
Weakly-Supervised Deep Learning for
Customer Review Sentiment Classification

Ziyu Guan1, Long Chen1, Wei Zhao2, Yi Zheng3, Shulong Tan4, Deng Cai3
1Northwest University 2Xidian University 3Zhejiang University 4Baidu Big Data Laboratory

Xi’an, China Xi’an, China Hangzhou, China Sunnyvale, USA
1{ziyuguan@, longchen@stumail.}nwu.edu.cn, 2ywzhao@mail.xidian.edu.cn

3{delostik@, dengcai@cad.}zju.edu.cn, 4laos1984@gmail.com

Abstract

Sentiment analysis is one of the key challenges for
mining online user generated content. In this work,
we focus on customer reviews which are an impor-
tant form of opinionated content. The goal is to
identify each sentence’s semantic orientation (e.g.
positive or negative) of a review. Traditional senti-
ment classification methods often involve substan-
tial human efforts, e.g. lexicon construction, fea-
ture engineering. In recent years, deep learning
has emerged as an effective means for solving sen-
timent classification problems. A neural network
intrinsically learns a useful representation automat-
ically without human efforts. However, the suc-
cess of deep learning highly relies on the availabil-
ity of large-scale training data. In this paper, we
propose a novel deep learning framework for re-
view sentiment classification which employs preva-
lently available ratings as weak supervision signals.
The framework consists of two steps: (1) learn a
high level representation (embedding space) which
captures the general sentiment distribution of sen-
tences through rating information; (2) add a classi-
fication layer on top of the embedding layer and use
labeled sentences for supervised fine-tuning. Ex-
periments on review data obtained from Amazon
show the efficacy of our method and its superiority
over baseline methods.

1 Introduction
With the booming of Web 2.0 and e-commerce, more and
more people start consuming online and leave comments
about their purchase experiences on merchant/review Web-
sites. These opinionated contents are valuable resources
both to future customers for decision-making and to mer-
chants for improving their products and/or service. How-
ever, as the volume of reviews grows rapidly, people have
to face a severe information overload problem. To allevi-
ate this problem, many opinion mining techniques have been
proposed, e.g. opinion summarization [Hu and Liu, 2004;
Ding et al., 2008], comparative analysis [Liu et al., 2005]
and opinion polling [Zhu et al., 2011]. A key component for

these opinion mining techniques is a sentiment classifier for
natural sentences.

Popular sentiment classification methods generally fall into
two categories: (1) lexicon-based methods and (2) machine
learning methods. Lexicon-based methods [Turney, 2002;
Hu and Liu, 2004; Ding et al., 2008] typically take the tack of
first constructing a sentiment lexicon of opinion words (e.g.
“good”, “bad”), and then design classification rules based on
appeared opinion words and prior syntactic knowledge. De-
spite effectiveness, this kind of methods require substantial
efforts in lexicon construction and rule design. Furthermore,
lexicon-based methods cannot well handle implicit opinions,
i.e. objective statements such as “I bought the mattress a
week ago, and a valley appeared today”. As pointed out in
[Feldman, 2013], this is also an important form of opinions.
Factual information is usually more helpful than subjective
feelings. Lexicon-based methods can only deal with implicit
opinions in an ad-hoc way [Zhang and Liu, 2011].

A pioneering work [Pang et al., 2002] for machine learn-
ing based sentiment classification applied standard machine
learning algorithms (e.g. Support Vector Machines) to the
problem. After that, most research in this direction revolved
around feature engineering for better classification perfor-
mance. Different kinds of features have been explored, e.g.
n-grams [Dave et al., 2003], Part-of-speech (POS) informa-
tion and syntactic relations [Mullen and Collier, 2004], etc.
Feature engineering also costs a lot of human efforts, and a
feature set suitable for one domain may not generate good
performance for other domains [Pang and Lee, 2008].

In recent years, deep learning has emerged as an effective
means for solving sentiment classification problems [Glorot
et al., 2011; Kim, 2014; Tang et al., 2015; Socher et al., 2011;
2013]. A deep neural network intrinsically learns a high level
representation of the data [Bengio et al., 2013], thus avoiding
laborious work such as feature engineering. A second ad-
vantage is that deep models have exponentially stronger ex-
pressive power than shallow models. However, the success of
deep learning heavily relies on the availability of large-scale
training data [Bengio et al., 2013; Bengio, 2009]. Construct-
ing large-scale labeled training datasets for sentence level
sentiment classification is still very laborious.

