 P are the properties in pvi, pvj , respectively.

Last but not least, every ordered pair of generated sub-
groups Gi and Gj are connected by relations selected from
those connecting entities in Gi to entities in Gj :

CR(Gi, Gj) ={r 2 R : 9e 2 Gi, 9e0 2 Gj ,

(hr, e0i 2 D(e))} .
(10)

A relation r 2 CR(Gi, Gj) will be selected if it connects
more than a threshold number of entity pairs from Gi to Gj :

|{he, r, e0i : e 2 Gi, e
0 2 Gj , hr, e0i 2 D(e)}|

min(|Gi|, |Gj |)
� ⌧R , (11)

where ⌧R 2 [0, 1] is a parameter to be tuned.

3.3 Problem Solution
The combinatorial optimization problem in Eq. (5) (and (9))
can be seen as a multidimensional knapsack problem (MKP),
which is NP-hard [Kellerer et al., 2004]. Specifically, each
candidate property-value pair pvi is treated as an item in
MKP, and ↵ ·modsize(pvi)+� ·coh(pvi) is seen as its profit;
2� and 3� (and 4�, when necessary) form multiple constraints

in which the weight of an item is 1 in 2�, and is 1 (presence)
or 0 (absence) in 3� (and 4�). We solve it using a greedy
strategy, considering candidate property-value pairs one after
the other and selecting one into the solution if that would not
violate any constraint. Candidates are sorted in decreasing
order of the following heuristic [Kellerer et al., 2004]:

↵ ·modsize(pvi) + � · coh(pvi)
cons(pvi)

, (12)

where cons(pvi) is the number of constraints where pvi (i.e.,
xi) presents, i.e., with a weight of 1.

Even with a greedy strategy, an efficient implementation is
non-trivial because some operations above are computation-
ally expensive over a large dataset. The following implemen-
tation manipulates inverted indexes, and allows approximate
results depending on the computational resources available.

Finding Candidates. Considering efficiency, our imple-
mentation refers to a group via the set of property-value pairs
characterizing it, not explicitly storing the entities in it but re-
trieving them when needed. So given G, or more precisely
PV (G), CPV

0
(G) is obtained using Algorithm 1, which re-

trieves the entities in G based on PV (G) (line 2) and then
collects and filters their property-value pairs (line 3–10).

Specifically, to retrieve the entities in G, an inverted index
idxE is created based on Lucene (lucene.apache.org), which
is usually used in information retrieval to index terms in doc-
uments. In idxE , each entity e 2 E and each property-value
pair in D(e) are indexed as a document and a term in the
document, respectively. Then, the entities in G are obtained
by submitting to idxE a conjunctive query consisting of the
property-value pairs in PV (G) as clauses (line 2).

The entities in lbl

�
(pv) are obtained in a similar way

(line 6). Its size is checked according to Eq. (3) (line 7). We
notice that |lbl�(pv)|  freq(pv), inspiring us to precom-
pute freq for each property-value pair in the dataset; then,
the precomputed freq(pv) is checked (line 5) before line 6–
7, since that is very fast and may save a query against idxE .

We limit the size of CPV

0
(G) to a maximum of µE (line

9–10), depending on the computational resources available,
to ensure that the resulting MKP will be solved in a reason-
able time. To avoid missing subgroups containing impor-
tant entities due to the limit, the entities retrieved in line 2
are sorted in order of importance, which is measured by
PageRank in a directed entity-relation graph derived from the
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Algorithm 1: Computing CPV

0
(G)

Data: PV (G).
Result: CPV

0
(G).

1 CPV

0
(G) ;;

2 G Query idxE with a conjunction of PV (G);
3 for the i-th entity ei 2 G do
4 foreach pv 2 D(ei) do
5 if freq(pv)

|G| � ⌧E then
6 lbl

�
(pv) Query idxE with a conjunction

of PV (G) [ {pv};
7 if ⌧E  |lbl�(pv)|

|G| < 1 then
8 CPV

0
(G) CPV

0
(G) [ {pv};

9 if |CPV

0
(G)| = µE then

10 Break the outermost loop;
11 return CPV

0
(G);

dataset, where vertices are the entities in E and an arc con-
nects ei 2 E to ej 2 E if ej is a property value of ei, i.e.,
ei has a relation to ej . PageRank scores are precomputed and
added to idxE , to be used by Lucene’s sorting function.