Fortunately, most merchant/review Websites allow cus-
tomers to summarize their opinions by an overall rating score
(typically in 5-stars scale). Ratings reflect the overall senti-

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

3719



Figure 1: A negative sentence in a 5-stars review.

ment of customer reviews and have already been exploited for
sentiment analysis [Maas et al., 2011; Qu et al., 2012]. Nev-
ertheless, review ratings are not reliable labels for the con-
stituent sentences, e.g. a 5-stars review can contain negative
sentences and we may also see positive words occasionally in
1-star reviews. An example is shown in Figure 1. Therefore,
treating binarized ratings as sentiment labels could confuse a
sentiment classifier for review sentences.

In this work, we propose a novel deep learning framework
for review sentence sentiment classification. The framework
leverages weak supervision signals provided by review rat-
ings to train deep neural networks. For example, with 5-
stars scale we can deem ratings above/below 3-stars as pos-
itive/negative weak labels respectively. It consists of two
steps. In the first step, rather than predicting sentiment la-
bels directly, we try to learn an embedding space (a high
level layer in the neural network) which reflects the general
sentiment distribution of sentences, from a large number of
weakly labeled sentences. That is, we force sentences with
the same weak labels to be near each other, while sentences
with different weak labels are kept away from one another. To
reduce the impact of sentences with rating-inconsistent orien-
tation (hereafter called wrong-labeled sentences), we propose
to penalize the relative distances among sentences in the em-
bedding space through a ranking loss. In the second step, a
classification layer is added on top of the embedding layer,
and we use labeled sentences to fine-tune the deep network.
Regarding the network, we adopt Convolutional Neural Net-
work (CNN) as the basis structure since it achieved good per-
formance for sentence sentiment classification [Kim, 2014].
We further customize it by taking aspect information (e.g.
screen of cell phones) as an additional context input. The
framework is dubbed Weakly-supervised Deep Embedding
(WDE). Although we adopt CNN in this paper, WDE also
has the potential to work with other types of neural networks.
To verify the effectiveness of WDE, we collect reviews from
Amazon.com to form a weakly labeled set of 1.1M sentences
and a manually labeled set of 11,754 sentences. Experimental
results show that WDE is effective and outperforms baselines
methods.

2 Related Work

Sentiment analysis is a long standing research topic. Read-
ers can refer to [Liu, 2012] for a recent survey. Sentiment
classification is one of the key tasks in sentiment analysis and
can be roughly categorized as document level, sentence level
and aspect level. Our work falls into the last category since
we consider aspect information. In the next we review two
subtopics closely related to our work.

2.1 Deep Learning for Sentiment Classification
In recent years, deep learning has received more and more
attention in the sentiment analysis community. Researchers
have explored different deep models for sentiment classifica-
tion. Glorot et al. used stacked denoising auto-encoder to
train review representation in an unsupervised fashion, in or-
der to address the domain adaptation problem of sentiment
classification [Glorot et al., 2011]. Socher et al.

[Socher et

al., 2011; 2012; 2013] proposed a series of Recursive Neural
Network (RecNN) models for sentiment classification. These
methods learn vector representations of variable-length sen-
tences through compositional computation recursively. Kim
investigated using CNN for sentence sentiment classification
and found it outperformed RecNN [Kim, 2014]. A vari-
ant CNN with dynamic k-max pooling and multiple convo-
lutional layers was proposed in [Kalchbrenner et al., 2014].
Researchers have also investigated using sequential models
such as Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) for sentiment classification [Tang et

al., 2015].
However, none of the above works tried to use review rat-

ings to train deep sentiment classifiers for sentences. This is
not a trivial problem since ratings are too noisy to be used
directly as sentence labels (see Section 3 and experiments
for discussions of this issue). To our knowledge, The WDE
framework is the first attempt to make use of rating informa-
tion for training deep sentence sentiment classifiers. Note that
although we choose CNN as the deep model due to its com-
petitive performance on sentiment classification [Kim, 2014],
the idea of WDE could also be applied to other types of deep
models. The major contribution of this work is a weakly-
supervised deep learning framework, rather than specific deep
models.

2.2 Exploiting Ratings in Sentiment Classification
Rating information has been exploited in sentiment classifica-
tion. Qu et al. incorporated ratings as weak labels in a proba-
bilistic framework for sentence level sentiment classification
[Qu et al., 2012]. However, their method still required care-
ful feature design and relied on base predictors. While our
method automatically learns a meaningful sentence represen-
tation for sentiment classification. Täckström and McDonald
used conditional random fields to combine review level and
sentence level sentiment labels for sentence sentiment analy-
sis [Täckström and McDonald, 2011]. This method also re-
quired feature engineering. Maas et al.

[Maas et al., 2011]
proposed to learn sentiment-bearing word vectors by incor-
porating rating information in a probabilistic model. For sen-
timent classification, they simply averaged the word vectors
of a document as its representation. A similar work is [Tang
et al., 2014], which developed a variant of the C&W neural
model [Collobert et al., 2011] for learning sentiment-bearing
word vectors from weak tweet labels derived from emoti-
cons. The tweet representation was obtained by min, max and
avg pooling on word vectors. Although this kind of methods
can generate sentence representations automatically, the rep-
resentations were derived by simple pooling of the learned
word vectors. In comparison, our method generates a sen-
tence representation by feeding word vectors through an ex-

3720



pressive deep neural network. Moreover, we directly opti-
mize sentence representation, rather than word vectors. We
take the above two methods as baselines in experiments.

3 Weakly-supervised Deep Embedding
The classic deep learning methods take an “unsupervised
training then supervised fine-tuning” scheme, where re-
stricted Boltzmann machines (RBM) or auto-encoders are
used to pre-train network parameters from large quantities
of unlabeled data [Bengio, 2009]. This works well when
the data distribution is correlated with label prediction [Ben-
gio, 2009]. Nevertheless, in sentiment analysis the word co-
occurrence information is usually not well correlated with
sentiment prediction [Maas et al., 2011], which motivates us
to exploit large-scale rating data for training deep sentiment
classifiers.

Figure 2: Percentages of wrong-labeled sentences by rat-
ings in our labeled review dataset. The overall percentage
is 13.4%.

However, ratings are noisy labels for review sentences and
would mislead classifier training if directly used in supervised
training. In this paper, we adopt a simple rule to assign weak
labels to sentences with 5-stars rating scale:

`(s) =

⇢
pos, if s is in a 4 or 5-stars review
neg, if s is in a 1 or 2-stars review , (1)

where `(s) denotes the weak sentiment label of sentence s.
Figure 2 shows the percentages of wrong-labeled sentences
by `(s), estimated in our labeled review dataset (detailed de-
scription of the dataset is in Section 4.1). We can see the noise
level is moderate but not ignorable.

The general idea behind WDE is that we use large quan-
tities of weakly labeled sentences to train a good embedding

space so that a linear classifier would suffice to accurately
make sentiment predictions. Here good embedding means in
the space sentences with the same sentiment labels are close
to one another, while those with different labels are kept away
from each other. In the following, we first present the net-
work architecture, and then discuss how to train it with large-
scale rating data, followed by supervised fine-tuning on la-
beled sentences.

3.1 Network Architecture
The network architecture, depicted in Figure 3, is a variant of
the CNNs described in [Collobert et al., 2011; Kim, 2014].
In what follows, we use upper case bold letters such as W to

Figure 3: The CNN network architecture for sentence senti-
ment classification.

denote matrices and lower case bold letters such as x to de-
note column vectors. The i-th element in vector x is denoted
by x(i).

Input Layer. An input sentence of length t is a word se-
quence s =< w1w2 . . . wt >. Each word w in the vocabu-
lary is described by a word vector x. Let k be the length of
x and n be the total number of words in the vocabulary. The
trainable word lookup table X is then a k ⇥ n matrix with
word vectors as its columns. The input layer simply maps
s =< w1w2 . . . wt > to its corresponding word vector repre-
sentation < x1x2 . . .xt >. The lookup table is initialized
using the publicly available 300-dimensional word vectors
trained on 100 billion words from Google News by word2vec
[Mikolov et al., 2013]. Out-of-sample words are initialized
randomly.