Establishing Constraints. To establish the constraints,
whereas 1� 2� 4� are trivial, 3� checks every pair of property-
value pairs in CPV

0
(G) and computes, for each pair,

ovlp(pvi, pvj) according to Eq. (8). That involves lbl�(pvi),
lbl

�
(pvj), and lbl

�
(pvi) \ lbl

�
(pvj), which are obtained

by querying idxE with a conjunction of PV (G) [ {pvi},
PV (G) [ {pvj}, and PV (G) [ {pvi, pvj}, respectively.

Computing Heuristic Function. In Eq. (12), cons(pvi)
is obtained by going over all the constraints; to compute
modsize(pvi) according to Eq. (6), lbl�(pvi) is obtained by
querying idxE as described above; coh(pvi) is obtained ac-
cording to Eq. (7) based on the precomputed freq(pvi).

Selecting Relations. Given two subgroups Gi and Gj , or
more precisely PV (Gi) and PV (Gj), relations connecting
them are found using Algorithm 2, which retrieves candidate
relations CR(Gi, Gj) based on PV (Gi) and PV (Gj) (line
2–4) and then selects those satisfying Eq. (11) (line 5–9).

Specifically, an inverted index idxR is created based on
Lucene, in which each entity-relation-entity triple he, r, e0i 2
(E⇥R⇥E) in the dataset subject to hr, e0i 2 D(e) is indexed
as a document with three fields: each property-value pair in
D(e) is indexed as a term in the field FS , r is indexed as a
term in the field FR, and each property-value pair in D(e

0
)

is indexed as a term in the field FT . Then, the relations in
CR(Gi, Gj) are obtained by submitting to idxR a conjunc-
tive query consisting of the property-value pairs in PV (Gi)

for FS and those in PV (Gj) for FT as clauses (line 2), and
collecting FR of the retrieved results (line 3–4).

The set of entity-relation-entity triples in the numerator of
Eq. (11) is obtained (as Tm) by querying idxR in a similar
way (line 5). Its size is checked according to Eq. (11) (line 6–
7), where |Gi| and |Gj | have been computed in Algorithm 1.

We limit the number of relations to a maximum of µR

(line 8–9), depending on the computational resources avail-
able. To avoid missing relations connecting important enti-

Algorithm 2: Finding Relations that Satisfy Eq. (11)
Data: PV (Gi) and PV (Gj).
Result: Subset of CR(Gi, Gj) that satisfy Eq. (11).

1 Rij  ;;
2 T  Query idxR with a conjunction of PV (Gi) for FS

and a conjunction of PV (Gj) for FT ;
3 for the m-th result in T do
4 rm  FR of the m-th result;
5 Tm  Query idxR with a conjunction of PV (Gi)

for FS , PV (Gj) for FT , and rm for FR;
6 if |Tm|

min(|Gi|,|Gj |) � ⌧R then
7 Rij  Rij [ {rm};
8 if m = µR then
9 Break the loop;

10 return Rij ;

ties due to the limit, the results retrieved in line 2 (which are
entity-relation-entity triples) are sorted in order of the total
PageRank score of the two entities. Scores are precomputed
and added to idxR, to be used by Lucene’s sorting function.

4 Experiments
We have implemented an online prototype of our HIEDS
approach.1 In this section, we empirically study the qual-
ity of summaries for real-world RDF datasets generated by
HIEDS under various configurations, compare it with a base-
line method, and report its running time.

4.1 Datasets
Two extensively used RDF datasets were tested.

• SWDF2 (Semantic Web Dog Food) offers 200K entity-
property-value triples describing 20K entities in the re-
search domain (e.g., papers, researchers).

• LinkedMDB3 offers 6M entity-property-value triples
describing 0.6M movie-related entities (e.g., actors).

4.2 Metrics
Given a hierarchical grouping of entities generated by
HIEDS, three metrics were measured: weighted average cov-
erage, average cohesion, and height.

For each non-leaf group G in a hierarchical grouping, the
coverage of G achieved by its subgroups sg(G) is the propor-
tion of G covered by the union of sg(G):

cov(G) =

|
S

G02sg(G) G
0|

|G| . (13)

The weighted average coverage of a hierarchical grouping, in
[0, 1], is the average of coverage achieved over all the non-leaf
groups (NLG) weighted by the logarithm of their sizes:

weighted average coverage =

P
G2NLG log |G| · cov(G)P

G2NLG log |G| .

(14)
1http://ws.nju.edu.cn/hieds/
2http://data.semanticweb.org/
3http://data.linkedmdb.org/
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Figure 2: Weighted average coverage (x-axis), average cohe-
sion (y-axis), and height (diameter), under different k,↵,�.
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Figure 3: Weighted average coverage (x-axis), average cohe-
sion (y-axis), and height (diameter), under different �,↵,�.