Convolutional Layer and Max pooling Layer. The convo-
lutional layer applies a set of filters on the sentence. Each
filter w 2 Rhk is applied to a window of h words to produce
a local feature value:

u(i) = f(w

T
xi:(i+h�1) + b), (2)

where xi:(i+h�1) represents the concatenated vector
[x

T
i x

T
i+1 . . .x

T
i+h�1]

T , u(i) is the computed feature value
at position i, b is the bias of the current filter, and f(·) is a
non-linear activation function such as hyperbolic tangent.
Computing u(i) at all possible positions in s yields a
(t � h + 1)-dimensional feature vector (i.e. a feature map)
u = [u(1)u(2) . . . u(t � h + 1)]

T . Then the max pooling
layer performs a max operation over each feature map uj

to find the most salient value of the filter’s corresponding
feature as its final value [Collobert et al., 2011]

v(j) = max

i
{uj(i)}. (3)

This pooling scheme keeps the most important indicator of a
feature and naturally leads to a fixed-length vector output v
at the max pooling layer.

3721



A filter with window size h is intrinsically a feature ex-
tractor which performs “feature selection” from the h-gram
features of a sentence. When the input h-gram matches its
w, we will obtain a high feature value, indicating this h-gram
activates the feature. This resembles the traditional feature
selection in sentiment classification [Pang and Lee, 2008],
but is done automatically by the network. Since traditional
machine learning based methods often exploit unigrams, bi-
grams and trigrams [Pang and Lee, 2008], we also employ
filters with different window sizes, i.e. h = 1, 2, 3.

Hidden Layer and Embedding Layer. The fixed-length fea-
ture vector v is then fed to the fully connected hidden layer
and embedding layer to extract nonlinear higher level fea-
tures. For the hidden layer, the computation is straightfor-
ward with weigh matrix Wh and bias vector bh:

h = f(Whv + bh). (4)

The embedding layer gets its input from two sources: the out-
put of the hidden layer h, and context vector as of sentence
s. A context vector is the semantic representation of an as-
pect that customers can comment on with respect to a sort of
entities. For instance, battery life is an aspect for cell phones.
The motivation for incorporating aspect information as the
context of a sentence is that similar comments in different
contexts could be of opposite orientations, e.g. “the screen
is big” vs. “the size is big”. Context vectors of all aspects
constitute the context lookup table A (as columns). The em-
bedding layer output is computed as

y = f

✓
We


h

as

�
+ be

◆
. (5)

Classification Layer. This layer (and the connection below)
is drawn using dotted lines since it is not until the supervised
fine-tuning phase that the layer will be added to the network.
We defer the description of this layer to Section 3.3.

3.2 Embedding Training with Ratings
With the weak label definition in Eq. (1), we can divide re-
view sentences into two sets: P = {s|`(s) = pos} and
N = {s|`(s) = neg}. Since P and N contain wrong-
labeled sentences, they cannot directly be used to train a
classifier. Therefore, we propose to first train an embedding
space that captures the general sentiment distribution of sen-
tences. Intuitively, we should let sentences in P/N stick to-
gether, while keeping P and N separated. A straightforward
training scheme could be adapted from [Weston et al., 2008]
by stochastic gradient descent (SGD): we sample sentence
pairs and reduce distances for same-label pairs and increase
distances for opposite-label pairs. However, when wrong-
labeled sentences are sampled, there is still a relatively high
chance that we make a wrong move. To alleviate this issue,
we propose to penalize relative distances for sentence triplets.
The training objective is defined as a ranking loss [Collobert
et al., 2011]

Lweak =

X

<s1,s2,s3>

max (0,�� dst(s1, s3) + dst(s1, s2)) ,

(6)

where � is the margin parameter, dst(·) is the Euclidean dis-
tance between sentences computed by their embedding layer
representation:

dst(si, sj) = kyi � yjk2, (7)

and < s1, s2, s3 > denotes a valid triplet with `(s1) =

`(s2) 6= `(s3). Eq. 6 means we require the distance between
same-label sentences s1 and s2 to be shorter than that be-
tween s1 and a sentence s3 with the opposite label by at least
�. A sample triplet is generated as follows. First, we ran-
domly choose P or N as the focus. Suppose we choose P .
Then two sentences s1 and s2 are sampled from P in turn,
and a sentence s3 is sampled from N . The case for N as the
focus is just a mirror case.

Figure 4: Comparison between (a) pair-based training and (b)
triplet-based training. Please see the text for detailed expla-
nations.