The average cohesion of a hierarchical grouping, in [0, 1],
is the average of cohesion of all the non-root groups (NRG):

average cohesion =

P
G2NRG coh(lbl(G))

|NRG| , (15)

which reuses coh defined by Eq. (7); lbl(G) is the property-
value pair that labels G.

The height of a hierarchical grouping is the number of
edges on a longest path between the root and a leaf.

4.3 Results and Discussion
In this experiment, groups were iteratively subdivided until
each leaf group contained not more than 50 entities. We fixed
µE = +1 and ⌧E = 0.01 (c.f. Algorithm 1), to focus on the
effects of other parameters.

Effects of ↵, �, k, and 4�. Firstly we tested the effects
of ↵ and � (c.f. Eq. (5)), k (i.e., the maximum number of
subgroups of each non-leaf group), and whether to consider
constraint 4� (c.f. Eq. (9)), under fixed � = 0 (c.f. Eq. (5))
for simplicity. Figure 2 shows the weighted average coverage,
average cohesion, and height of hierarchical grouping gener-
ated under different settings of k, corresponding to different
curves; the six points in each curve corresponded to different
values of ↵ from 0.0 to 1.0 in 0.2 increments and � = 1� ↵.

In Fig. 2(a) and 2(b) where constraint 4� was not intro-
duced, when increasing ↵ relative to �, weighted average
coverage rose rapidly and average cohesion fell gradually, be-
cause a large value of ↵ would favor large groups covering
many entities whose cohesion was relatively low. However,
weighted average coverage was below 0.5 under all the con-
figurations on both datasets, being not very large, because ex-
cept for Type, the two datasets lacked categorical properties
that could induce groups of a considerable size; it would mo-
tivate us to seek novel ways of characterizing a group beyond
property-value pairs in future work. When increasing k, both
weighted average coverage and average cohesion were im-
proved, because more small, cohesive groups were added to
the summary; however, for those benefits, users had to spend
more time reading many groups (and relations connecting
them) at a time. Similar results were observed when con-
straint 4� was introduced to require homogeneous subgroups,
as shown in Fig. 2(c) and 2(d).

Height was generally very small in the experiment because
the size of group decreased exponentially with height, and
thus would not bore users with too much interaction. On
SWDF it was usually 2–4, and on LinkedMDB 3–5.

Effects of �. Then we tested the effects of �, under fixed
k = 7 and not introducing constraint 4� for simplicity. Fig-
ure 3 shows the weighted average coverage, average cohe-
sion, and height of hierarchical grouping generated under dif-
ferent settings of �, corresponding to different curves; the six
points in each curve corresponded to different values of ↵

from 0.0 to 1.0 in 0.2 increments and � = 1� ↵.
Under the same value of ↵ and �, weighted average cov-

erage was generally larger and average cohesion was slightly
lower when � was larger, because the allowed degree of over-
lap between groups was raised so that some large groups of
relatively low cohesion were added to the summary.

Since larger values of � led to more large groups, the height
of hierarchical grouping rose accordingly. It hit a peak of 6
on LinkedMDB when ↵ � 0.6 and � = 0.5.

Comparison with Baseline. We compared HIEDS with
LODeX [Benedetti et al., 2014], a baseline schema-based
method for summarizing a dataset. LODeX grouped enti-
ties by their classes, and the k largest groups would form a
summary; it could be conceived as a specific configuration of
HIEDS that was biased towards coverage. The flat grouping
it generated achieved higher coverage than HIEDS, as shown
in Fig. 2. However, the cohesion of those groups was rather
low, like Type:Person on LinkedMDB describing an overly
broad concept. The results also included notably overlapping
groups offering redundant information, like Type:Person and
Type:Chair on SWDF; by comparison, HIEDS could be con-
figured to control the degree of allowed overlap.

4.4 Running Time
We tested the running time of HIEDS on an Intel E3-1225
v3 with 30G memory for our Java program. All the relevant
data resided in the memory, expect for Lucene indexes on
disk. In HIEDS, groups were iteratively subdivided until each
leaf group contained not more than 50 entities; the following
parameters were fixed for simplicity: ↵ = � = 0.5, � = 0,
⌧E = ⌧R = 0.01, k = 7, and not introducing constraint 4�.
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Figure 4: Running time.

Note that the running time of HIEDS is not explicitly related
to ↵, �, �, or ⌧R, though it may be affected by ⌧E and k.