Figure 4 illustrates the advantages of triplet-based train-
ing over pair-based training via a toy example. We use cir-
cles and triangles to represent sentences in P and N respec-
tively. Black nodes denote wrong-labeled sentences. Since
the majority of sentences are with correct labels, they would
gather together in the training process. Wrong-labeled sen-
tences would go towards the wrong clusters, but with slower
speeds. In both training methods, undesirable moves could
happen when wrong-labeled sentences are sampled. For clar-
ity, we just show three such cases that are representative for
respective methods. The three cases in Figure 4(a) all result
in undesirable moves: sentences with different orientations
become closer (cases 1 and 2), while same-orientation sen-
tences become more separated (case 3). In Figure 4(b), case
1 generates only undesirable moves: since s3 (black triangle)
is closer to s1 (white circle) than s2 (black circle), the algo-
rithm will drag s3 away from s1 and drag s2 toward s1. Cases
2 and 3 lead to a mixed behavior: one move is desirable while
the other one is not. Therefore, cases 2 and 3 in Figure 4(b)
are not as harmful as the cases in Figure 4(a). Furthermore,
in triplet-based training there will not be a move if the differ-
ence in distances exceeds the margin �, since the derivative
of Lweak becomes 0. This is useful in that we will not make
things too bad. For example, in case 2 of Figure 4(b) s2 is
actually a negative sentence and should not be too close to
s1. Notice s3 is far away from s1. Hence, the distance dif-
ference may already exceed � and there will be no move for
this triplet. As a comparison, cases 1 and 2 in Figure 4(a)

3722



will continually move s1 and s2 toward each other until their
distance becomes 0, which is the worst result.

Training. Embedding training is done by taking the deriva-
tive of Lweak in (6) with respect to all the parameters un-
der the Embedding Layer (Figure 3). We do SGD over sam-
pled sentence triplets with AdaGrad update rule [Duchi et al.,
2011]. We empirically set context vector size to 50, num-
ber of filters for each window size to 200, and both hidden
layer size and embedding layer size to 300. Hyperbolic tan-
gent is employed as the activation function for all layers. The
training is accelerated using GPU (28min for processing 1M
triplets on a Nvidia GTX 980ti GPU).

3.3 Supervised Fine-tuning
After obtaining a good enough sentence representation by the
embedding layer, we add a classification layer on the top (Fig-
ure 3) to further train the network using labeled sentences.
The classification layer simply performs standard affine trans-
formation of the embedding layer output y and then applies
a softmax activation function [Bishop, 2006] to the result for
label prediction. In this work, we focus on binary sentiment
prediction (i.e. positive or negative) since we only consider
sentences which comment on specific aspects of an entity.
This kind of sentences hardly contain neutral sentences. Nev-
ertheless, WDE could also be adapted to multi-class predic-
tion problems. For binary prediction, the classification layer
is equivalent to a logistic regression model. We train the net-
work using standard SGD, since AdaGrad can easily “forget”
the prior model learned in the first phase.

4 Experiments
In this section, we present the empirical evaluation of WDE
on reviews collected from Amazon.com.

Table 1: Statistics of the labeled dataset.
Positive Negative Total

Subjective 3750 2024 5774
Objective 1860 4120 5980
Total 5610 6144 11754

4.1 Data and Preprocessing
We collected Amazon customer reviews of 3 domains: digital
cameras, cell phones and laptops. All unlabeled reviews were
extracted from the Amazon data product dataset [McAuley et

al., 2015]. In particular, we extracted all the reviews from
12 leaf categories closely related to the above three domains
(3-stars reviews were ignored). For the labeled dataset, we
crawled latest reviews in 2015 for random products in the
above 12 categories, in order to be disjoint with the unlabeled
data. We tried to keep a balance between reviews with 4 & 5-
stars and those with 1 & 2-stars. We then summarized product
aspects and their keywords by traditional method [Ding et al.,
2008] with manual calibration. A total of 107 aspects were
extracted from the obtained reviews. Next, all reviews were
split into sentences and those with no aspect keywords were
discarded. In case a sentence mentioned multiple aspects, we

tried to split it into multiple single-aspect sentences. After
preprocessing, we obtained a vocabulary of 148,183 terms, an
unlabeled set of 1,143,721 sentences with rating information
only (named 1.1M dataset), and 11,754 sentences for label-
ing. We labeled each sentence with respect to its subjectivity
and orientation. Three students were instructed to do each
labeling task. The statistics of the labeled dataset is shown
in Table 1. We can see the dataset is roughly balanced. For
the subjectivity and orientation labeling tasks, we achieved
Fleiss’s kappa values of 0.81 and 0.79 respectively. The la-
beled dataset was randomly split into training set (50%), val-
idation set (20%) and test set (30%) and we maintain the pro-
portion as shown in Table 1.

4.2 Baselines and Evaluation Settings
We compare WDE with the following baseline methods:
Lexicon: this is the popular lexicon-based method proposed
in [Ding et al., 2008].
SVM: the support vector machine with n-gram features [Pang
et al., 2002] is widely employed as a baseline for sentiment
classification. We use up to tri-grams since this setting is
shown to yield good performance for product reviews. Li-
blinear [Fan et al., 2008] is used to train the classifier.
NBSVM: NBSVM combines Naive Bayes and NB-enhanced
SVM to predict sentiment labels [Wang and Manning, 2012].
It generates good performance on many sentiment classifica-
tion datasets.
SSWE: SSWE learns sentiment-bearing word vectors by a
neural network applied on weakly labeled data. We use min,
max and avg pooling [Tang et al., 2014] on word vectors to
generate the sentence representation which is then fed to a
classifier.
SentiWV: this is the sentiment word vector learning method
on rating data described in Section 2 [Maas et al., 2011]. We
also use the aforementioned three pooling functions to gener-
ate sentence vectors. Liblinear is used to train the classifiers
for SentiWV and SSWE.
CNN-rand: we train the same CNN network (Figure 3) on
labeled data with random parameter initialization.
CNN-weak: we train the same CNN network on 1.1M dataset
by treating weak labels defined in Eq. (1) as real labels. This
baseline will answer whether rating data can be used to train
sentence sentiment classifiers directly.

All methods (expect CNN-weak and Lexicon) are trained
on the training set and evaluated on the test set. WDE, SSWE,
Senti-WV have a pre-training phase on the 1.1M dataset. The
validation set is used for parameter tuning of all the methods
and early stopping of CNN training. We employ Accuracy

and Macro-F1 as the evaluation metrics.

4.3 Performance Comparison
The results are shown in Table 2. We also report performance
for subjective sentences and objective sentences separately.
The key observations are as follows. Lexicon performs poorly
on objective sentences, since factual statements would not
contain opinion words. When no opinion word is detected,
we can only make random predictions. The machine learning
methods all achieve acceptable performance, on both subjec-
tive and objective sentences. One exception is CNN-weak,

3723



Table 2: Performance comparison.

Method Accuracy Macro-F1
All Subj Obj All Subj Obj

Lexicon .722 .827 .621 .721 .812 .613
SVM .818 .838 .800 .818 .821 .765

NBSVM .826 .844 .808 .825 .831 .773
SSWE .835 .857 .815 .834 .826 .804

SentiWV .808 .806 .809 .807 .786 .771
CNN-rand .847 .861 .835 .847 .848 .802
CNN-weak .771 .773 .770 .771 .755 .741

WDE .877 .886 .868 .876 .875 .843

(a) (b)

Figure 5: Impact of labeled training data size on each
method’s performance.

which is trained on weakly labeled sentences. We find its
validation performance fluctuates drastically during training.
This indicates directly binarizing ratings as labels for super-
vised training is not a good idea. SSWE performs better than
traditional classifiers (SVM and NBSVM) by applying a neu-
ral model on 1.1M dataset. However, it just uses word vec-
tors to encode the useful information in the 1.1M dataset.
The classifier is still a “shallow” linear model. In compari-
son, WDE encodes both a large number of weak supervision
signals and supervision signals in a deep neural network and
beats all the baselines.

4.4 Varying the Size of Training Set

Next we examine the impact of the size of labeled training
data on each method’s performance. CNN-weak and Lex-
icon are not involved since they do not depend on labeled
training data. We randomly select d% training data to train
the classifiers and test them on the test set, with d ranging
from 10 to 90. For each d, we generate the training set 30
times and the averaged performance is reported. Figure 5
shows the results. We can see that as the number of avail-
able training instances decreases, the performance of CNN-
rand, NBSVM and SVM drops faster than that of WDE,
SSWE and SentiWV. This should be because the latter meth-
ods have gained prior knowledge about the sentiment distri-
bution through pre-training, though with different capabili-
ties. With 10% training set (nearly 600 instances), WDE can
still achieve around 80% accuracy on the test set. According
to t-test, WDE significantly outperforms the other methods
with p-value < 0.01.