Figure 4 shows the running time under different values
of µE and µR (c.f. Algorithm 1 and 2, respectively) from 20
to 200 in 20 increments. The running time generally in-
creased linearly when increasing µE and µR; in practice, they
could be tuned depending on the computational resources
available to an application, to achieve a trade-off between
quality of summary and running time. When µE = µR =

200, HIEDS took only 4s to compute all the iterations and
generate a hierarchical summary for SWDF, but took 163s
for LinkedMDB, mostly used to establish constraint 3�which
queried the inverted index idxE for every pair of candidate
property-value pairs in CPV

0.
Actually, since a hierarchical summary was to be incre-

mentally explored, it might be not necessary to compute all
the iterations; an iteration could be computed just prior to
exploring it, and thus a more important metric would be the
average running time per iteration. As shown in Fig. 4, when
µE = µR = 200, the averages were 0.5s and 7s for SWDF
and LinkedMDB, respectively; it would be even faster under
smaller values of µE and µR, or by parallelizing our imple-
mentation, thereby being capable of serving users with dy-
namically configured summaries with acceptable latency.

5 Related Work
Dataset Summarization. To summarize a dataset for quick
inspection, schema-based methods group entities by their
classes and connect groups by relations, to form a conceptual
graph (or a set of tables [Yan et al., 2016]) as a high-level ab-
straction of data. Such a small-sized graph focuses on classes
and relations either frequently used [Basse et al., 2010;
Böhm et al., 2012] or centrally located [Presutti et al., 2011;
Christodoulou et al., 2013] in the data, and its visualization
is often associated with statistical information such as fre-
quency of classes and relations [Benedetti et al., 2014; Pal-
monari et al., 2015]. By comparison, partition-based methods
exploit all the properties beyond Type to group entities. Par-
tition is based on commonly related entities [Khatchadourian
and Consens, 2010], common relations [Tian et al., 2008],
or a variety of features [Campinas et al., 2013]. Whereas
both schema- and partition-based methods generate flat sum-
maries, our HIEDS approach organizes groups into a hierar-
chy providing multi-granular abstraction of data to be incre-
mentally explored. As a generic approach, HIEDS can be
configured to either generate homogeneous groups based on
a single property like schema-based methods (which only use

Type) or exploit all the properties like partition-based meth-
ods; HIEDS can also be configured to allow different degrees
of overlap between groups, and thus can generate natural but
overlapping groups whereas partition-based methods require
disjoint groups.

Different from the above browsing-oriented methods, sum-
maries have also been generated to help efficiently answering
structured queries posed to a dataset [Rietveld et al., 2014;
Dolby et al., 2007] or testing whether a query has any answers
against a dataset [Čebirić et al., 2015]. Compared with our
work, these query-oriented methods pursue different goals,
and their techniques are orthogonal to ours.

Ontology Summarization. The ontological schema of
a dataset may also be very large; its summary will be
used in ontology search engines for quick inspection. Ex-
isting methods adopt extractive strategies, to select a sub-
set of salient classes and properties [Wu et al., 2008; Per-
oni et al., 2008] or their descriptions [Zhang et al., 2007;
Troullinou et al., 2015] from an ontology. By comparison,
we deal with not the schema but the contents of a dataset.
Our HIEDS approach adopts non-extractive strategies, to not
extract a subset but generate a high-level abstraction of data.

Faceted Search. Faceted search also provides incremental
exploration of a set of entities. It often assumes that a user
enters a query stating a precise information need, and thus
selects facets biased towards the query [Roy et al., 2008],
whereas our HIEDS approach is query-independent and ad-
dresses browsing-related concerns. Compared with existing
browsing-oriented methods [Wagner et al., 2011], HIEDS is
distinguished not only by its generic nature comprising five
aspects and the efficient implementation thereof, but also by
its consideration of relations connecting groups in a summary.

6 Conclusion
To summarize the contents of a dataset for quick inspection,
our HIEDS approach integrates five configurable aspects into
a combinatorial optimization problem to solve, and generates
a hierarchical grouping of entities connected by relations to
be incrementally explored. It finds applications in open data
portals, and our efficient implementation is proven to serve
users with dynamically configured summaries with accept-
able latency. We plan to extend our online prototype and de-
velop such a portal featuring dataset summaries generated by
HIEDS, and conduct a user study based on that.

Our work can be improved in several directions. It would
be useful to seek novel ways of characterizing a group be-
yond property-value pairs, and to find an index-free imple-
mentation that directly operates against a SPARQL endpoint.
Besides, it would be interesting to explore how to summarize
a dataset covering a wide range of topics like DBpedia, which
has not been effectively resolved by existing methods.
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