Figure 6: Impact of � on classification performance.

4.5 Effect of � in WDE
The margin parameter � in Eq. (6) controls the extent to
which we require weakly labeled positive instances to be sep-
arated from weakly labeled negative ones. A small value of �
may not effectively capture the sentiment distribution, while
too large � could amplify the impact of wrong-labeled sen-
tences (Figure 4). Here we investigate �’s impact on the clas-
sification performance. Recall that the embedding layer is
a 300-dimensional vector, and the output range of its neu-
ral nodes is [�1, 1]. It forms a hypercube where the max-
imal distance between any two points in the hypercube is
dia =

p
1200 ⇡ 35. Hence, we vary � from 1 to 30. Figure 6

plots the performance curve. We also show the best base-
line performance achieved by CNN-rand for comparison. We
find the performance drops quickly when � > 15, and when
� < 15 we can easily find a value leading to good perfor-
mance. Moreover, when � is set to a relatively high value
(> 0.5dia), the network is more easily to be trapped in satu-
rating regions [Bengio et al., 2013] after long time training.
In this paper we set � = 5.

5 Conclusions
In this work we proposed a novel deep learning framework
named Weakly-supervised Deep Embedding for review sen-
tence sentiment classification. WDE trains deep neural net-
works by exploiting rating information of reviews which
is prevalently available on many merchant/review Websites.
The training is a 2-step procedure: first we learn an embed-
ding space which tries to capture the sentiment distribution
of sentences by penalizing relative distances among sentences
according to weak labels inferred from ratings; then a softmax
classifier is added on top of the embedding layer and we fine-
tune the network by labeled data. Experiments on reviews
collected from Amazon.com show that WDE is effective and
outperforms baseline methods. For future work, we will in-
vestigate applying WDE on other types of deep networks and
other problems involving weak labels.

Acknowledgments
This research was supported by the National Natural Sci-
ence Foundation of China under Grant No. 61522206, Na-
tional Basic Research Program of China (973 Program) under
Grant No. 2013CB336500 and the Program for Changjiang
Scholars and Innovative Research Team in University (No.

3724



IRT13090). The content of the information does not neces-
sarily reflect the position or the policy of the Government,
and no official endorsement should be inferred. The authors
would like to thank prof. Jinye Peng and prof. Jianping Fan
for their helpful suggestions for this work.

References
[Bengio et al., 2013] Yoshua Bengio, Aaron Courville, and Pierre

Vincent. Representation learning: A review and new perspec-
tives. IEEE TPAMI, 35(8):1798–1828, 2013.

[Bengio, 2009] Yoshua Bengio. Learning deep architectures for
ai. Foundations and trends

R� in Machine Learning, 2(1):1–127,
2009.

[Bishop, 2006] Christopher M Bishop. Pattern recognition and ma-

chine learning. springer, 2006.
[Collobert et al., 2011] Ronan Collobert, Jason Weston, Léon Bot-

tou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Nat-
ural language processing (almost) from scratch. JMLR, 12:2493–
2537, 2011.

[Dave et al., 2003] Kushal Dave, Steve Lawrence, and David M
Pennock. Mining the peanut gallery: Opinion extraction and se-
mantic classification of product reviews. In WWW, pages 519–
528, 2003.

[Ding et al., 2008] Xiaowen Ding, Bing Liu, and Philip S Yu. A
holistic lexicon-based approach to opinion mining. In WSDM,
pages 231–240, 2008.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram Singer.
Adaptive subgradient methods for online learning and stochastic
optimization. JMLR, 12:2121–2159, 2011.

[Fan et al., 2008] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh,
Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library for large
linear classification. JMLR, 9:1871–1874, 2008.

[Feldman, 2013] Ronen Feldman. Techniques and applications for
sentiment analysis. Communications of the ACM, 56(4):82–89,
2013.

[Glorot et al., 2011] Xavier Glorot, Antoine Bordes, and Yoshua
Bengio. Domain adaptation for large-scale sentiment classifica-
tion: A deep learning approach. In ICML, pages 513–520, 2011.

[Hu and Liu, 2004] Minqing Hu and Bing Liu. Mining and sum-
marizing customer reviews. In SIGKDD, pages 168–177, 2004.

[Kalchbrenner et al., 2014] Nal Kalchbrenner, Edward Grefen-
stette, and Phil Blunsom. A convolutional neural network for
modelling sentences. In ACL, 2014.

[Kim, 2014] Yoon Kim. Convolutional neural networks for sen-
tence classification. In EMNLP, pages 1746–1751, 2014.

[Liu et al., 2005] Bing Liu, Minqing Hu, and Junsheng Cheng.
Opinion observer: analyzing and comparing opinions on the web.
In WWW, pages 342–351, 2005.

[Liu, 2012] Bing Liu. Sentiment analysis and opinion mining. Mor-
gan & Claypool Publishers, 2012.

[Maas et al., 2011] Andrew L Maas, Raymond E Daly, Peter T
Pham, Dan Huang, Andrew Y Ng, and Christopher Potts. Learn-
ing word vectors for sentiment analysis. In ACL, pages 142–150,
2011.

[McAuley et al., 2015] Julian McAuley, Rahul Pandey, and Jure
Leskovec. Inferring networks of substitutable and complemen-
tary products. In SIGKDD, pages 785–794, 2015.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai Chen,
Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In NIPS, pages
3111–3119, 2013.

[Mullen and Collier, 2004] Tony Mullen and Nigel Collier. Senti-
ment analysis using support vector machines with diverse infor-
mation sources. In EMNLP, volume 4, pages 412–418, 2004.

[Pang and Lee, 2008] Bo Pang and Lillian Lee. Opinion mining
and sentiment analysis. Foundations and trends in information

retrieval, 2(1-2):1–135, 2008.
[Pang et al., 2002] Bo Pang, Lillian Lee, and Shivakumar

Vaithyanathan. Thumbs up?: sentiment classification using
machine learning techniques. In EMNLP, pages 79–86, 2002.

[Qu et al., 2012] Lizhen Qu, Rainer Gemulla, and Gerhard
Weikum. A weakly supervised model for sentence-level seman-
tic orientation analysis with multiple experts. In EMNLP-CoNLL,
pages 149–159, 2012.

[Socher et al., 2011] Richard Socher, Jeffrey Pennington, Eric H
Huang, Andrew Y Ng, and Christopher D Manning. Semi-
supervised recursive autoencoders for predicting sentiment dis-
tributions. In EMNLP, pages 151–161, 2011.

[Socher et al., 2012] Richard Socher, Brody Huval, Christopher D
Manning, and Andrew Y Ng. Semantic compositionality through
recursive matrix-vector spaces. In EMNLP-CoNLL, pages 1201–
1211, 2012.

[Socher et al., 2013] Richard Socher, Alex Perelygin, Jean Y Wu,
Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compo-
sitionality over a sentiment treebank. In EMNLP, volume 1631,
page 1642, 2013.

[Täckström and McDonald, 2011] Oscar Täckström and Ryan Mc-
Donald. Semi-supervised latent variable models for sentence-
level sentiment analysis. In ACL, pages 569–574, 2011.

[Tang et al., 2014] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou,
Ting Liu, and Bing Qin. Learning sentiment-specific word em-
bedding for twitter sentiment classification. In ACL, volume 1,
pages 1555–1565, 2014.

[Tang et al., 2015] Duyu Tang, Bing Qin, and Ting Liu. Deep
learning for sentiment analysis: successful approaches and fu-
ture challenges. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, 5(6):292–303, 2015.
[Turney, 2002] Peter D Turney. Thumbs up or thumbs down?: se-

mantic orientation applied to unsupervised classification of re-
views. In ACL, pages 417–424, 2002.

[Wang and Manning, 2012] Sida Wang and Christopher D Man-
ning. Baselines and bigrams: Simple, good sentiment and topic
classification. In ACL, pages 90–94, 2012.

[Weston et al., 2008] Jason Weston, Frédéric Ratle, and Ronan Col-
lobert. Deep learning via semi-supervised embedding. In ICML,
pages 1168–1175, 2008.

[Zhang and Liu, 2011] Lei Zhang and Bing Liu. Identifying noun
product features that imply opinions. In ACL, pages 575–580,
2011.

[Zhu et al., 2011] Jingbo Zhu, Huizhen Wang, Muhua Zhu, Ben-
jamin K Tsou, and Matthew Ma. Aspect-based opinion polling
from customer reviews. IEEE Transactions on Affective Comput-

ing, 2(1):37–49, 2011.

3725


